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de la que soy profesor titular. Son apuntes elaborados a partir de
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guía para la elección de algunos temas y ejemplos del profesor J.M.R.
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sus comentarios y la corrección de algunos errores. Los que quedan
todavía son de mi entera responsabilidad.

La intención de este documento no es otra que tener los apuntes
en formato electrónico, de forma que se puedan ir mejorando o
cambiando evitando tachones y modificaciones que finalmente
plagan los apuntes reciclados de año en año. Por esta razón son
eminentemente gráficos, con multitud de esquemas. El texto es
intencionadamente telegráfico en ocasiones, aunque al escribir es
difícil evitar la tentación de volverse formal con el lenguaje y dar
muchos detalles para el lector. Han resultado un recurso inestimable
como material de apoyo en la docencia online.

Esta es la (segunda) primera versión completa (versión 1.1), con los
5 temas del curso: Dinámica, Fluidos, Termodinámica, Electricidad y
Ondas. La diferencia con la 1.0 es que ha sido revisada para corregir
errores, añadir detalles, referencias, resultados experimentales, pun-
tualizaciones y algunas figuras como en la ley de Kirchhoff, la óptica
del ojo, la energía de enlace de A-T y G-C, el impulso nervioso o la
microscopía de superresolución. En algunos temas, hay algo más de
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futuro.
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1
Repaso de Dinámica

1.1 ¿Qué trata este capítulo?

En este primer capítulo repasaremos conceptos fundamentales
para el resto del curso relativos al movimiento, las fuerzas, la energía
y el torque. El concepto de energía se utiliza en todos los demás temas.
Es de importancia central en física, probablemente por el principio
de conservación de la energía. Nos permite, en ocasiones, decir algo
de un proceso sin tener mucha más información de los detalles, por
lo que puede ser interesante en multitud de situaciones. La energía
desempeña un papel fundamental por ejemplo en el metabolismo,
en el control de temperatura o en el movimiento de los animales.
Las plantas transforman la energía del Sol en energía química en
los enlaces de los azúcares. Los animales y las plantas utilizamos
esa energía para multitud de procesos en todas las escalas, desde
caminar, volar, las funciones fisiológicas, el transporte en las células,
la duplicación del ADN, etc. . . La generación y consumo de energía
en distintas formas por parte de los humanos tiene efectos globales
en el planeta y en los ecosistemas.

La palabra energía se usa muy frecuentemente, a menudo con sig-
nificado ambiguo. Pero exactamente, ¿qué es la energía? La ruta hacia
la comprensión de este concepto abstracto es el trabajo mecánico y la
empezaremos a recorrer en este capítulo.

1.2 Dinámica

De las 3 leyes de Newton, usaremos 2 esencialmente:

2ª ley de Newton: F = ma o en forma vectorial F⃗ = m⃗a. La
fuerza aplicada sobre un objeto de masa m le proporciona una
aceleración a = F/m. La fuerza aquí representa la fuerza neta o
suma (vectorial) de todas las fuerzas que actúan sobre el objeto. F⃗ = m⃗a
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3ª ley de Newton: Si un cuerpo A ejerce una fuerza sobre otro
B, entonces B ejercerá sobre A una fuerza de igual magnitud y
dirección, pero de sentido contrario. F⃗AB = −F⃗BA

Es importante que la segunda ley relaciona la fuerza con la ace-
leración, no con la velocidad. Aceleración (o fuerza) y velocidad no
siempre apuntan en la misma dirección. Por ejemplo, cuando tiramos
una piedra al aire, la aceleración siempre es hacia abajo (la acelera-
ción de la gravedad), mientras que durante la subida la velocidad
apunta hacia arriba, como en la figura 1.1. Otro ejemplo es durante
un movimiento circular.

Figura 1.1: Si lanzamos una pelota al
aire, la aceleración que sufre es siempre
la de la gravedad (hacia abajo). La
velocidad va apuntando en distintas
direcciones a lo largo de la trayectoria.

La segunda ley es fundamental porque a partir de las fuerzas
que se aplican a un objeto permite deducir la aceleración en cada
momento, y de la aceleración uno podría obtener en principio la
velocidad y la posición, esto es la trayectoria del objeto1. El ejemplo

1 En general esto no es trivial, pero en
principio se puede hacer, aunque sea
numéricamente con un ordenador

más sencillo, que usaremos, se da cuando la suma de todas las
fuerzas sobre el objeto es nula. De este modo, la aceleración es nula.
Aceleración nula significa velocidad constante, (no necesariamente
cero):

Cuando Ftotal = 0⇒ 0 = Ftotal = ma⇒ a = 0⇒ v = cte. (1.1)

Lo siguiente más sencillo es el movimiento uniformemente acelera-
do, esto es, sometido a una fuerza constante en magnitud, dirección y
sentido.

F = cte.⇒ a =
F
m

= cte.⇒ v = v0 + at⇒ x = x0 + v0t +
1
2

at2 (1.2)

Ojo, en general, cuando haya mu-
chas fuerzas y sean complicadas, ¡las
ecuaciones 1.2 no serán válidas!

El ejemplo más claro quizás de la tercera ley de Newton es la
fuerza gravitatoria entre el Sol y la Tierra. El Sol atrae a la Tierra con
una fuerza, según la ley de la gravitación universal que en módulo
vale

Figura 1.2: La fuerza que ejerce la Tierra
sobre el Sol es igual en magnitud y
dirección, pero de sentido contrario
que la fuerza que ejerce el Sol sobre la
Tierra. F⃗TS = −F⃗ST

FST = G
MS MT

r2 (1.3)

donde MS y MT son las masas de Sol y Tierra, r la distancia que
las separa y G una constante. A su vez la fuerza que ejerce la Tierra
sobre el Sol es

FTS = G
MS MT

r2 (1.4)

exactamente la misma. La fuerza del Sol sobre la Tierra apunta de la
Tierra al Sol y la que ejerce la Tierra sobre el Sol apunta del Sol a la
Tierra, en la misma dirección y sentido contrario.

Igual, la Tierra ejerce una fuerza sobre tu cuerpo, pero tu cuerpo
ejerce sobre la Tierra una atracción exactamente igual de intensa
hacia arriba.
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1.3 Trabajo

El trabajo es una cantidad que se define para una fuerza que actúa
sobre un cuerpo que se desplaza una distancia2. Distinguiremos dos 2 El movimiento del cuerpo no ne-

cesariamente tiene que ser el que se
produciría bajo la acción de esa fuerza.

casos, fuerza constante (no cambia ni módulo ni dirección ni sentido)
o fuerza variable.

Trabajo realizado por una fuerza constante

A B

Figura 1.3: Trabajo de una fuerza cons-
tante. El vector d⃗ es el desplazamiento,
va del punto inicial al final. En una
trayectoria recta, |d⃗| = d su módulo es
la distancia recorrida.

El trabajo para una fuerza F constante, cuando se desplaza de un
punto inicial A a otro final B, en una línea recta se define así

WAB = Fd cos θ (1.5)

donde

F es el módulo de la fuerza,

d es la distancia recorrida por el objeto entre los puntos A y B,

θ es el ángulo que forman la dirección de desplazamiento del
objeto y la fuerza.

También puede definirse igualmente como el producto escalar de los
vectores F⃗ y d⃗, donde d⃗ es un vector que empieza en A y acaba en B:

WAB = F⃗ · d⃗ = Fd cos θ (1.6)

Es importante darse cuenta de que con cualquiera de las definiciones,
el trabajo:

Tiene signo (por ejemplo, el coseno es negativo para ángulos entre
90º y 270º, esto es, la F⃗ tiene componente negativa en la dirección
de desplazamiento). A

Figura 1.4: Si F⃗ ⊥ d⃗⇒W = 0

Si el ángulo entre F⃗ y la dirección de desplazamiento son perpen-
diculares⇒WAB = 0

A B

Figura 1.5: W = Fd cos θ = F||d porque
F|| = F cos θ

Solo la componente de la fuerza en la dirección de desplazamiento
hace W

Las unidades del trabajo son

[W] = [F][d] = 1 N ·m = 1 J (1.7)
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Trabajo realizado por una fuerza variable en cualquier trayectoria

El trabajo para una fuerza variable, que va de un punto A a otro B
matemáticamente es

WAB =
∫ B

A
F⃗ · d⃗r =

∫ B

A
|F⃗| cos θdr (1.8)

esto es, hablando llanamente, dividir la trayectoria en pequeños
desplazamientos rectos de pequeña distancia dr, utilizar la definición
(1.5) en cada uno y sumarlos todos. Matemáticamente puede resultar
un poco más difícil de calcular, pero físicamente es la misma idea.

Trabajo de A a B y de B a A

Consideremos el trabajo de una fuerza F⃗ al ir de A a B, WAB =

Fd cos θ. Si ahora calculamos para la misma fuerza el trabajo para ir
desde B a A de vuelta WBA, vemos en la figura que el desplazamien-
to tiene el sentido contrario. Partiendo de la definición

A B

A B
Figura 1.6: Relación entre el trabajo
de una fuerza para ir de A a B con el
trabajo al invertir la trayectoria

WBA = Fd cos α (1.9)

donde α es el ángulo entre la fuerza F⃗ y el nuevo desplazamiento
desde B hasta A. Según la figura 1.6, la relación entre los dos ángulos
es α = π − θ de modo que cos α = − cos θ así que

WBA = Fd cos α = −Fd cos θ = −WAB (1.10)

Trabajo de la fuerza contraria −F⃗

A B

A

B

Figura 1.7: Relación entre el trabajo
de una fuerza para ir de A a B con el
trabajo de la fuerza contraria −F⃗ en la
misma trayectoria

Si una fuerza F⃗ realiza un trabajo WF
AB entre los puntos A y B,

entonces la fuerza contraria −F⃗ realiza el mismo trabajo pero con el
signo contrario. Del dibujo (figura 1.7) se ve que al cambiar F⃗ por −F⃗
el ángulo nuevo α sigue la misma relación que en la sección anterior
α = π − θ de modo que cos α = − cos θ y

W−F
AB = Fd cos α = −Fd cos θ = −WF

AB (1.11)

donde θ es el ángulo entre F⃗ y el desplazamiento de A a B mientras
que α es el ángulo entre −F⃗ y el mismo desplazamiento.

El círculo unidad

Figura 1.8: Círculo unidad. Es un
círculo de radio unidad útil para rela-
ciones trigonométricas. Las cantidades
horizontales son positivas hacia la
derecha del eje vertical, las cantidades
verticales son positivas hacia arriba del
eje horizontal. En este caso, cos α > 0
pero cos β < 0 por ejemplo.

El círculo unidad es una herramienta útil para relacionar senos y
cosenos de ángulos complementarios, suplementarios, negativos unos
de otros o con otras relaciones simples. El círculo tiene radio 1, de
modo que para un cierto ángulo α, teniendo en cuenta el triángulo
de la figura 1.8, el lado sobre el eje horizontal (en rojo) coincide con
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el cos α y el lado vertical (en azul) con el sin α. Las cantidades a la
derecha del eje vertical son positivas, las cantidades a la izquierda
negativas. En el vertical, las cantidades por encima del eje vertical
son positivas, las que están por debajo son negativas. Los ángulos
se cuentan positivos en el sentido contrario a las agujas del reloj,
y negativos en sentido contrario. Veamos un ejemplo que permite
relacionar el coseno de dos ángulos que suman π (180º).

Ejemplo 1.3.1 Coseno de β = π − α

Figura 1.9

¿Qué relación existe entre el cos β y cos α cuando β + α = π?

SOLUCIÓN

Como se ve en la figura 1.9, si β + α = π entonces el ángulo
que falta desde β hasta completar el ángulo π es también α (en la
parte izquierda de la figura). Entonces, los dos tramos marcados en
rojo son iguales en tamaño. Así, el coseno de ambos ángulos vale lo
mismo, salvo por el signo, ya que el cos β < 0 en este caso. Por tanto:

cos β = − cos α (1.12)

Por ejemplo si α = 30◦ = π/6 entonces como cos 30◦ =
√

3
2 entonces

cos 150◦ = −
√

3
2

Veamos otro ejemplo.

Ejemplo 1.3.2 Coseno de β = π/2 + α

¿Qué relación existe entre el cos β y alguna función trigonométrica
de α cuando β = π/2 + α?

Figura 1.10: ¿Cuánto vale el
cos (π/2 + α)?

SOLUCIÓN

Como se ve en la figura 1.10, como el ángulo en exceso de β sobre
el ángulo recto es exactamente α, los tramos azules son de igual
longitud. El tramo azul sobre el eje horizontal es precisamente el
cos β. cos β < 0 mientras que sin α es positivo, así que:

cos β = cos(π/2 + α) = − sin α (1.13)

Trabajo de varias fuerzas
A B

Figura 1.11: El trabajo de varias fuerzas
que actúan sobre el mismo cuerpo es la
suma de los trabajos individuales o el
trabajo de la fuerza neta.

Si hay varias fuerzas actuando sobre un objeto el trabajo total es la
suma con su signo de los trabajos de cada fuerza. Por ejemplo, si hay
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N fuerzas

Wtotal =
N

∑
i=1

Wi = W1 + W2 + W3 . . . WN (1.14)

Igualmente, como el desplazamiento es el mismo en todos los tra-
bajos también se puede calcular sumando vectorialmente todas las
fuerzas y calculando el trabajo de la fuerza neta o total

Wtotal = (F⃗1 + F⃗1 + F⃗1 + . . . + F⃗N) · d⃗ = F⃗total · d⃗ = Ftotald cos θ (1.15)

donde θ es el ángulo entre la fuerza total y el desplazamiento.

Potencia

La potencia se define como la cantidad de trabajo realizada dividi-
do por el tiempo que se tarda en realizar ese trabajo:

P =
W
∆t

(1.16)

Sus unidades son

[P] =
[W]

[t]
= 1 J/s = 1 W (1.17)

En el caso particular de F = cte. en la dirección de un movimiento
con v = cte. entonces:

P =
W
∆t

=
Fd
∆t

= Fv (1.18)

1.4 Energía

La energía es la capacidad que tiene un cuerpo para realizar un
trabajo. Por ejemplo, cuando una fuerza hace un trabajo positivo
sobre un cuerpo, este puede guardar ese trabajo en forma de energía,
y luego devolverlo, esto es, realizar trabajo sobre otros cuerpos. Hay
muchos tipos de energía, por ejemplo la energía cinética, asociada a
la velocidad del cuerpo.

Energía cinética

Figura 1.12: Una fuerza constante
actúa en la dirección del movimiento,
aumentando la velocidad.
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Un ejemplo de energía es la energía cinética. Supongamos la si-
guiente situación: una Fneta constante actúa sobre un cuerpo ini-
cialmente a velocidad v0 y le imprime una aceleración constante
llegando a una velocidad v f . El trabajo es

Fneta = ma (1.19)

Wneto = Fnetad = mad (1.20)

donde hemos utilizado la segunda ley de Newton. Además, en un
movimiento uniformemente acelerado sabemos que

a =
v f − v0

t
⇒ t =

v f − v0

a
(1.21)

d = v0t +
1
2

at2 ⇒ d = v0
(v f − v0)

a
+

1
2�

a
(v f − v0)

2

a �2
(1.22)

siendo v0 y v f las velocidades inicial y final, d la distancia recorrida, t
el tiempo y a la aceleración. Despejando la aceleración a en la última
expresión y simplificando:

a =
1
d

[
v0v f − v2

0 +
1
2
(v2

f + v2
0 − 2v0v f )

]
=

(v2
f − v2

0)

2d
(1.23)

Sustituyendo esta última expresión en la del trabajo (1.20) tenemos

Wneto = mad = m
(v2

f − v2
0)

2�d
�d =

1
2

mv2
f −

1
2

mv2
0 (1.24)

Resumiendo, el trabajo de la fuerza neta que actúa sobre una masa
m es igual al cambio o variación de la cantidad 1

2 mv2 entre el valor
inicial y final, cantidad que se conoce como energía cinética pues está
asociada a la velocidad

Ec =
1
2

mv2 ⇒Wneto =
1
2

mv2
f −

1
2

mv2
0 = Ec f − Ec0 = ∆Ec (1.25)

Aunque lo hemos deducido para un caso sencillo, rectilíneo y de
aceleración constante, es totalmente general:

El trabajo neto efectuado sobre un objeto es igual a la variación o
cambio de su energía cinética

Además Si el W > 0 la Ec aumenta y si W < 0 la
Ec disminuye

Wneto > 0 ⇒ ∆Ec > 0⇒ Ec f > Ec0 (1.26)

Wneto < 0 ⇒ ∆Ec < 0⇒ Ec f < Ec0 (1.27)

Tiene sentido pues W < 0 significa que la fuerza tiene una componen-
te en contra del desplazamiento y tiende a frenarlo.

Como la energía es igual al trabajo, sus unidades son las mismas

[E] = [W] = 1 J (1.28)
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Energía cinética como capacidad para hacer trabajo

Acabamos de ver cómo se puede acumular energía cinética ha-
ciendo trabajo sobre el cuerpo. Veamos ahora que la energía cinética
acumulada se puede emplear para realizar trabajo sobre otro cuerpo
con el siguiente ejemplo.

Figura 1.13: Un bloque choca con un
pequeño clavo a velocidad v0 y lo
desplaza, haciendo trabajo sobre él.

Supongamos un gran bloque de masa mb está sujeto a una de-
terminada altura sobre un pequeño clavo de masa mucho menor,
parcialmente clavado sobre el suelo (figura 1.13). Si soltamos el blo-
que este adquirirá una cierta velocidad v0 al llegar al clavo, impactará
contra el clavo desplazándolo un distancia y haciendo trabajo sobre
el clavo. Suponiendo que en la colisión con el clavo el bloque no dis-
minuye su velocidad, lo que es una buena aproximación si es mucho
más masivo que el clavo, podemos calcular el trabajo que es capaz de
hacer. La energía cinética que lleva el bloque es

Ec0 =
1
2

mbv2
0 (1.29)

La energía cinética final del bloque es nula (Ec f = 0) pues acaba
en reposo El bloque pierde energía cinética. ¿Dónde va esa energía?
Suponiendo que golpea exclusivamente sobre el clavo y no hay
deformaciones3, se ha empleado en hacer trabajo contra el clavo. 3 Estamos suponiendo que el bloque

se frena del todo al clavar el clavo
completamente y cuando impacta en
el suelo ya está parado. Si no, parte de
la energía cinética se absorbería por el
suelo

En principio es la fuerza que ejerce el bloque contra el clavo por
la distancia recorrida (suponiendo una fuerza constante), pero esa
fuerza es difícil de calcular. Por un lado tenemos la 3ª ley de Newton,
la fuerza del bloque sobre el clavo es la misma, con sentido contrario,
que la del clavo sobre el bloque, y entonces usando el resultado de
(1.11)

Wbc = −Wcb (1.30)

el trabajo del bloque sobre el clavo Wbc es el opuesto del trabajo del
clavo sobre el bloque Wcb. El trabajo hecho sobre el bloque es igual a
la variación de energía cinética así que el trabajo hecho sobre el clavo
es igual a la variación de energía cinética, y entonces

Wbc = −Wcb = −∆Ec = Ec0 − Ec f =
1
2

mbv2
0 (1.31)

Vemos que el trabajo que el bloque puede efectuar coincide con la
energía (cinética) que tenía inicialmente. En general, debido a fenó-
menos disipativos el trabajo realmente efectuado en otras situaciones
puede ser menor, bien en la colisión misma (inelástica) o en otros
fenómenos, una parte se puede transmitir al medio en forma de calor,
pero nunca será mayor.
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Trabajo de la fuerza de la gravedad.

Para entender el segundo tipo de energía, la energía potencial
gravitatoria, necesitamos 3 ideas.

Figura 1.14: Un objeto sube por un
plano inclinado. El trabajo de la grave-
dad solo depende de la diferencia de
altura final e inicial y no del ángulo α

1. Trabajo de la fuerza de la gravedad en un movimiento vertical.
Un objeto de masa m en la superficie de la Tierra sufre una fuerza
hacia abajo que es su peso F = mg. ¿Qué trabajo realiza la fuerza
de la gravedad (o peso) cuando un objeto se desplaza una cierta
distancia vertical? Según la definición, el trabajo de la gravedad
para llevar un objeto de masa m desde un punto A a uno B en una
trayectoria vertical es

Wg
AB = Fd cos θ = −mg(hB − hA) = −mg∆h (1.32)

donde hemos llamado ∆h = hB − hA a la diferencia de alturas. Si
∆h > 0 (sube) entonces Wg

AB < 0 y si ∆h < 0 (baja) entonces Wg
AB > 0.

Figura 1.15: Detalle del pico del plano
inclinado donde se ve que θ = π/2 + α

Figura 1.16: Según la definición de seno
sin α = ∆h

d y despejando ∆h = d sinα

2. El trabajo de la fuerza gravitatoria depende solo de la diferen-
cia de alturas, no de la trayectoria concreta. Por ejemplo, el trabajo
de g al subir un objeto en un plano inclinado un ángulo α sobre la
horizontal (figura 1.14) es según la definición

Wg
AB = Fd cos θ = −mgd sin α (1.33)

donde hemos usado el resultado del ejemplo 1.3.2 porque θ = α + π
2 ,

como se ve en el detalle en la figura 1.15. Ahora, la cantidad d sin α es
la altura del plano, o bien, d sin α = (hB − hA) = ∆h (ver figura 1.16) y
entonces

1

2

Figura 1.17: El trabajo de la fuerza de
la gravedad es independiente de la
trayectoria concreta y solo depende de
la diferencia de alturas entre el punto
final y el inicial ∆h = hB − hA.

Figura 1.18: Trabajo en contra de la fuer-
za de la gravedad. Subimos el cuerpo
con una fuerza hacia arriba exactamente
igual al peso.

Wg
AB = Fd cos θ = −mgd sin α = −mg∆h (1.34)

esto es, no depende del ángulo concreto, solo de la diferencia de
alturas. Como no depende del ángulo de subida, en una trayecto-
ria general como las de la figura 1.17 tenemos el mismo resultado
−mg∆h. Además eso hace que el trabajo coincida para para cualquier
trayectoria que empiece en A y termine en B, como las trayectorias 1

y 2 de la figura 1.17

W1
AB = W2

AB = −mg∆h (1.35)

3. El trabajo realizado en contra de la gravedad. El trabajo que
tenemos que realizar si queremos subir un objeto en contra de la
fuerza de la gravedad, esto es, haciendo nosotros exactamente una
fuerza mg pero hacia arriba (figura 1.18) es el mismo pero de signo
contrario al de la gravedad. En efecto, aplicando el resultado (1.11)

Wcontra g
AB = −Wg

AB = −(−mg∆h) = mg∆h = mg(hB − hA) (1.36)



18 luis dinis

1.5 Energía potencial gravitatoria

Hemos visto que un cuerpo tiene energía si lleva una cierta veloci-
dad. También puede tener capacidad de hacer trabajo por estar a una
determinada altura h sobre el suelo. Supongamos un cuerpo de masa
m inicialmente en el suelo h0 = 0 en reposo. Lo subimos haciendo
una fuerza mg hacia arriba sobre él hasta una altura final h f = h
(como en la figura 1.18), realizando un trabajo según 1.36

Wcontra g = −Wg = −(−mg∆h) = mg∆h = mg(h− 0) = mgh (1.37)

Este trabajo queda almacenado como energía potencial gravitatoria.
¿Cuánto trabajo puede hacer esta masa por estar a altura h? Si lo
dejamos caer sobre un clavo en el suelo, adquirirá una velocidad v
al llegar al suelo. Cuando golpee hará fuerza sobre el clavo y éste
se desplazará así que el cuerpo hará trabajo. Al igual que en la
discusión anterior acerca del bloque que impacta con el clavo, cuando
la masa m llega al suelo con velocidad v puede hacer un trabajo igual
a su energía cinética

Figura 1.19: Un objeto de masa m a
altura h tiene energía potencial mgh
y puede hacer un trabajo mgh por
ejemplo contra el clavo contra el que
golpea.

W =
1
2

mv2 (1.38)

pero en una caída libre sabemos que la velocidad final cumple v2 =

2gh (por ejemplo, de la ecuación (1.23) tomando velocidad inicial
nula y a = g). Así que

W =
1
2

mv2 =
1
2

m2gh = mgh (1.39)

Exactamente el mismo trabajo que habíamos hecho para subirlo ahí y
que se almacenó como energía potencial.

Formalmente, definimos la energía potencial gravitatoria como

Ep = mgh (1.40)

donde h es una altura sobre un determinado nivel de referencia.

Trabajo de la fuerza de la gravedad y energía potencial

Figura 1.20: Trayectoria. El objeto se
mueve de una altura hA hasta una hB
bajo la acción del peso

El trabajo que hace la gravedad al llevar una masa m de un punto
a altura hA a otra hB es

Wg
AB = −mg(hB − hA) = mghA −mghB = EpA − EpB = −∆Ep (1.41)

y como hemos visto en la sección 1.4 esto es siempre así independien-
temente del camino que sigamos desde A a B. Esto nos permite decir
que un cuerpo tiene energía potencial por estar a altura h simplemen-
te. Si el trabajo dependiera del camino, habría que especificar cómo
ha llegado hasta allí y la energía potencial no tendría mucho sentido4 4 La gravedad es una fuerza que se

denomina conservativa, porque da
lugar a una energía potencial asociada.
Otras fuerzas conservativas son la
fuerza elástica o eléctrica. No todas las
fuerzas son así: el trabajo de la fuerza
de rozamiento depende del recorrido,
es una fuerza disipativa.
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1.6 Conservación de la energía mecánica

La conservación de la energía establece que la energía se puede
transformar de unas formas a otras (energía cinética a potencial,
potencial a trabajo, etc) de forma que la cantidad total de energía se
mantiene constante en el tiempo.

Veamos una situación general en la que un objeto en posición
inicial 1 pasa a una posición final 2, modificando altura y velocidad,
bajo la acción de la fuerza de la gravedad y otra posible fuerza
externa F5. Según hemos visto, el trabajo neto (de todas las fuerzas 5 La fuerza F puede ser la fuerza neta

de todas las fuerzas que actúan sobre el
cuerpo que no sean la gravedad, así que
la situación es muy general

que actúan sobre el cuerpo) es

Wneto = ∆Ec (1.42)

Si actúa la gravedad mg y otra fuerza F y cada una hace un trabajo
tenemos

Wneto = WF + Wg = WF − ∆Ep (1.43)

pues el trabajo de la gravedad es -∆Ep según (1.41). Por tanto

Wneto = ∆Ec = WF − ∆Ep ⇒WF = ∆Ec + ∆Ep (1.44)

Figura 1.21: Trayectoria general de
un objeto de masa m. Entre dos
puntos cualesquiera se cumple que
WF = ∆Ec + ∆Ep

El trabajo de las fuerzas externas F que no son la gravedad, pro-
duce una variación en la energía, o bien potencial, o bien cinética, o
ambas. Esto es la conservación de la energía. La energía se transfor-
ma en otras formas de energía o en trabajo y viceversa.

En el caso particular de que WF = 0, entonces tenemos

∆Ep + ∆Ec = 0 (1.45)

La combinación Ec + Ep se denomina energía mecánica Em , así que
otra manera de decir lo mismo es

∆Em = ∆Ep + ∆Ec = 0 (1.46)

o bien

Ec1 + Ep1 = Ec2 + Ep2 = cte. (1.47)

la energía mecánica es la misma en dos puntos 1 y 2 cualesquiera de
la trayectoria cuando no hay trabajo de otras fuerzas externas que no
sean la gravedad. Sustituyendo las expresiones de la energía cinética
y potencial, tenemos

1
2

mv2
1 + mgh1 =

1
2

mv2
2 + mgh2 (1.48)

Ejemplo 1.6.1 Conservación de la energía mecánica
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Un objeto de masa m parte del reposo en un punto inicial a una
altura sobre el suelo de y1 = 10 m y sigue una trayectoria bajo la
única acción de la gravedad. ¿Con qué velocidad llega al suelo?

SOLUCIÓN

Como no hay otras fuerzas externas, se conserva la energía mecánica, así que la energía mecánica tiene el
mismo valor en el punto inicial y el final y podemos igualarlas

Emec = cte.⇒ 1
2

mv2
1 + mgy1 =

1
2

mv2
2 + mgy2 (1.49)

Como parte del reposo v1 = 0 y puesto que llega al suelo tomamos y2 = 0. Queda

mgy1 =
1
2

mv2
2 ⇒ v2 =

√
2gy1 =

√
2(9,8 m/s2)(10 m) = 14 m/s (1.50)

Además de energía potencial gravitatoria y cinética, existen otras
formas de energía (calor, energía química, eléctrica, etc...) algunas de
las cuales veremos durante el curso. El principio general de conser-
vación de la energía nos dice que la energía se conserva si añadimos
también esos tipos de energía a la ecuación. Veamos un ejemplo
sencillo.

Ejemplo 1.6.2 Kinesina

Figura 1.22: La kinesina es un motor
molecular que se desplaza sobre los mi-
crotúbulos. Realiza un movimiento de
“hand over hand” en el que cada una de
las “cabezas” alternativamente avanza
por delante de la otra en pasos de 8 nm
por cada hidrólisis de 1 molécula de
ATP.

La kinesina es una proteína que funciona como un motor molecu-
lar que transporta cargas en la célula, avanzando en pasos de 8 nm
cada vez que se hidroliza una molécula de ATP. En la hidrólisis del
ATP se libera una energía (química) de unos EATP = 7 × 10−20 J.
Si suponemos que toda la energía liberada se transforma en traba-
jo al desplazar el motor y su carga, ¿cuál será la fuerza promedio
aproximada que genera una kinesina?

SOLUCIÓN

Si suponemos que toda la energía liberada se transforma en trabajo y que la kinesina aplica la fuerza en la
dirección del movimiento (cos θ ≈ 1) tenemos

EATP = W = Fd⇒ F =
EATP

d
≈ 8,8× 10−12 N = 8,8 pN (1.51)

El signo de aproximado viene porque primero, es un valor promedio, la kinesina podría ejercer picos de
fuerza más altos en momentos puntuales, y segundo, desconocemos el valor exacto del ángulo. Además,
veremos que en general una parte de la energía liberada puede perderse hacia el medio en forma de calor.
No obstante con esta cuenta sencilla vemos que las fuerzas generadas son del orden de piconewtons. Hoy
en día, ¡esas fuerzas tan pequeñas se pueden medir con precisión con las “pinzas ópticas”!
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Figura 1.23: Un pulga durante el salto.
¿Qué fuerza, en relación a su peso, son
capaces de ejercer?

Las pulgas de perro (Ctenocephalides canis) de tamaño milimétrico
llegan a saltar a una asombrosa altura de unos 50 cm. Con tan solo
esta información y el principio de conservación de la energía pode-
mos estimar las fuerzas que son capaces de ejercer en el salto, ¡sin
necesidad de dinamómetro tamaño pulga! Lo vemos en el ejemplo
siguiente.

Ejemplo 1.6.3 Pulgas saltarinas

Una pulga que mide unos 4 mm alcanza una altura de 50 cm. ¿Cuál es la fuerza promedio aproximada que
ejerce durante el salto? Calcule la fuerza en relación al peso de la pulga.

SOLUCIÓN

Para saltar, la pulga toma impulso, flexionando sus “rodillas” y bajando su centro de gravedad una
pequeña distancia d. En un momento dado, realiza el salto ejerciendo una fuerza mientras recorre de nuevo
esa pequeña distancia hacia arriba hasta que despega con una cierta velocidad inicial v0. A partir de ahí, la
única fuerza que actúa es la gravedad.

La conservación de la energía nos dice que el trabajo de la fuerza de impulso se convierte en energía
cinética inicialmente. Después, esa energía cinética se transforma toda en potencial en el vuelo libre

WF = Fd =
1
2

mv2
0 = mgh (1.6.3.1)

No sabemos la distancia d exacta que la pulga se agacha, pero no puede superar el tamaño del animal,
así que podemos tomar d ≈ 4 mm. En la fórmula anterior hemos despreciado la pequeña energía potencial
que tiene en el punto de despegue mgd ya que d ≪ h de modo que es despreciable. Despejando la fuerza
tenemos:

F = mg
h
d

(1.6.3.2)
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Como el peso es P = mg la fuerza que ejerce la pulga en relación a su peso es

F
P
=

h
d
≃ (50 cm)

(4 mm)
= 125 (1.6.3.3)

La pulga ejerce unas asombrosas 125 veces su propio peso. ¿Eres tú capaz de levantar 125 veces tu masa?
El trabajo Fd es una simplificación. Las pulgas tienen una proteína Resilina que funciona como un

muelle y acumula tensión antes de saltar. Un modelo más adecuado sería modelar la fuerza como la de
un muelle elástico. No obstante, el número es aproximadamente correcto. Por ejemplo, mediciones de
la aceleración del movimiento de la pulga dan un valor para la relación F/P muy parecido de unas 135

veces6. 6 H C Bennet-Clark and E C A Lucey.
The jump of the flea: a study of the
energetics and a model of the mecha-
nism. Journal of Experimental Biology,
47:18, 1967

Hasta ahora hemos visto solo dinámica en movimiento rectilíneo.
En la última sección del tema, introducimos brevemente nociones
básicas de fuerzas que tienden a producir giros.

1.7 Torque o momento de una fuerza.
eje de giro

Figura 1.24: Resulta más fácil hacer
girar una puerta aplicando una fuerza
más lejos del eje como F2 que en una
posición más cercana como la de F1.

Imaginemos una puerta inicialmente en reposo. Para hacerla girar
sobre sus ejes es necesario aplicar una fuerza en algún punto que no
sea del eje de giro, como en la figura 1.24. De hecho, para la misma
fuerza, será más fácil mover la puerta cuanto más lejos del eje se
aplique. Al igual que las fuerzas producen aceleración (F = ma) en
movimientos rotatorios tenemos que el momento de una fuerza o
torque, produce una aceleración angular, esto es una variación de la
velocidad de giro. El momento de una fuerza respecto de un punto O
se define como7 7 En realidad, el torque tiene carácter

vectorial y se define como τ⃗ = r⃗ ∧ F⃗,
donde r⃗ es el vector que une el eje de
giro y el punto de aplicación de la
fuerza F⃗

τ = Fr sin α (1.52)

con

eje de giro

Figura 1.25: Vector r⃗ y ángulo α que
entran en la definición del momento de
la fuerza. Igualmente se puede usar el
ángulo interno β = 180− α.

F, módulo de la fuerza

r, distancia entre el punto de aplicación de la fuerza y el eje de
giro

α, ángulo entre el vector que une el eje y el punto de aplicación
(en un plano perpendicular al eje) y el vector fuerza como en la
figura 1.25. Como el torque depende del seno, utilizar el ángulo
suplementario (β = 180− α) da el mismo resultado.

De la definición, las unidades de torque8 son 8 Formalmente 1 N ·m = 1 J, sin
embargo para torque es estándar usar la
primera forma, para distinguirlo.[τ] = [F][r] = 1 N ·m (1.53)

Cuando actúan más de una fuerza, el torque total es la suma de los
torques individuales. Hay que considerar que fuerzas que hagan
momento en sentidos de giro contrarios tenderán a compensarse.
Para esto vamos a asignar un signo al torque:
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Tomamos signo + para los torques que hacen girar contra las
agujas del reloj

Tomamos signo − para los torques que hacen girar a favor de las
agujas del reloj

eje de giro

Figura 1.26: Los torques tienen signo.
F2 y F3 dan lugar a un torque positivo,
mientras que F1 ejerce un torque negati-
vo.

Con este criterio, el torque total sobre un cuerpo es la suma de
todos los torques aplicados cada uno con su signo.

Un cuerpo en equilibrio

Un cuerpo está en equilibrio cuando no se mueve (no se traslada)
ni gira. En tal caso, la suma de las fuerzas que actúan sobre el cuerpo
es nula. Esto hace que la aceleración sea nula y si su velocidad era 0
continuará así. Igualmente, para que permanezca con velocidad de
rotación nula, la suma de momentos o momento total tiene que ser
igualmente nula.

Equilibrio ⇒
{

F⃗1 + F⃗2 + F⃗3 + ... = 0
τ1 + τ2 + τ3 + ... = 0

(1.54)

Ambas ecuaciones han de cumplirse simultáneamente9. Veamos un 9 La ecuación en vectores para las
fuerzas se traduce en una ecuación para
las componentes para cada eje

ejemplo.

Ejemplo 1.7.1 Objeto en equilibrio

Figura 1.27: Uno esperaría que la fuerza
en el extremo necesaria para mantener
la barra horizontal es igual al peso. Esto
es INCORRECTO!!

Una barra de masa m = 0,5 kg y longitud 40 cm dispuesta horizon-
talmente puede girar en torno a un eje fijo que pasa por su extremo
izquierdo. El peso de la barra está aplicado en su centro. Una per-
sona ejerce una fuerza F vertical hacia arriba en el extremo derecho
de la barra. ¿Qué fuerza tiene que ejercer para mantener la barra
horizontal?

SOLUCIÓN

Intuitivamente uno podría pensar que la fuerza que tiene que
hacer la persona es igual al peso de la barra F = mg. Pero esto no
es así, porque en tal caso, si bien las fuerzas están equilibradas, el
torque total sería10 10 IMPORTANTE: El peso de un objeto

siempre se aplica en un punto que se
llama centro de gravedad. Si el objeto
es de densidad uniforme, el centro
de gravedad coincide con el centro
geométrico, en este caso el punto medio
de la barra, como en la figuras 1.27 y
1.28

τ = lmg− l
2

mg =
l
2

mg ̸= 0 (1.55)

y la barra giraría.
La solución correcta es que el eje efectúa también una fuerza

sobre la barra (es la reacción a la fuerza que ejerce la barra sobre el
eje). Entonces, tomando las fuerzas hacia arriba como positivas y
hacia abajo como negativas y con el criterio de signos para el torque,



24 luis dinis

escribimos las 2 ecuaciones del equilibrio, una para fuerzas y otra
para torques:

Feje + F−mg = 0 (fuerzas, eje y) (1.7.1.1)

Fl −mg
l
2
= 0 (torques)

Figura 1.28: Diagrama de fuerzas
correcto.

Dese cuenta de que la fuerza sobre el eje es desconocida en prin-
cipio. La hemos tomado como positiva (hacia arriba) en principio.
Si al resolver las ecuaciones resultara negativa, es que es una fuerza
hacia abajo (de acuerdo con los signos que hemos tomado). Por otro
lado, la fuerza del eje no hace momento, pues su distancia al eje es
0. Finalmente, en este caso particular todos los ángulos que forman
las fuerzas con la línea que une el eje con el punto de aplicación de la
fuerza son rectos y el seno es 1.

De la segunda de las ecuaciones despejamos el valor de la fuerza

Fl −mg
l
2
= 0⇒ F =

mg�l
2�l

=
mg
2

=
(0,5 kg)(9,8 m/s2)

2
= 2,45 N

(1.7.1.2)
Con este valor podemos también encontrar la fuerza del eje

Feje + F−mg = 0⇒ Feje = mg− F = mg− mg
2

=
mg
2

= 2,45 N
(1.7.1.3)

Como vemos, el eje soporta la mitad del peso y la persona la otra
mitad, independientemente de la longitud total de la barra en este
caso, por resultar totalmente simétrico. En general necesitamos las
distancias concretas a las que se aplican las fuerzas.
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Fluidos

2.1 ¿Qué son los fluidos y para qué los estudiamos?

Los fluidos, gases y líquidos, se comportan de forma similar bajo
la acción de fuerzas, aunque con algunas diferencias. Los fluidos
son fundamentales para la vida, en particular el agua, y en este
capítulo aprenderemos cómo es el movimiento del agua en diferentes
condiciones, pero también cómo es el movimiento de objetos en
el seno de los fluidos. Algunos ejemplos que discutiremos son las
diferencias de presión en la sangre, la sedimentación o centrifugación
de proteínas, o el vuelo de las aves.

Estudiaremos primero las propiedades de los fluidos en reposo
o hidrostática y a continuación las características de los fluidos en
movimiento o hidrodinámica. Finalizaremos el tema con la tensión
superficial. En este tema:

hidrostática

hidrodinámica

tensión superficial
2.2 Propiedades de los fluidos

Densidad

La densidad se define como la relación entre la masa de un objeto
y el volumen que ocupa:

ρ =
m
V

(2.1)

y es válida para sólidos, líquidos y gases. La densidad de sólidos y
líquidos hechos de una sola sustancia varía un poco con las condi-
ciones de temperatura y presión, mientras que en los gases es muy
variable. La densidad de los gases, en condiciones habituales es
menor que la de los líquidos. Sus unidades son En general: ρliq ≫ ρgas. Las moléculas

en un líquido suelen presentar fuerzas
atractivas entre ellas, al contrario que
los gases en las que se mueven más
libremente.

[ρ] =
[m]

[V]
=

kg
m3 (2.2)



26 luis dinis

2.3 Líquidos y gases

Líquidos y gases son fluidos y tienen muchas propiedades y
comportamientos parecidos. No obstante, se diferencian en algunos
aspectos:

1. La densidad de los líquidos suele ser mayor, por las fuerzas atracti-
vas entre sus moléculas

2. Los líquidos son aproximadamente incompresibles. Hay que usar
fuerzas muy elevadas para que su volumen disminuya. Por tanto,
su densidad no cambia fácilmente. En los gases esto no es así en
general y pueden comprimirse más fácilmente1. Para el resto del 1 ¡Haz la prueba tú mismo comparando

agua o aire dentro de una jeringuilla,
tapando el orificio con un dedo y
apretando el émbolo!

curso, cuando haya que distinguir, utilizaremos “líquido=fluido
incompresible” y “gas=fluido compresible” o “fluido” cuando lo
que digamos se aplique indistintamente a ambos.

2.4 Presión en fluidos

Figura 2.1: Definición de presión como
fuerza por unidad de superficie.

La presión se define como una fuerza ejercida sobre una determi-
nada superficie dividido por el área de dicha superficie (ver figura
2.1):

p =
F
A

(2.3)

Los fluidos ejercen presión sobre objetos sumergidos en su seno,
sobre las paredes del contenedor o sobre cualquier parte del flui-
do mismo. La presión en un fluido en reposo tiene 2 importantes
propiedades:

1. En un fluido en reposo, la presión en un determinado punto del
fluido es la misma en todas direcciones.

Para demostrar esta afirmación imaginemos un pequeño cubo
del propio fluido como en la figura 2.2. Si la presión por un lado del
cubo fuera diferente a la presión por el lado contrario, la fuerza total
sobre el cubo de fluido no sería nula, el cubo comenzaría a moverse y
eso está descartado porque el fluido está en reposo.

Figura 2.2: Fuerzas debidas a la presión
en el seno de un fluido en reposo. Las
fuerzas son iguales en todas direcciones
(por ejemplo F1 = F2). Si no fuera así
habría fuerza neta en un sentido y no se
mantendría el reposo.

2. La fuerza debida a la presión ejercida por un fluido sobre un
objeto en su seno o sobre la pared del recipiente que lo contiene
es siempre perpendicular a la superficie.

Si la fuerza que ejerce un fluido sobre su recipiente por ejemplo
tuviera una componente tangencial a la superficie como en la figura
2.3, el fluido no estaría en reposo. La tercera de ley de Newton
implica que la superficie haría fuerza sobre el fluido en dirección
tangencial también, lo que haría que el fluido se desplazara2. 2 Nota muy técnica: La propiedad

fundamental que distingue a los fluidos
de los sólidos es que los fluidos no
son rígidos y no resisten esfuerzos
tangenciales y cualquier esfuerzo
tangencial los pone en movimiento.
Solo resisten esfuerzos de compresión
mientras que los sólidos resisten ambos.
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De (2.3), las unidades de presión son:

[p] =
[F]
[S]

=
1 N
m2 = 1 Pa (2.4)

En reposo:

Figura 2.3: En un fluido en reposo las
fuerzas de presión son perpendiculares
a las superficies.

2.5 Variación de la presión con la profundidad

En un fluido en reposo sometido a la acción de la gravedad, la
presión aumenta con la profundidad. Podemos calcular la variación
de presión con profundidad fácilmente en un líquido que tiene una
densidad fija ρ f (fluido incompresible).3

3 En un gas es algo más complicado ya
que el aumento de presión lo comprime
y aumenta su densidad. Lo aplazamos
hasta el tema de termodinámica.

Consideremos un cilindro de fluido de altura h y “tapas” hori-
zontales de superficie S como en la figura 2.4. La tapa superior se
encuentra en la superficie libre del fluido y la inferior a una profundi-
dad h. La presión se debe al peso de la columna de fluido situada
por encima. Así:

Figura 2.4: Variación de la presión con
la profundidad.

p =
F
S
=

mg
S

(2.5)

con m la masa del cilindro de fluido. Como el fluido tiene densidad
ρ f , entonces su masa es

m = ρ f V = ρ f Sh (2.6)

donde hemos usado el volumen de un cilindro V = hS. Retomando la
presión, será:

p =
mg
S

=
ρ f �Sh

�S
= ρ f gh (2.7)

De ahí se ve que la p no depende del tamaño de la superficie S,
ni de la forma. Podemos pensar en un cilindro muy estrechito de
altura h y hablar de la presión en un punto dentro de un fluido. Es
importante recordar:

1. La presión en un fluido aumenta con la profundidad

2. La presión en un fluido en reposo solo depende de la profundidad.
A profundidades iguales, presiones iguales.

La ecuación (2.7) permite calcular diferencias de presión entre
puntos a distintas alturas, o calcular la presión en otro punto a
distinta profundidad:

p2 − p1 = ρ f g(h2 − h1)⇒ p2 = p1 + ρ f g(h2 − h1) (2.8)

Si queremos expresar la presión en función de alturas desde un
nivel de referencia (el fondo por ejemplo), basta con darse cuenta
de que L = h + y, donde L es la profundidad total del fluido, h la
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profundidad del punto que nos interesa e y la altura de dicho punto
sobre el fondo, de modo que (2.8) se convierte en:

p2 = p1 + ρ f g(L− y2 − L + y1) = p1 − ρ f g(y2 − y1) (2.9)

Figura 2.5: Podemos expresar las di-
ferencias de presión en función de
diferencias de alturas o de profundida-
des. El resultado es un signo cambiado
en la expresión ya que la presión crece
con la profundidad y disminuye con la
altura.

Finalmente, la expresión (2.7) solo tiene en cuenta el peso de
la columna de fluido situada encima, no obstante, en la situación
habitual en la que el recipiente se encuentra abierto a la atmósfera,
hay que añadir la presión que ejerce la atmósfera P0 quedando

p = P0 + ρ f gh (2.10)

donde P0=1,013× 105 Pa4. La presión atmosférica, como se suma en

4 En la sección 2.8 veremos cómo se
puede medir la presión atmosférica

todos los puntos, no afecta a las diferencias de presión.

2.6 Presión absoluta y presión manométrica

Muchas veces lo que interesa no es la presión total en un fluido si
no cuánta presión hay por encima de la atmosférica. Un ejemplo es la
presión en un neumático o un globo. Cuando está “vacío”, tiene en
realidad aire por dentro a presión atmosférica. Lo notamos blando
porque la presión es la misma por los dos lados de la goma y por lo
tanto la fuerza neta es cero. Cuando lo hinchamos, aumenta la pre-
sión por dentro, manteniéndolo tenso. La presión de un neumático
o cualquier otra cosa por encima de la atmosférica se llama presión
manométrica:

pmano = p− P0 (2.11)

donde p es la presión total o absoluta. Otro ejemplo es la “tensión”5 5 Aunque se conoce como tensión, es la
presión (manométrica) de la sangrearterial, que siempre se da como presión manométrica.

2.7 Medida de la presión manométrica. Manómetro de tubo en U

Existen muchos medidores de presión. Con la ecuación (2.8) pode-
mos medir presiones en un manómetro con forma de U parcialmente
lleno de fluido (normalmente mercurio) y abierto por un extremo a
la atmósfera y por otro al recipiente a presión que queremos medir,
como en la figura 2.6.

Figura 2.6: Manómetro en U, relleno
de mercurio, para medida de presiones
manométricas.

La presión que queremos medir P es la misma que en la superficie
del mercurio por el lado del globo PA. Por otro lado, al estar el mer-
curio en equilibrio (si no lo está, esperamos un momento), la presión
a alturas iguales es la misma y por tanto PB = PA. La presión en la
superficie libre del mercurio es la atmosférica PC = P0. Finalmente,
utilizando (2.8) relacionamos las dos presiones:

P = PA = PB = PC + ρHggh = P0 + ρHggh (2.12)
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La presión manométrica del globo es por tanto

Pmano = P− P0 = ρHggh (2.13)

de modo que si graduamos el brazo izquierdo para poder medir
alturas, podremos calcular la presión manométrica. Por ejemplo, si
h = 10 cm y el líquido es mercurio de densidad ρHg = 13 600 kg/m3

la presión manométrica del globo será:

Pmano = ρHggh = (13 600 kg/m3)(9,8 m/s2)(0,1 m) = 1,33× 104 Pa
(2.14)

El milímetro o centímetro de mercurio

Medir presiones midiendo diferencias de altura en una columna
de mercurio ha llegado a ser tan habitual que ha dado origen a la
unidad de presión del mmHg (milímetro de mercurio)6. Corresponde 6 A veces se utiliza indistintamente

con torr (símbolo Torr), en honor
a Torricelli, ver sección siguiente,
aunque son ligeramente diferentes por
su definición. Ninguno es parte del
sistema internacional.

a la presión ejercida por una columna de mercurio de 1 mm de altura:

P(1 mmHg) = ρHggh = (13 600 kg/m3)(9,8 m/s2)(0,001 m) = 133 Pa
(2.15)

Para pasar cualquier cantidad de milímetros de mercurio a pascales
basta utilizar P = ρHggh y expresar h correctamente en metros (o
usar el factor de conversión dado por (2.15)). Aunque menos común,
también se usa el centímetro de mercurio. Cuando te dicen que tu
tensión arterial es 12-6, significa en realidad que tu presión diastólica
corresponde a 6 cmHg y la sistólica a 12 cmHg, ambos de presión
manométrica.

Ejemplo 2.7.1 Presión arterial en la jirafa.

El cerebro de la jirafa se encuentra unos 2 m por encima del corazón. Calcule aproximadamente cuál es
la presión mínima con la que debe bombear el corazón. Calcule también la presión arterial en las patas,
que se encuentran unos 3 m por debajo del corazón.

Datos: Densidad de la sangre ρs = 1050 kg/m3

SOLUCIÓN

Según (2.9) tenemos
pcer = pcor − ρsg(ycer − ycor) (2.7.1.1)

Despejando
pcor = pcer + ρsg(ycer − ycor) (2.7.1.2)

La presión manométrica mínima de la sangre en el cerebro será 0, que corresponde a presión absoluta
igual a la atmosférica P0. En realidad será algo mayor, pero calculemos el mínimo. Tomando pues pcer = 0
obtenemos

pcor = ρsg(ycer − ycor) = (1050 kg/m3)(9,8 m/s2)(2 m) ≃ 2,1× 104 Pa (2.7.1.3)
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Podemos comparar esta presión mínima, con la mínima habitual en un humano. La presión diastólica
normal en un adulto es de 80 mmHg. La presión de la jirafa corresponde a una columna de Hg de altura h:

pcor = ρHggh⇒ h =
pcor

ρHgg
= 0,155 m = 155 mm (2.7.1.4)

esto es, 155 mmHg, casi el doble de la presión mínima en un adulto humano. Por otro lado, podemos
calcular la presión de la sangre en los pies de la jirafa de igual modo:

ppies = pcor + ρsg(ycor − ypies) = 2,1× 104 Pa + (1050 kg/m3)(9,8 m/s2)(3 m) ≃ 5,15× 104 Pa = 387 mmHg.
(2.7.1.5)

Para aguantar una presión tan alta, la piel de las patas de la jirafa es extraordinariamente firme.

2.8 Medida de la presión atmosférica. Experimento de Torricelli

El aire de la atmósfera, como cualquier fluido ejerce presión sobre
los objetos sumergidos en él7. La presión atmosférica corresponde 7 Como lo expresó Torricelli, “vivimos

bajo un océano de aire”al peso de la columna de aire que tenemos por encima. ¿Cómo me-
dimos la presión que ejerce la atmósfera? Torricelli midió la presión
de la atmósfera en el siglo XVII con el siguiente experimento8. Tomó 8 Al parecer estaba en realidad tratando

de entender por qué las bombas de
agua de succión no podían elevar agua
por encima de unos 10 m, un problema
que le propuso su mentor Galileo
Galilei

un tubo de vidrio abierto por un extremo lleno de mercurio y lo
puso invertido sobre una cubeta llena de mercurio. El mercurio del
tubo descendió hasta marcar un nivel unos 760 mm por encima de la
superficie de la cubeta. La presión de la atmósfera sobre la superficie
libre de la cubeta equilibra la presión de la columna de mercurio. De
la figura 2.7 tenemos que

P0 = Phueco + ρHggh (2.16)
Unidad de presión SI

1 atm 1,013 25× 105 Pa
1 bar 1,00× 105 Pa

Tabla 2.1: Algunas unidades de presión
útiles para medir la presión atmosférica
y su equivalencia en el SI.

siendo Phueco la presión en el hueco superior que ha quedado
en el tubo. En el hueco queda aproximadamente vacío y por tanto
la presión ahí es Phueco ≈ 0. Conocida la densidad del mercurio
podemos calcular P0:

P0 = ρHggh = (13 600 kg/m3)(9,8 m/s2)(0,760 m) ≃ 101× 103 Pa
(2.17)

Aire

Hg

Figura 2.7: Experimento de Torricelli.

Aunque la presión atmosférica varía con la meteorología, se toma
como valor de la presión atmosférica a nivel del mar el valor 1 atm =

101 325 Pa.

2.9 Principio de Arquímedes.

Al sumergir un cuerpo en un fluido, experimenta una fuerza
vertical y hacia arriba (llamada empuje), pudiendo incluso flotar,
dependiendo del cuerpo y el fluido. ¿De dónde proviene esa fuerza?
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Es una consecuencia de que la presión aumente con la profundidad
en el fluido. El fluido hace más fuerza sobre la parte inferior que
la superior y la resultante es una fuerza hacia arriba. Lo podemos
ver fácilmente en un cilindro de altura h y base A sumergido en un
fluido en equilibrio de densidad ρ f .

Figura 2.8: El empuje que experimentan
los cuerpos sumergidos en fluidos
es una consecuencia directa de que
la presión del fluido aumenta con la
profundidad.

Como vemos en la figura 2.8, el fluido ejerce una fuerza F1 hacia
abajo en la cara superior y una fuerza F2 hacia arriba en la cara
inferior. Estas fuerzas provienen de la presión del fluido y sabemos
que se dirigen de forma perpendicular a la superficie del objeto. De
la definición de presión tenemos que:

p1 =
F1

A
⇒ F1 = p1 A (2.18)

p2 =
F2

A
⇒ F2 = p2 A (2.19)

Como la presión aumenta con la profundidad según p = ρgh, tene-
mos para cada profundidad h1 (tapa superior) y h2 (tapa inferior):

F1 = p1 A = ρ f gh1 A (2.20)

F2 = p2 A = ρ f gh2 A (2.21)

Como h2 > h1, abajo hay mayor presión y el resultado neto es una
fuerza neta hacia arriba, que es el empuje E

E = ρ f gh2 A− ρ f gh1 A = ρ f g(h2 − h1)A = ρ f glA = ρ f gV (2.22)

donde hemos usado que la altura l del cilindro es l = h2 − h1 y el
volumen del cilindro es V = A× l. Esta expresión es interesante por 2

razones:

Nos da la expresión del empuje sobre un cuerpo con un volumen
V sumergido en un fluido de densidad ρ f :

E = ρ f gV (2.23)

La cantidad ρ f V corresponde a una masa de fluido m f . Es la masa
de fluido desalojado por el cuerpo al sumergirse. Así, el empuje
es E = m f g, esto es, el peso del fluido desalojado. Esta es la forma
habitual de enunciar el principio de Arquímedes:

“Todo cuerpo sumergido en un fluido experimenta un empuje vertical
y hacia arriba equivalente al peso del fluido desalojado”.

Aunque lo hemos calculado para un cilindro, el principio de Arquí-
medes es válido para cualquier cuerpo sumergido en un fluido en
equilibrio, independiente de su forma. Se puede entender haciendo el
siguiente experimento mental representado en la figura 2.9.
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A B

Figura 2.9: Principio de Arquímedes
para un cuerpo de forma arbitraria. Si-
tuación A, cuerpo sumergido. Situación
B, sustituimos el cuerpo por una canti-
dad de agua de volumen equivalente al
cuerpo.

En la situación A, el cuerpo sumergido sufrirá un empuje E como
resultado de las fuerzas de presión que ejerce el agua a su alrededor
como acabamos de ver. Tomemos mentalmente el cuerpo y sustitu-
yamoslo por un volumen equivalente de agua, como en la situación
B. El empuje que ejerce el agua exterior al volumen marcado en la
figura es igual que antes E, pues no hemos cambiado el agua externa.
El agua que está dentro de la línea punteada tendrá un peso, corres-
pondiente a su volumen, m f g = ρ f gV. Ahora bien, la situación B
es un fluido en equilibrio, de modo que el empuje sobre la parcela
imaginaria de fluido tiene que equilibrarse con su peso y entonces:

E = ρ f gV (2.24)

como queríamos demostrar.

Empuje y peso. Flotación

El empuje E ejercido sobre un cuerpo y su peso P, apuntan en la
misma dirección y sentidos contrarios, siendo la fuerza resultante
hacia arriba o hacia abajo según cuál sea mayor. Hay 3 situaciones
posibles:

1. E < P. El cuerpo se hundirá.

2. E = P. El cuerpo está en equilibrio hidrostático. Esta es la situa-
ción aproximada de muchos organismos acuáticos de forma que
pueden desplazarse en el agua sin tener que compensar ninguna
fuerza ascendente ni descendente9. 9 Los peces con vejiga natatoria pueden

controlar en cierta medida el empuje
que sienten aumentando o disminuyen-
do el volumen de la vejiga

3. E > P. El cuerpo ascenderá. Puede quedar en equilibrio en la
superficie con tan solo una fracción del volumen sumergido.

Podemos ver que en realidad esto tiene que ver con la relación
entre las densidades del objeto o cuerpo sumergido ρc y la densidad
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del fluido ρ f . Por ejemplo, un cuerpo de volumen V totalmente
sumergido estará en equilibrio si

E = P⇒ ρ f gV = mcg⇒ ρ f V = mc (2.25)

Si el cuerpo tiene densidad ρc =
mc
V tenemos

ρ f V = mc ⇒ ρ f V = ρcV ⇒ ρ f = ρc (2.26)

El cuerpo estará en equilibrio si tiene igual densidad que el fluido.
Igualmente se analizan los otros dos casos, dando lugar a

1. E < P⇔ ρ f < ρc (se hunde)

2. E = P⇔ ρ f = ρc (equilibrio)

3. E > P⇔ ρ f > ρc (flota)

En el caso de la flotación E > P, podemos ver en qué situación
queda el cuerpo en la superficie. En la superficie, una parte del
volumen del cuerpo queda sumergido y otra emergido V = Vs +Ve. La
parte sumergida es la única que desaloja fluido y por tanto el empuje
en esta nueva situación es menor Eflotando = ρ f gVs < ρ f gV = E,
donde E es el empuje que sufre cuando está totalmente sumergido.
En la situación de equilibrio, flotando en la superficie, el empuje
iguala al peso

Figura 2.10: Cuerpo flotando en un flui-
do con parte del volumen sumergido
Vs y parte del volumen emergido Ve. Si
está flotando en equilibrio (ni se hunde
más, ni emerge más) el empuje iguala al
peso

Eflotando = P⇒ ρ f gVs = mcg⇒ ρ f Vs = ρcV (2.27)

De esta última expresión se puede ver por ejemplo que la fracción
de cuerpo sumergida es igual a la relación entre las densidades del
cuerpo y el fluido

Vs

V
=

ρc

ρ f
. (2.28)

Ejemplo 2.9.1 La punta del iceberg

La densidad del hielo es aproximadamente 900 kg/m3y la del agua líquida unos 1000 kg/m3. Calcule
qué fracción del volumen total representa la parte del iceberg que vemos flotar por encima del agua.

SOLUCIÓN

El iceberg está flotando en equilibrio en el agua. De modo que su peso y su empuje están equilibrados.
Suponiendo un volumen total V = Vs + Ve, según (2.28)

Vs

V
=

ρh
ρ f

=
900 kg/m3

1000 kg/m3 = 0,9 (2.29)

El resto hasta 1 es la fracción de volumen emergido (Ve/V + Vs/V = 1):

Ve/V = 1−Vs/V = 0,1 (2.30)
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Esto es el volumen emergido es 1/10 del volumen total y el volumen sumergido 9/10 del volumen total.

2.10 Dinámica de fluidos

La dinámica de fluidos estudia los fluidos en movimiento. Es un
tema complejo, en especial la turbulencia. En general se pueden dar
dos tipos de movimiento de los fluidos:

Figura 2.11: Flujo laminar. Las trayec-
torias de las partículas de fluido son
suaves.

Figura 2.12: Flujo turbulento. Las trayec-
torias son irregulares, pueden aparecer
remolinos.

Flujo laminar. Las capas vecinas de fluido se deslizan entre sí sua-
vemente, las pequeñas porciones de fluido siguen una trayectoria
lisa, suave, no hay cruces en las líneas de flujo o de corriente que
indican cómo se mueven.

Flujo turbulento. Las trayectorias se vuelven más complejas y
enrevesadas, con la aparición de remolinos, vórtices, cambios
bruscos en el tiempo, etc. . .

Estudiaremos el flujo laminar.

2.11 Flujo de masa y caudal

Dos cantidades importantes en fluidos en movimiento son el flujo
de masa y el caudal:

Flujo de masa ∆m
∆t es la masa de fluido que atraviesa una superficie

por unidad de tiempo. Sus unidades son[
∆m
∆t

]
= 1 kg/s (2.31)

Caudal o gasto Q es el volumen de fluido que atraviesa una super-
ficie por unidad de tiempo

[Q] = 1 m3/s (2.32)

La superficie que consideramos para ambos es una superficie per-
pendicular a la dirección de flujo, normalmente la sección del tubo o
tubería por el que fluye el fluido. Ambos están también relacionados
con la velocidad de flujo. Si tenemos una tubería de sección transver-
sal de superficie A, y el fluido circula a velocidad v, en un intervalo
∆t, el volumen de fluido que atravesará una sección transversal es
aquel que se encuentra contenido en un cilindro de altura v∆t, como
en la figura 2.13. El volumen del cilindro es V = Av∆t y por tanto el
volumen que fluye por unidad de tiempo es Figura 2.13: Caudal o flujo de masa.

La cantidad de fluido que atraviesa la
sección perpendicular de tubería en
un intervalo de tiempo ∆t es la que se
encuentra a una distancia v∆t o menor
en la dirección del movimiento.

Q =
V
∆t

=
Av��∆t
��∆t

= Av⇒ Q = Av (2.33)
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Para el flujo de masa basta con recordad la relación entre masa y
volumen m = ρV (con ρ la densidad del fluido) de modo que

∆m
∆t

= ρQ = ρAv (2.34)

2.12 Conservación de la masa o el caudal

Figura 2.14: Conservación del caudal en
una tubería que se estrecha.

Veamos una situación como la de la figura 2.14 en la que cambie
la sección de la tubería, por ejemplo. No se pierde masa de fluido a
través de las paredes, ni se crea ni se destruye masa. Entonces, el flujo
de masa será el mismo en el punto 1 que en el 2, y así:

∆m
∆t

= ρ1 A1v1 = ρ2 A2v2 (2.35)

Además, en fluidos incompresibles (líquidos sobre todo) la densi-
dad es prácticamente constante independiente de las condiciones (de
presión) y podemos tomar ρ1 = ρ2. En ese caso:

A1v1 = A2v2 (2.36)

Figura 2.15: Ojo, la relación (2.36) solo
es cierta si se conserva la masa entre
las secciones consideradas, por ejemplo
en esta otra situación, tendríamos
A1v1 = A2v2 + A3v3.

que es la conservación del caudal.
Una consecuencia de esta conservación del caudal es

v2 =
A1

A2
v1 ⇒ Si A1 > A2 ⇒ v2 > v1 (2.37)

que explica que los fluidos aumenten su velocidad cuando fluyen por
sitios más estrechos.

2.13 Ecuación de Bernoulli

En un movimiento general de un fluido podemos establecer una
relación entre la velocidad a la que fluye, la altura respecto de un
nivel dado (el suelo por ejemplo) y la presión en el seno del fluido.

Esta relación se debe a Bernoulli y dice que para dos puntos
cualesquiera de la trayectoria del fluido

P1 +
1
2

ρv2
1 + ρgy1 = P2 +

1
2

ρv2
2 + ρgy2 (2.38)

o bien que

P +
1
2

ρv2 + ρgy = cte (2.39)

en cualquier punto de la trayectoria, con

ρ, densidad del fluido

v, velocidad del fluido en un punto
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Figura 2.16: La ecuación de Bernoulli se
puede aplicar a dos puntos cualesquiera
del tubo de flujo, en determinadas
condiciones.

y, altura sobre un nivel de referencia de ese mismo punto

P, presión (hidrostática) del fluido en ese punto.

El origen de esta ecuación es la conservación de la energía. Si consi-
deramos un pequeño volumen V de fluido que pase por el punto 1
y 2 en su trayectoria, multiplicando por V la ecuación (2.38), reorga-
nizando términos, y siendo m = ρV la masa asociada a ese pequeño
volumen, tenemos:

(P1 − P2)V =
1
2

m(v2
2 − v2

1) + mg(y2 − y1) (2.40)

Figura 2.17: La ecuación de Bernoulli
se corresponde con la conservación de
energía. El trabajo de las fuerzas de pre-
sión es igual a la variación de energía
cinética más potencial, calculadas las
tres por unidad de volumen.

Los términos de la derecha corresponden al cambio de energía
cinética y potencial de la pequeña porción de fluido al pasar del
punto 1 al 2. El término de la izquierda tiene unidades de energía
también y corresponde al trabajo realizado por las fuerzas de presión
sobre el volumen de fluido. De modo que podemos ver la ecuación
de Bernoulli como la conservación de la energía, esto es, el trabajo
de fuerzas externas (que no son la gravedad) es igual al cambio de
energía mecánica (cinética+potencial).

La ecuación es válida cuando:

El fluido es incompresible10 10 En líquidos sobre todo, pero a veces
también en gases si no hay diferencias
de presión muy grandesNo hay viscosidad (ya que viscosidad⇒ rozamiento y pérdida de

energía por tanto)

Flujo laminar (trayectorias suaves). Ver sección sobre número de
Reynolds.

Estado estacionario11

11 Estado estacionario significa que
ninguna propiedad cambia en el
tiempo, aunque pueden cambiar de un
punto a otro del espacio
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2.14 Aplicaciones de la ecuación de Bernoulli

Veamos algunos casos particulares y posibles aplicaciones de la
ecuación.

Presión hidrostática 1

2

Figura 2.18: La presión a profundidad
h en un líquido en reposo se puede
calcular con la ecuación de la hidrostá-
tica o con la de Bernoulli sustituyendo
v1 = v2 = 0.

Supongamos un fluido en reposo (v1 = v2 = 0). Si tomamos el
punto 1 en la superficie libre abierta a la atmósfera P1 = Patm, y el
punto 2 a una profundidad h > 0 (1m, 2m,...) respecto de la superficie
(y2 = y1 − h), la ecuación de Bernoulli nos dice

P1 − P2 =
1
2

ρ(v2
2 − v2

1) + ρg(y2 − y1)⇒ P2 = Patm + ρgh (2.41)

Como se ve, Bernoulli contiene la ecuación de la hidrostática como
caso particular cuando las velocidades son nulas.

Teorema de Torricelli Aunque se puede deducir fácilmente de
la ecuación de Bernoulli, fue enunciado
previamente por TorricelliSupongamos un depósito grande que se vacía por un agujero

pequeño a una profundidad h respecto de su superficie. Podemos
aplicar la ecuación de Bernoulli a un punto 1 en la superficie libre del
fluido y un punto 2 a la salida del orificio:

P1 − P2 =
1
2

ρ(v2
2 − v2

1) + ρg(y2 − y1) (2.42)

Ahora usamos que

Tanto el punto 1 como el 2 están abiertos a la atmósfera, así que la
presión es la atmosférica P1 = P2 = Patm

El depósito es grande y el agujero pequeño, así que v1 ≈ 0

La diferencia de alturas es la profundidad a la que está el agujero
y2 − y1 = h

y queda

0 =
1
2

ρ(v2
2) + ρgh⇒ v2 =

√
2gh (2.43)

El resultado coincide con la velocidad adquirida por una partícula en
caída libre lanzada desde reposo desde una altura h que se obtiene
por conservación de la energía.

1

2
Efecto Venturi

Si las diferencias de altura son despreciables y1 ≈ y2 entonces
queda

P1 +
1
2

ρv2
1 = P2 +

1
2

ρv2
2 (2.44)
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esto es, en los puntos donde fluye a mayor velocidad, la presión
es más baja. Esto se puede utilizar para explicar (parcialmente) el
vuelo de las aves, aviones, y otros efectos como la posibilidad de los
barcos veleros de navegar en contra del viento, el gol olímpico y otros
fenómenos.

Aunque en la sección siguiente utilizaremos solo el efecto Venturi
para analizar el vuelo, la realidad es más complicada y otros efectos
y consideraciones desempeñan un papel igual o más importante
en ocasiones, como el efecto Coanda o la desviación del viento
provocada en la parte inferior del ala por un ángulo de ataque no
nulo.

Vuelo de las aves

Supongamos un ave en vuelo horizontal, a velocidad vave respecto
del aire que la rodea.

Figura 2.19: El aire circula más rápida-
mente por encima del ala, debido al
perfil curvo. Esto se puede apreciar en
un túnel de viento (con ala de avión
normalmente) en que las líneas de
corriente están más apretadas por la
parte superior.

Debido al perfil curvo del ala, el aire pasa a mayor velocidad por
la parte superior del ala, digamos a una velocidad vsup > vave. Por
la parte inferior, como el aire se desvía poco, podemos suponer una
velocidad vinf = vave. Despreciando diferencias de altura, tenemos
que

Pinf +
1
2

ρv2
ave = Psup +

1
2

ρv2
sup (2.45)

Como vsup > vave entonces Psup < Pinf. Al haber menos presión por
arriba que por abajo del ala, el efecto neto es una fuerza vertical hacia
arriba, llamada fuerza de sustentación. Recordando la relación entre
presión y la fuerza total ejercida en una superficie, suponiendo un
ala de superficie S, P = F/S ⇒ F = PS se calcula la fuerza neta que
actúa sobre el ala: Figura 2.20: Diferencias en la velocidad

superior e inferior se traducen en
diferentes presiones y fuerzas ejercidas
sobre el ala. Al haber mayor presión
por el lado inferior que por el superior,
resulta una fuerza total hacia arriba que
sujeta el objeto en el vuelo.

Fneta = Finf − Fsup = (Pinf − Psup)S =
1
2

ρ(v2
sup − v2

ave)S (2.46)

donde hemos utilizado la expresión (2.45). Para que (2.46) resulte útil,
necesitamos una relación entre vsup y vave. Por ejemplo, supongamos
que la vsup es un pequeño porcentaje superior a vave, por ejemplo,
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vsup = avave con a una constante (1.1, 1.2 o así. . . ). Entonces:

Fneta =
1
2

ρ(a2 − 1)v2
aveS. (2.47)

Aunque no es fundamental, normalmente se agrupa ese coeficiente
así CL = (a2 − 1) y se escribe

Fneta =
1
2

ρCLv2
aveS. (2.48)

CL recibe el nombre de coeficiente de sustentación y se suele obtener
experimentalmente.

Una consecuencia directa de la expresión (2.48) es que la fuerza
de sustentación es mayor cuanto mayor sea la velocidad del aire por
debajo del ala. Por ejemplo, la fuerza de sustentación es mayor si se
despega de cara al viento y de hecho las aves de gran tamaño (y los
aviones comerciales) suelen despegar de ese modo. La relación entre
la fuerza de sustentación y la masa del ave en vuelo horizontal o la
velocidad de despegue se exploran en el siguiente ejemplo y en el
cuadro opcional Velocidad de despegue.

Figura 2.21: Cigüeña blanca despegan-
do desde el nido en contra del viento.
La fuerza de sustentación aumenta con
la velocidad del aire por debajo del ala.
El viento de cara por tanto contribuye
a aumentar la fuerza de sustentación.
Dibujo de L.D.

Ejemplo 2.14.1 Vuelo de un águila

La velocidad del viento debajo del ala de un águila real volando horizontalmente es de 70 km/h. Por la
parte superior del ala el aire circula a una velocidad de 77 km/h. El ala mide aproximadamente 190 cm×
20 cm. El ave está volando horizontalmente en equilibrio. Calcule:

a) La diferencia de presiones entre el lado inferior y superior del ala

b) La fuerza neta vertical sobre 1 ala
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c) La masa del águila

Datos: Densidad del aire ρ = 1,2 kg/m3

SOLUCIÓN

a) Utilizando la ecuación de Bernoulli, despreciando diferencias de altura:

P0 +
1
2

ρv2
0 = P1 +

1
2

ρv2
1 (2.14.1.1)

con P0 y v0 presión y velocidad del aire debajo del ala y P1 y v1 presión y velocidad en la parte superior.
La diferencia de presión será:

P0 − P1 =
1
2

ρ(v2
1 − v2

0) =
1
2
(1,2 kg/m3)

[(
77
3,6

m/s
)2
−

(
70
3,6

m/s
)2

]
≃ 47,6 Pa (2.14.1.2)

b) La relación entre fuerza, superficie y presión nos permite calcular la fuerza neta:

Fneta = (P0 − P1)S = (47,6 Pa)(190× 10−2 m)(20× 10−2 m) ≃ 18 N (2.14.1.3)

c) Volando horizontalmente, sin propulsarse con las alas, el peso del ave se tiene que compensar con la
fuerza de sustentación sobre las 2 alas:

mg = 2Fneta ⇒ m =
2F
g
≃ 3,7 kg (2.14.1.4)
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Opcional.
Velocidad de despegue. Ley de escala. El avestruz y el gorrión

Piensa en la diferencia en el modo de despegue de las pequeñas aves como un gorrión y el flamenco. Un
flamenco necesita adquirir cierta velocidad corriendo antes de despegar, mientras que un pajarillo puede
comenzar a volar prácticamente desde parado. ¿Podemos explicar el fenómeno con lo que conocemos de
la física del vuelo?
En el ejemplo anterior hemos visto que, si no tenemos en cuenta el efecto de batir las alas, en vuelo esta-
ble horizontal la fuerza de sustentación tiene que equilibrar el peso. Vamos a suponer que la velocidad
de despegue es esa velocidad necesaria para mantenerse en el aire en equilibrio. A mayor peso del ave,
mayor fuerza neta necesaria y, teniendo en cuenta la expresión (2.48), también significa mayor velocidad.
Partiendo de (2.48), suponiendo 2 alas y equilibrando con el peso del ave tenemos:

mg = 2Fneta = ρCLv2
aveS⇒ vave =

√
mg

CLρS
(2.49)

Claramente, se aprecia que a mayor masa del ave, mayor será la velocidad necesaria para el despegue.
Aunque queda una duda, normalmente un ave de mayor masa tiene mayor superficie alar S y como está
en el denominador, tiende a hacer menor la velocidad necesaria para el despegue. ¿Qué efecto es mayor?
Para analizar esto, veamos cómo varían masa m y superficie alar S con el tamaño o envergadura del ave.
Supongamos una longitud determinada para el ave L, por ejemplo, de pico a cola, o la envergadura de ala
a ala o cualquier otra longitud característica. Una ave de mayor L tendrá mayor S. De hecho, al ser una
superficie, podemos pensar que la superficie del ala será proporcional a la longitud al cuadrado:

S ∝ L2, o bien S = aL2 (2.50)

donde a es un cierto factor numérico o constante que supondremos igual para todas las aves.
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Por otro lado, a mayor longitud, mayor volumen y por tanto mayor masa y peso del animal:

V ∝ L3, o bien V = bL3 ⇒ m = ρtejidoV = ρtejidobL3 (2.51)

donde de nuevo b es un valor que tomaremos igual para toda ave, sea cual sea su valor. Llevando todo
esto a la expresión de la velocidad de despegue (2.49):

vave =

√
gρtejidobL3

CLρaL2 =

√
gρtejidob

CLρa

√
L = c

√
L (2.52)

donde c =

√
gρtejidob

CLρa es la misma constante para todos los animales al ser combinación de otras constan-

tes.
De modo que vemos que efectivamente, a mayor envergadura o tamaño de ave, mayor es la velocidad de
despegue, como parece razonable.
De hecho, podemos relacionar las velocidades de despegue de dos aves cualesquiera:

vavestruz

vgorrion
= �c
√

Lavestruz

�c
√

Lgorrion
=

√
Lavestruz

Lgorrion
(2.53)

Finalmente, conocidos los tamaños y la velocidad de despegue de uno, podemos estimar la veloci-
dad del otro. Si para el gorrión tenemos vgorrion = 21 km/h y el avestruz es unas 25 veces mayor
(Lavestruz = 25Lgorrion), obtenemos:

vavestruz = vgorrion

√
Lavestruz

Lgorrion
= (21 km/h)

√
25 ≃ 105 km/h (2.54)

¡No sorprende que un avestruz no pueda volar!

2.15 Fluidos reales

En esta sección vamos a tratar casos de fluidos reales, donde
los efectos de rozamiento son importantes y la conservación de la
energía no se da.

Viscosidad

La viscosidad es una propiedad de los fluidos que mide la resis-
tencia a fluir cuando se les aplica una diferencia de presión, o una
fuerza por unidad de superficie. Algunos fluidos como el aceite,
la miel o la sangre son más viscosos que el agua y hay que aplicar
mayor fuerza que para hacer fluir agua12. Los gases son en general 12 Una manera fácil de comprobar la

mayor o menor viscosidad es poner
el fluido en una jeringa y hacerlo fluir
apretando el émbolo. ¿Cuándo cuesta
más, con agua o con miel?

menos viscosos que los fluidos.
Viscosidad y densidad son magnitudes distintas y no tienen

relación en general. Por ejemplo, el aceite es más viscoso que el agua,
pero menos denso.
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Definición

La viscosidad se puede definir (y se podría medir) con el siguiente
experimento. Se coloca una delgada capa de fluido entre dos placas
planas. La placa inferior está fija. La placa de arriba se puede mover,
como en la figura 2.22.

fluido

placa estacionaria

placa en movimiento

Figura 2.22: Definición de viscosidad.
Vista lateral del experimento. La placa
inferior está fija. Para mover la placa
superior con velocidad constante v, es
necesario aplicar una fuerza constante
F. Las placas, aunque no se aprecia,
tienen una superficie A.

Debido a las fuerzas de rozamiento entre capas de fluido y de
las capas de fluido con las placas, para mover la placa de arriba a
velocidad constante hace falta tirar de la placa con una determinada
fuerza F. Debido al rozamiento también, la velocidad de diferentes
capas de fluido es distinta, siendo nula al lado de la placa en reposo
e igual a la velocidad de la placa superior justo debajo. La fuerza
necesaria es proporcional al gradiente de velocidad (v/l) y al área de
las placas13: 13 Esta fuerza F es una fuerza de cizalla,

y en general no tiene que ver con la
presión P hidrostática que hemos visto
hasta ahora, si no que es de origen
viscoso

F ∝ A
v
l

(2.55)

La constante de proporcionalidad es la viscosidad y depende de qué
fluido tengamos:

F = ηA
v
l

. (2.56)

Con este experimento podríamos obtener la viscosidad del fluido

η =
Fl
Av

(2.57)

y también podemos ver que sus unidades en el SI son

[η] =
[F][l]
[A][v]

=
1 Nm

m2m/s
= 1 Pa · s. (2.58)

Sin embargo, esta situación de fluido entre dos placas es poco
común, por lo que la ecuación (2.56) no resulta muy útil. La situación
de la siguiente sección resulta mucho más frecuente.

Flujo viscoso en tubos. Ley de Poiseuille

Cuando hay viscosidad, para hacer fluir un fluido en un tubo hay
que aplicarle una presión mayor por un lado que por el otro, esto es,
una diferencia de presión ∆P = P1 − P2, siendo P1 y P2 las presiones a
uno y otro lado del tubo. 14 14 Las fuerzas viscosas son como la

fuerza de rozamiento: Si no hubiera
rozamiento, los objetos deslizarían
indefinidamente sobre una superficie
sin necesidad de aplicarles fuerza. El
rozamiento frena el movimiento y en
general para que continue moviéndose
hay que aplicar una fuerza.

Existe una relación entre la velocidad de flujo, o el caudal, y la
diferencia de presión aplicada:

P1 − P2 = QR (2.59)

con Q el caudal. R se conoce con el nombre de resistencia hidrodinámi-
ca porque mide la oposición del tubo y el fluido a fluir. A mayor R,
menor es el caudal para una diferencia de presión dada.
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La resistencia hidrodinámica R tiene que aumentar con la viscosi-
dad del fluido η. Además dependerá del tubo en cuestión, su forma,
su tamaño. Para el caso de un tubo de sección circular, de radio r y
longitud l, la resistencia es

R =
8ηl
πr4 (2.60)

de modo que el caudal y la presión se relacionan así:

Q =
πr4

8η

(P1 − P2)

l
(2.61)

que se denomina ley de Poiseuille. Las consecuencias más importantes
de la ley de Poiseuille son

El caudal es proporcional al gradiente de presión aplicado

El caudal cambia enormemente con pequeñas variaciones del radio
del tubo, debido a la dependencia r4

A mayor viscosidad, menos flujo, para el mismo gradiente de
presión aplicado

Figura 2.23: Fluido viscoso fluyendo
como resultado de una diferencia de
presiones en sus extremos P1 − P2. Se
desplaza una distancia ∆x en un tiempo
∆t, a velocidad v = ∆x/∆t.

Potencia desarrollada en el flujo viscoso

Otra consecuencia de la viscosidad es que para mantener el flujo
hay que gastar energía constantemente15. Se puede calcular la po-

15 Las fuerzas viscosas son como un
rozamiento, si se deja de impulsar, el
fluido se para

tencia necesaria para mantener un caudal Q a través de un tubo de
sección S como en la figura 2.23, entre cuyos extremos hay una dife-
rencia de presión P1 − P2. En esa figura, el fluido entre los dos círculos
azules sufre una fuerza neta F1 − F2 y si se desplaza una distancia ∆x
el trabajo realizado es:

W = (F1 − F2)∆x = (P1 − P2)A∆x = ∆PA∆x (2.62)

donde hemos utilizado que P = F/A, con A el área de la sección
transversal de la tubería. La potencia es el trabajo por unidad de
tiempo ∆t, y si el fluido se mueve a velocidad v = ∆x/∆t

P =
W
∆t

= ∆PA
∆x
∆t

= ∆PAv = ∆PQ⇒

P = ∆PQ (2.63)

donde hemos usado que el caudal Q = Av. Es un buen ejercicio
comprobar que el producto de presión por caudal tiene unidades de
W.
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Ejemplo 2.15.1 La potencia del corazón

Un corazón humano bombea unos 4.5 litros de sangre cada minuto. Si la presión arterial se considera en
promedio 100 mmHg y la venosa despreciable (0 mmHg), calcule

a) La potencia desarrollada por el corazón para mover la sangre

b) El gasto de energía del corazón durante un día completo.

Datos: Densidad del mercurio ρHg = 13 600 kg/m3

SOLUCIÓN

a)

P = ∆PQ = (100 mmHg− 0)(4,5 L/min) = (0,100 m)(13 600 kg/m3)(9,8 m/s2)
(4,5× 10−3 m3)

60 s
= 1,0 W
(2.15.1.1)

b) Si suponemos constante esa potencia durante t = 1 d , la energía total será:

E = P t = (1,0 W)(1× 3600× 24s) = 86 400 J (2.15.1.2)

Como veremos al estudiar el metabolismo humano, una persona consume una potencia de aproximada-
mente 100 W en promedio, por lo que el consumo del corazón supone en torno al 1 %

Número de Reynolds

Cuando la velocidad del flujo aumenta, el flujo puede dejar de ser
laminar y volverse turbulento (con remolinos y gran variabilidad).
La transición entre flujo laminar y turbulento está marcada por el
número de Reynolds. Para una tubería de sección circular, el número de
Reynolds es:

Re =
2vrρ

η
(2.64)

con

v velocidad (media) del fluido

r radio de la tubería

ρ densidad del fluido

η viscosidad del fluido

El número de Reynolds no tiene dimensiones16, las unidades son 16 Es una magnitud adimensional

mismas en el numerador y en el denominador. De hecho mide la
importancia de las fuerzas de tipo inercial, asociadas a la masa, en
el numerador y el de las fuerzas de viscosidad en el denominador.
Experimentalmente se ve que aproximadamente si

Re < 2000⇒ flujo laminar

Re > 2000⇒ flujo turbulento (2.65)
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La ley de Poiseuille que hemos visto en la sección anterior solo es
válida en situaciones en las que el flujo es laminar (Re < 2000).

Movimiento de un objeto en un fluido

Figura 2.24: Fuerza de arrastre. Un
objeto se mueve a velocidad v en el
seno de un fluido. Aparece una fuerza
que se opone al movimiento y cuyo
valor aumenta con la velocidad.

Cuando un objeto se mueve en un fluido, aparece una fuerza,
denominada fuerza de arrastre, que se opone al movimiento. En este
sentido es similar a la fuerza de rozamiento con una superficie. A
baja velocidad tiene origen viscoso y es proporcional a la velocidad

Baja v⇒ debida a η ⇒ Farr = bv (2.66)

A alta velocidad, se debe a efectos inerciales y es proporcional a v2:

Alta v⇒ debida a inercia⇒ Farr = kv2 (2.67)

b y k son coeficientes de proporcionalidad que dependen de la forma
del objeto y las propiedades del fluido. ¿Cómo distinguimos estos
casos? Se utiliza otro número de Reynolds definido así

Re′ =
vLρ

η
(2.68)

con

v velocidad del objeto dentro del fluido

L tamaño del objeto (lado, diámetro,etc...)

ρ densidad del fluido

η viscosidad del fluido

Si

Re′ < 1⇒ flujo laminar alrededor del objeto⇒ Farr = bv

Re′ > 1⇒ flujo turbulento alrededor del objeto⇒ Farr = kv2 (2.69)

Ley de Stokes

En situaciones en las que Re′ < 1 y además el objeto es una esfera
de radio r entonces b toma el valor b = 6πrη y la fuerza de arrastre:

Farr = 6πrηv (Para la esfera) (2.70)

Sedimentación Figura 2.25: Fuerzas que actúan sobre
un objeto sedimentando. Izquierda:
La velocidad inicialmente es baja, lo
que implica una fuerza de rozamiento
pequeña, de modo que la fuerza total
es hacia abajo, el cuerpo acelera por
tanto hacia abajo y se hunde cada vez
más deprisa. Derecha: Equilibrio. La
velocidad es mayor, la fuerza de roza-
miento también por tanto. La fuerza
de rozamiento y el empuje equilibran
el peso. La fuerza neta y la aceleración
son nulas y por tanto la velocidad
constante.

La sedimentación se puede utilizar para separar partículas sólidas
en el seno de un fluido. Consiste en dejar actuar la gravedad, o una
fuerza centrífuga, de modo que las partículas más densas que el
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fluido tienden a depositarse en el fondo del recipiente. Además
permite separar partículas según su tamaño o densidad, según
veremos.

Consideremos una partícula de densidad ρp en un fluido (ρp > ρ f ).
En reposo inicialmente, las fuerzas que actúan son el peso y el em-
puje. El peso es mayor que el empuje debido a la diferencia de densi-
dad, y el sólido comienza a moverse hacia el fondo. En movimiento
aparece una fuerza de arrastre, que va aumentando a medida que
aumenta la velocidad (Farr = bv). En determinado momento, la
velocidad alcanza un valor tal que las fuerzas se equilibran:

mg− E− bv = 0 (2.71)

Según la segunda ley de Newton (∑ F = ma) esto implica que a partir
de ese momento la aceleración es nula y la velocidad es constante
(a = 0 ⇒ v = cte.) y no aumenta más. Esta velocidad máxima se
denomina velocidad límite o terminal y su valor se deduce de (2.71):

mg− E− bv = 0⇒ v =
mg− E

b
(2.72)

Para el caso de una esfera de radio r podemos expresar todo en
función solo de densidades, viscosidad y el radio.

E = ρ f gV = ρ f g
4
3

πr3 (2.73)

mg = ρpVg = ρpg
4
3

πr3 (2.74)

b = 6πηr (2.75)

y entonces

v =
mg− E

k
⇒ v =

2
9
(ρp − ρ f )gr2

η
(Vel. terminal de una esfera)

(2.76)
Consecuencias:

Para partículas de igual densidad ρp (o muy similar), la velocidad
límite es mayor para las partículas más grandes. Las partículas
más grandes acabarán más cerca del fondo tras un tiempo de
sedimentación.

Para partículas de tamaño similar, acabarán separadas según
densidades.

En general, quedan ordenadas según el valor de la combinación
(ρp − ρ f )r2 (g será la misma para todas).

Si el proceso es demasiado lento, se puede incrementar el valor
de la velocidad de sedimenación mediante centrifugación. En una
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centrifugadora, la aceleración centrífuga ac desempeña el papel de
la gravedad, de modo que la expresión es la misma simplemente
sustituyendo g por ac:

v =
2
9
(ρp − ρ f )acr2

η
(2.77)

muestra

trayectoria

eje de
giro

Figura 2.26: Centrifugadora. La muestra
gira en una trayectoria circular de radio
R a una velocidad angular de ω en
radianes por segundo. Desde el punto
de vista de la muestra, este movimiento
provoca una aceleración centrífuga ac
que desempeña el mismo papel que la
aceleración de la gravedad en el caso
de sedimentación vertical. Así, el “pe-
so” de la muestra es mac en dirección
perpendicular a la trayectoria hacia
fuera y aparece un empuje E = ρ f acV
en la misma dirección y hacia el centro.
Como ac es normalmente muy superior
a g podemos despreciar el efecto de la
aceleración de la gravedad en sentido
vertical.

La aceleración de la centrifugadora ac se puede dar en referencia
a g, como ac = 2g o ac = 3g, etc. . . También se puede obtener a
partir de la velocidad angular de giro ω (en radianes por segundo):
ac = ω2R, con R el radio de giro de la muestra en la centrifugadora.
Es frecuente expresar la velocidad de giro de la centrifugadora en
r.p.m (revoluciones por minuto). Los detalles se pueden ver en el
siguiente ejemplo.

Ejemplo 2.15.2 Centrifugadora

Una centrifugadora gira a 6000 rpm. Las muestras giran en un trayectoria circular de 10 cm de radio.
Se coloca una muestra con dos proteínas globulares de radios r1 = 2 nm and r2 = 5 nm. La densidad
de las proteínas es la misma ρp = 1,35 g/cm3. Suponiendo que las proteínas comenzaran en la misma
posición, calcule la diferencia en la distancia recorrida por cada una de los tipos de proteínas tras 10 h
de centrifugación. Suponga que las proteínas alcanzan la velocidad terminal instantáneamente y que la
centrifugación se realiza en agua, de densidad ρa = 1000 kg/m3 y viscosidad ηa = 0,001 Pa · s.

SOLUCIÓN
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Las proteínas alcanzan inmediatamente la velocidad terminal, que es constante. Por tanto, el espacio
recorrido por la proteína de radio r1 en un tiempo t es

d1 = v1t =
2
9
(ρp − ρa)acr2

1
ηa

t =
2
9
(ρp − ρa)ω2Rr2

1
ηa

t (2.15.2.1)

donde hemos utilizado la expresión de la velocidad terminal (2.77) y sustituido el valor de la aceleración
angular ac = ω2R. Análogamente, para la proteína de radio r2 tenemos

d2 = v2t =
2
9
(ρp − ρa)ω2Rr2

2
ηa

t. (2.15.2.2)

La diferencia de espacio recorrido es:

∆d = d2 − d1 =
2
9
(ρp − ρa)ω2Rt

ηa
(r2

2 − r2
1) (2.15.2.3)

La velocidad angular se tiene que expresar en el SI utilizando 1 vuelta= 2π radianes:

ω = 6000rpm =
6000× 2π

60 s
≃ 628/s (2.15.2.4)

Sustituyendo los valores en el SI tenemos:

∆d =
2
9
((1,35− 1,00)× 103kg/m3)(628/s)(10× 10−2 m)(10× 3600 s)((5× 10−9 m)2 − (2× 10−9 m)2)

(1× 10−3 Pa · s) ≃

≃ 2,3× 10−3 m = 2,3 mm
(2.15.2.5)

2.16 Propiedades de la superficie. Tensión superficial y capilari-
dad

Tensión superficial

Hay varias observaciones que indican que la superficie de un líqui-
do se comporta como una especie de membrana elástica estirada bajo
tensión. Por un lado, las gotas de agua son esféricas aproximadamen-
te (en ausencia de gravedad) al igual que las pompas de jabón, como
sucede con un fluido dentro de una membrana elástica, como puede
ser agua o aire dentro de un globo. Otra evidencia la proporcionan
objetos más densos que el agua que flotan en su superficie (una aguja,
una cuchilla de afeitar, insectos que caminan sobre el agua) pues el
agua ha de ejercer alguna fuerza extra que compense el peso, ya que
el empuje no es suficiente..

líquido

Figura 2.27: Experimento para medir la
tensión superficial. Cuando la fuerza
F equilibra a la fuerza de la tensión
superficial entonces el alambre no se
desplaza y la película de agua ni crece
ni decrece. Este valor es F = 2γl donde
γ es el coeficiente de tensión superficial,
el factor 2 se debe a que la película de
agua tiene 2 superficies de contacto con
el aire y l es la longitud del alambre
móvil donde actúan las fuerzas.

El siguiente experimento (figura 2.27 ) muestra la tensión super-
ficial y permite medirla. Un alambre que tiene forma de U se cierra
completando un rectángulo con otro alambre que puede deslizar. En
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el interior del alambre se coloca el líquido formando una película
(por ejemplo, agua con jabón). Si no se aplica ninguna fuerza externa
sobre el alambre, la película de líquido tiende a decrecer y arrastra el
alambre, disminuyendo la superficie de contacto con el aire. Se puede
parar el movimiento del alambre si ejercemos una fuerza F en sentido
contrario a la de la tensión superficial tal que

γ =
F
2l

(2.78)

γ es el coeficiente de tensión superficial del líquido en cuestión, que
tiene dimensiones de fuerza por unidad de longitud y l es la longitud
de contacto del objeto con la superficie del líquido, en este caso, la
longitud del alambre. El factor 2 se debe a que en realidad en este
experimento con película delgada hay 2 superficies de líquido, la
inferior y la superior, como se aprecia en la figura 2.28.

líquido
película 

delgada

aire

sup. 2

sup. 1

aire

Figura 2.28: El mismo experimento
que en la figura 2.27 visto de perfil.
Se observa que la película delgada de
líquido tiene 2 superficies de contacto
con el aire, por lo que la fuerza sobre el
alambre debida a la tensión superficial
es doble.

Las unidades del coeficiente de tensión superficial son, de 2.78

[γ] = 1 N/m (2.79)

La tensión superficial tiene su origen microscópico en una descom-
pensación de las fuerzas atractivas que sufren las moléculas de un
líquido cuando están cercanas a la superficie.

Ángulo de contacto y capilaridad agua

aire
vidrio

mercurio

aire
vidrio

Figura 2.29: El ángulo de contacto es
el ángulo que forma la superficie del
líquido con la del sólido en la zona
de contacto, en la interfase líquido-
gas-sólido. Se mide “por dentro” del
líquido.

Un efecto de la tensión superficial es la capilaridad, que consiste
en el ascenso o descenso del líquido dentro de un tubo de diámetro
pequeño. Si el líquido asciende o desciende por un capilar, respecto
del nivel del líquido fuera del capilar, está controlado por el ángulo
de contacto. El ángulo de contacto es el ángulo que forma la superfi-
cie del líquido con la pared sólida, en la región en la que coinciden
el líquido, el gas y el sólido. El ángulo se mide por convención desde
el sólido atravesando por el líquido, no por el gas, como en la figura
2.29. El ángulo viene determinado por el balance entre las fuerzas de
atracción molecular líquido-líquido o líquido-sólido:

Atracción sól-líq > atracción líq-líq⇔ θ < 90◦ (Fig. 2.29 izquierda)

Atracción sól-líq < atracción líq-líq⇔ θ > 90◦ (Fig. 2.29 derecha)

Como se ve en la figura 2.29 (izquierda) un ángulo de contacto
menor al ángulo recto produce que una pequeña porción de fluido
ascienda ligeramente en contacto con el sólido. En el caso de un
pequeño tubo, esto resulta en un pequeño menisco que asciende por
el tubo capilar, como en la figura 2.30.

Es posible calcular cuánto asciende la columna de líquido por el
tubo capilar. La columna sube por efecto de la componente vertical
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de la fuerza de tensión superficial. La columna subirá hasta que su
peso se equilibre con la fuerza vertical.

agua

aire

vidrio

Figura 2.30: Ascenso capilar del agua
en un tubo de pequeño radio. El agua
sube por la fuerza de tensión superficial
hasta que la componente vertical de
dicha fuerza se equilibra con el peso de
la pequeña columna de agua.

Por simplificar la discusión, supongamos que se trata de agua en
contacto con vidrio. Pensemos, como en la sección anterior, que la
pared de vidrio es un objeto en la superficie del agua. El agua hace
una fuerza sobre el objeto que vale17

17 En este caso no aparece el factor 2 en
la fuerza de tensión superficial pues no
se trata de una película y solo hay una
superficie líquido-aire

F = γl = γ2πr (2.80)

ya que la longitud total de la línea de contacto de la superficie del
agua y el vidrio es 2πr. Al igual que antes, la dirección de la fuerza
es tangente a la superficie y sentido hacia el líquido. Por la tercera ley
de Newton, igualmente el vidrio hace una fuerza γ2πr sobre el agua,
pero en sentido contrario (ascendente, la fuerza pintada en azul en la
figura 2.30). Esta fuerza del vidrio sobre el agua hace subir el agua.
Más concretamente, es la componente vertical de la fuerza18

18 La componente horizontal se compen-
sa con la reacción perpendicular de la
pared.

Fv = F cos θ = γ2πr cos θ (2.81)

donde θ es precisamente el ángulo de contacto.
El agua dejará de ascender, como dijimos, cuando el peso de la

columna equilibra dicha fuerza. El peso de una columna de agua de
radio r (el mismo del tubo) y de altura h es

P = mg = ρVg = ρπr2hg (2.82)

con ρ la densidad del líquido y g la aceleración de la gravedad. En
equilibrio

P = Fv ⇒ ρπr2hg = γ2πr cos θ (2.83)

de donde podríamos por ejemplo despejar la altura de la columna

h =
2γ cos θ

ρgr
(2.84)

Hg

aire

Figura 2.31: Para ángulos de contacto
mayores de 90º se produce descenso
capilar. Se puede utilizar la misma
fórmula del ascenso capilar ya que el
coseno de un ángulo mayor a 90º es
negativo.

Esta expresión es interesante por al menos un par de cosas

Se entiende por qué solo se observa el fenómeno bien en tubos
de radio muy pequeño (capilares), ya que la altura alcanzada es
inversamente proporcional al radio del tubo.

La expresión es válida también para el descenso por capilaridad si
se utiliza el criterio de ángulo de contacto establecido más arriba.
Ángulos superiores a 90º dan alturas negativas. Este es el caso del
mercurio, aire y vidrio por ejemplo.

Insectos que caminan sobre el agua

Figura 2.32: Pata de insecto que de-
forma la superficie del agua, la fuerza
debida a la tensión superficial que
aparece en consecuencia (en azul) y la
componente vertical (en naranja).

Algunos insectos son capaces de mantenerse e incluso desplazarse
por la superficie del agua, mantenidos por la tensión superficial. Los
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insectos, apoyados por ejemplo en las patas, deforman la superficie
del agua haciendo una especie de hoyo o hueco. La superficie del
agua, al ser deformada y comportarse elásticamente ejerce una
fuerza sobre la pata del insecto. Como hemos visto, esta fuerza
es proporcional al coeficiente de tensión superficial. Al igual que
en capilaridad, nos interesa la componente vertical, que es la que
compensa el peso del insecto, por lo que hay que tener en cuenta el
ángulo que forma la superficie del agua con la vertical (ver figura
2.32). Veamos un ejemplo.

Ejemplo 2.16.1 Masa de un insecto

Un insecto, del género Mesovelia, se encuentra en equilibrio en la superficie del agua. El diámetro de
cada una de sus patas es de 60 µm. Suponga que la deformación de la superficie del agua bajo cada pata es
aproximadamente de casquete esférico de radio igual al radio de la pata. El ángulo que forma la depresión
con la vertical es 60º, como se representa en la figura 2.32. ¿Cuál es la masa más grande que podría tener
el insecto? Diga si el resultado es compatible con la masa de uno de estos insectos, del orden de 0,2 mg.
Nota: los datos del radio de la pata y la masa de Mesovelia se han obtenido de 19, donde además se pueden

19 David L. Hu and John W. M. Bush.
Meniscus-climbing insects. Nature,
437(7059):733–736, September 2005

encontrar asombrosos hechos de este y otros insectos “escaladores de meniscos”.
Datos: Aceleración de la gravedad g = 9,8 m/s2; Coeficiente de tensión superficial del agua γ = 0,072 N/m.

SOLUCIÓN

En equilibrio el peso del insecto y la componente vertical de la fuerza de tensión superficial son iguales.
Teniendo en cuenta que hay 6 patas:

mg = 6× 2πrγ cos 60⇒ m =
12πr cos 60γ

g
≃ 12π(30× 10−6 m)(0,5)(0,072 N/m)

(9,8 m/s2)
≃ 4,2× 10−6 kg = 4,2 mg

(2.16.1.1)
Esto es, la fuerza de tensión superficial asociada a las deformaciones del agua provocadas por las patas

podría sujetar hasta 4,2 mg. Como el insecto tiene una masa de menos de 1 mg es perfectamente posible
que se sujete por la tensión superficial.
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Figura 2.33: Mesovelia escalando un
menisco de agua. Dibujo de L.D. ins-
pirado en la figura 1 del artículo de
David L. Hu and John W. M. Bush.
Meniscus-climbing insects. Nature,
437(7059):733–736, September 2005.





3
Termodinámica

3.1 ¿Para qué la termodinámica?

La termodinámica estudia principalmente los flujos de distintas
formas de energía (calor, trabajo, energía química,. . . ) en procesos o
transformaciones. Ejemplos de relevancia biológica que la termodi-
námica puede ayudarnos a comprender mejor son el metabolismo
(respiración, fotosíntesis,. . . ), el mantenimiento de la temperatura
del cuerpo (procesos de transmisión de calor), la difusión de molécu-
las a través de biomembranas o la espontaneidad de las reacciones
químicas.

3.2 Temperatura. Equilibrio térmico.

Todos tenemos una noción intuitiva de la temperatura. Si algo está
caliente decimos que tiene una temperatura alta y si está frío, que su
temperatura es baja.1 1 Noción intuitiva: Caliente⇒ T alta,

Frío⇒ T baja

A B

A B

Figura 3.1: Ilustración del equilibrio
térmico. Los cuerpos A y B están en
contacto a través de una pared que deja
pasar el calor.

Para una definición más rigurosa de la temperatura T se utiliza el
concepto de equilibrio térmico. Si ponemos en contacto dos cuerpos
de forma que puedan intercambiar calor como en la figura 3.1, tras
un tiempo llegarán a un equilibrio y el calor dejará de pasar de uno
a otro. En ese momento han alcanzado el equilibrio térmico y sus
temperaturas serán iguales.

La Temperatura T mide si los cuerpos
están en equilibrio térmico

¿Cómo se mide la temperatura?

Con un Termómetro. Un termómetro es básicamente un objeto
con alguna propiedad que varía con la temperatura. Éste se pone
en contacto con el sistema cuya T queremos medir, de forma que se
equilibren sus temperaturas. Midiendo la mencionada propiedad
tenemos una medida de la T del sistema. Las propiedades más
comunes utilizadas para fabricar termómetros son:
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Tamaño. Casi todos los materiales se expanden al aumentar su T.

Resistencia eléctrica. La resistencia de metales y semiconducto-
res varía considerablemente con la temperatura. Se usa en los
termómetros digitales.

Color. El color y la cantidad de energía radiada dependen de la
temperatura.

Para hacer física necesitamos asignar un número y unas unida-
des a la magnitud T. Para ello usamos las escalas de temperatura.
Usaremos solo dos:

100 ºC

0 ºC Fusión 

Ebullición 

atm

Figura 3.2: Escala Celsius de temperatu-
ra. Fija la temperatura de Ebullición y
de Fusión del agua a presión atmosféri-
ca en 100 ◦C y 0 ◦C respectivamente.

1. Escala Celsius: Fija la temperatura de dos puntos, como en el
termómetro de la figura 3.2:

0 ◦C para la temperatura de fusión del agua a presión de 1
atmósfera.2

2 Una definición más correcta y mo-
derna fija el punto triple del agua y el
cero absoluto. Son definiciones prácti-
camente equivalentes a temperaturas
moderadas y para nosotros lo serán.

100 ◦C para la temperatura de ebullición del agua a presión de 1

atmósfera.

2. Escala absoluta o Kelvin. Se relaciona con la Celsius así: T(K) =

T(◦C) + 273,15. El “tamaño” del grado es igual en ambas escalas,
se diferencian solo en la posición del cero. Esto significa que las
diferencias entre 2 temperaturas valen lo mismo en las dos escalas:
∆T(K) = ∆T(◦C). El cero de la escala Kelvin se denomina cero
absoluto y es el límite inferior de temperaturas.

3.3 Gas ideal. Temperatura absoluta.

Los experimentos de Boyle, Charles, Gay-Lussac con gases a baja
presión se pueden resumir utilizando la ecuación de estado de los
gases ideales

PV = nRT (3.1)

Valor Unidades

8.315 J/(mol ·K)
0.0821 atm · L/(mol ·K)

Tabla 3.1: La constante R en las uni-
dades más comunes. En negrita en
SI.

que describe la relación entre la presión (absoluta) P, temperatura
T (en K, nunca en ◦C) y volumen V de un gas en equilibrio. Además
n es el número de moles de gas3 y R la llamada constante de los gases

3 n = N
NA

, N es el número de moléculas
y NA = 6,02× 1023 o bien n = m

mmolecular
con m la cantidad de sustancia en
gramos y mmolecular la masa molecular
en gramos también.ideales (tabla 3.1).

El comportamiento de cualquier gas a baja presión es más o menos
ideal. Por ejemplo, si a P = cte. miramos cómo cambia el volumen
con la temperatura observamos un comportamiento lineal de acuerdo
con la ecuación (3.1) y como se muestra en la figura 3.3.

Extrapolando el comportamiento de los gases en la zona donde
se transforman en líquido (baja temperatura), se observa que el
volumen se hace cero a una determinada temperatura, lo que define V = 0 a T ≈ −273 ◦C ⇒ 0 absoluto de

temperaturas
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licuefacción licuefacción

distintos gases Figura 3.3: Comportamiento del volu-
men de los gases con la temperatura a
presión constante y baja. A la izquierda,
1 mol o 2 moles del mismo gas. A la
derecha, 1 mol de dos gases diferentes.

la temperatura más baja que podría tener un gas. A esta temperatura
le asignamos por tanto el valor de T = 0 K en la escala absoluta.

De la figura también se deduce que la constante de proporciona-
lidad es la misma para todos los gases una vez fijado el número de
moles: R. A veces, en lugar de esta constante, se utiliza la constante de
Boltzmann k. La relación entre ambas es:

k =
R

NA
= 1,38× 10−23 J/K (3.2)

En función de k, la ecuación de los gases ideales se escribe:

PV = nRT ⇒ PV =
N

NA
RT = NkT ⇒ PV = NkT (3.3)

donde N es el número de moléculas en el gas y NA el número de
Avogadro.

Ejemplo 3.3.1 Volumen de 1 mol de gas ideal.

¿Cuánto ocupa 1 mol de cualquier gas ideal en condiciones estándar de presión y temperatura? Datos:

R = 0,0821 atm · L/(K ·mol)

SOLUCIÓN

Las condiciones estándar se definen como

T = 0 ◦C = 273 K (3.3.1.1)

P = 1 atm

Utilizando la ley de los gases ideales tenemos:

V =
nRT

P
=

1 mol× 0,821 atm · L/(mol ·K)× 273 K
1 atm

= 0,821× 273L ≃ 22,4 L (3.3.1.2)

En la ecuación de los gases ideales la temperatura siempre va en K.
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3.4 Teoría cinética de los gases. Interpretación microscópica de la
T

Llegaremos a la interpretación microscópica de la T estudiando
la presión P que ejerce un gas ideal sobre la pared de su recipiente,
desde un punto de vista microscópico.

Cálculo de la presión de un gas sobre la pared de su recipiente

Un gas desde el punto de vista microscópico está compuesto de N
moléculas de masa m que se mueven de forma aleatoria con diversas
velocidades. Hacemos dos suposiciones adicionales:

Las moléculas son pequeñas comparadas con la distancia que las
separa unas de otras⇒ no interaccionan salvo cuando chocan.

Los choques entre moléculas y con la pared siguen las leyes de la
mecánica y son elásticos.

Calculemos 4 la fuerza que ejerce una molécula de masa m al colisio- 4 D.C. Giancoli. Física: Principios con apli-
caciones. Prentice Hall Hispanoamérica,
México, 1997; and J.W. Kane and M.M.
Sternheim. Physics. Wiley, 1988

nar con la pared del recipiente con una velocidad v. Por fijar ideas,
tomemos la pared de la izquierda marcada en la figura 3.4. Según la
segunda ley de Newton: colisión

Figura 3.4: Las moléculas golpean
sobre las paredes del recipiente, ejer-
ciendo una fuerza y por tanto una
presión.

F = ma = m
∆v
∆t

(3.4)

Si miramos solo el eje x perpendicular a la pared, en una colisión
elástica la velocidad pasa de −vx a vx (positivo hacia dentro del
recipiente), así:

m∆vx = m(vx − (−vx)) = 2mvx (3.5)

Si la molécula estuviera sola en la caja, el tiempo entre 2 colisiones
sucesivas con la pared de la izquierda sería el tiempo necesario para
recorrer 2 veces la longitud l (ida y vuelta) a velocidad vx:5

5 Este resultado da el tiempo medio
correcto entre colisiones aunque las
partículas sufran colisiones entre sí
siempre que éstas sean elásticas.

∆t =
2l
vx

(3.6)

que sustituido en la ecuación (3.4), junto con (3.5), da:

F =
mv2

x
l

(3.7)

Este es el resultado si sólo hubiera una partícula en la caja. Para un
gas formado por N partículas moviéndose a velocidad vx, tenemos:

Ftotal = N
mv2

x
l

(3.8)
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Obviamente, no todas las partículas se mueven a la misma velocidad
vx. Las velocidades serán diferentes en general. Como las colisiones
son muy frecuentes y rápidas, en nuestro mundo macroscópico, la
fuerza que se nota sobre la superficie será el promedio a todas las
partículas. Promediando6 se obtiene: 6 El promedio de cualquier magnitud se

obtiene sumando a todos los posibles
valores y dividiendo por el número de
valores. En el caso de N partículas ha-
brá N posibles valores de la velocidad
vx de modo que v2

x = 1
N ∑N

i=1 v2
x,i

Ftotal = N
mv2

x
l

(3.9)

Finalmente, la presión sobre la pared de la caja será:

P =
Ftotal

A
=

mNv2
x

Al
(3.10)

Este resultado depende de la componente x de la velocidad y por tan-
to parecería que variará según cómo coloquemos los ejes. Podemos
buscar un resultado independiente de componentes:

v2 = v2
x + v2

y + v2
z ⇒ v2 = v2

x + v2
y + v2

z (3.11)

donde v es el módulo del vector velocidad de las partículas. Como
las velocidades son aleatorias y no hay preferencia por ninguna
dirección7: 7 Si no fuera así, ¡el gas se movería

como un todo!
v2

x = v2
y = v2

z ⇒ v2 = 3v2
x ⇒ v2

x =
v2

3
(3.12)

De modo que podemos escribir la presión (ecuación (3.10)) como:

P =
mNv2

x
Al

=
mNv2

3Al
(3.13)

que reordenando y teniendo en cuenta que el volumen de la caja es
V = Al (ver figura 3.4) da lugar a:

PV =
2
3

N(
1
2

mv2) (3.14)

El término entre paréntesis es la Energía Cinética media Ec de las
partículas del gas. Comparando la ecuación (3.14) con la expresión
macroscópica de la ley del gas ideal8 (3.3) PV = NkT obtenemos el 8 Puede parecer extraño comparar la

presión del gas de la fórmula del gas
ideal con la presión que ejerce sobre
una sola de las caras. Sin embargo, en
un gas en equilibrio, la presión sobre
cualquier cara será la misma y será
la presión en cualquier punto del gas
(despreciando efectos de la gravedad)

resultado fundamental:

2
3

N
1
2

mv2 = NkT ⇒ Ec =
1
2

mv2 =
3
2

kT (3.15)

La energía cinética media de las partículas es proporcional a la
temperatura absoluta T. O bien, la temperatura absoluta es una
medida de la energía cinética media de las partículas en el gas. A
mayor temperatura, mayor movimiento molecular y viceversa:

Mayor T ⇔ mayor movimiento (más energía cinética)
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kT nos da el orden de magnitud de la energía asociada al mo-
vimiento aleatorio de las partículas de una sustancia a T y está
disponible para realizar algún proceso (reacción química, transi-
ción. . . )

Por último, la energía cinética total (suma de todas la Ec de todas las
partículas) será N veces la media

Ec = NEc =
3
2

NkT o bien Ec =
3
2

nRT (3.16)

resultado 9 que utilizaremos más adelante al tratar el primer princi- 9 Para la forma 3
2 nRT véanse las ecua-

ciones (3.2) y (3.3)pio.

3.5 Distribución de velocidades de Maxwell

En un gas no todas las partículas tienen la misma velocidad. Las
partículas se distribuyen en velocidades según la Distribución de
Maxwell que tiene el aspecto representado en la figura 3.5
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Figura 3.5: Distribución de velocidades
en un gas en equilibrio a una tempe-
ratura de T = 273 K en azul y a una
temperatura mayor en naranja. Las
líneas discontinuas marcan la velocidad
media v y las punteadas la velocidad

“cuadrática media”
√

v2. El área de las
regiones sombreadas es proporcional
al número de partículas que encontra-
ríamos en el gas cuya velocidad v es
mayor que una cierta velocidad v0 dada.
De la figura es claro que este número es
mayor en el gas a mayor temperatura.

3.6 Visión microscópica de algunos fenómenos de relevancia bio-
lógica

La teoría cinética y la distribución de velocidades de Maxwell nos
permiten explicar al menos cualitativamente varios fenómenos como
la difusión, la presión osmótica, la evaporación y su dependencia con
la temperatura. Para ello basta con tener presente la idea de que las
partículas en una sustancia se mueven más o menos aleatoriamente y
con mayor energía cuanto mayor es la temperatura.
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Difusión

Las partículas en disolución en un fluido tienden a difundirse
hacia zonas de menor concentración. Consideremos el tubo de la
figura 3.6 en la que hemos sombreado un área correspondiente a la
sección transversal. La concentración es mayor en el lado izquierdo
de la sección. Si las partículas se mueven más o menos aleatoriamen-
te, por puro azar cruzarán más partículas de izquierda a derecha que
al revés, por lo que habrá un flujo neto de partículas de la zona más
concentrada a la de menor concentración.

Flujo neto
Figura 3.6: Las partículas a una cierta
T se mueven al azar y tienden espon-
táneamente a difundirse de las zonas
más concentradas a las de menor
concentración.

Opcional.
En la difusión el flujo de partículas es proporcional al gradiente de
concentración, según la ley de Fick:

J = DA
c1 − c2

L
(3.17)

donde J es el flujo de masa, c1 y c2 son las concentraciones diferen-
tes que generan el flujo, L es la separación entre las dos zonas de
diferente concentración, A el área de la sección transversal a través
de la cuál circulan las partículas, y D el coeficiente de difusión.

Magnitud Unidades

J kg/s o mol/s
c1 y c2 kg/m3 o mol/m3

A m2

L m
D m2/s

Evaporación

Para que algunas partículas cercanas a la superficie escapen de
un líquido y pasen a fase vapor necesitan tener la suficiente energía
cinética como para vencer la atracción del resto de moléculas del
líquido. Imaginemos que solo las partículas con velocidad mayor
que una cierta velocidad v0 pueden escapar y permanecer en la fase
vapor. Si miramos a la figura de la distribución de Maxwell 3.5 es
claro que la evaporación:

Figura 3.7: Sólo las partículas con
suficiente velocidad escapan de la fase
líquida y pasan a la fase vapor.

Aumenta con la T. A mayor T más partículas tienen la velocidad
(energía) suficiente para escapar.

Produce enfriamiento. Escapan las moléculas más veloces y se
llevan la Ec con ellas⇒ desciende el promedio v2 y por tanto la
temperatura. Es un mecanismo de enfriamiento habitual.

Presión osmótica

La ósmosis aparece en presencia de membranas semipermeables.
Las membranas semipermeables dejan pasar típicamente el solvente
y no el soluto. Por claridad tomemos el ejemplo de agua y sal: supon-
gamos dos partes de un recipiente a la misma presión y temperatura
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separadas por una membrana permeable al agua pero no a la sal,
como en la figura 3.8.

agua

sal

Figura 3.8: Inicialmente las dos cáma-
ras están a igual presión y temperatura.
La membrana semipermeable deja
pasar el agua (solvente) pero no la sal
(soluto). Por difusión del agua, esta
comienza a pasar hacia la zona de alta
concentración de sal.

Disolvemos sal en una de las dos cámaras. En la cámara con agua
y sal (que llamaremos interior), por la presencia de las moléculas
de sal, el agua se encuentra en menor concentración respecto de la
cámara donde está pura (que llamaremos exterior). Por difusión, el
agua tenderá a fluir hacia la zona donde se ha disuelto la sal. Este
flujo osmótico puede detenerse por ejemplo debido a un aumento de
presión en la cámara donde está la disolución10 como en la figura 3.9:

10 El aumento de presión puede tener
diferentes orígenes, por ejemplo, por
resistencia de las paredes a la expansión
producida por el flujo de agua, como
en un eritrocito. El flujo de agua podría
provocar una diferencia de alturas que
conlleva un aumento de presión de
valor ρgh. También puede deberse a un
agente externo que aplica una presión,
como en un recipiente con un pistón

la presión adicional necesaria para detener el flujo de solvente por
ósmosis se denomina presión osmótica π.

Se puede calcular la presión osmótica suponiendo que

De la definición, en el equilibrio, para detener el flujo, en el inte-
rior la presión es superior en π, la presión osmótica, a la presión
exterior: Pint = Pext + π.

La presión en la cámara con disolución es la suma de la presión
que haría el agua pura y la responsable del soluto: Pint = Pagua +

Psoluto ⇒ π + Pext = Pagua + Psoluto

La presión que tendría el agua pura, es igual a la presión de la
cámara donde efectivamente está pura, pues inicialmente estaban
a misma presión y temperatura, Pagua = Pext ⇒ π = Psoluto

agua
sal

Figura 3.9: Situación de equilibrio. La
presión adicional provoca un flujo de
agua (flecha naranja) que compensa
exactamente el flujo por ósmosis (flecha
negra) de modo que el flujo neto es
nulo.

Por otro lado,

si la disolución es poco concentrada, las partículas del soluto se
comportan como partículas de un gas ideal y entonces

π = Psoluto =
n
V

RT (3.18)

donde n es el número de moles de soluto, V el volumen de la disolu-
ción, R la constante de los gases ideales y T la temperatura en Kelvin.
Como la concentración de la disolución es c = n

V , entonces

π = cRT (3.19)

Esta fórmula nos permite calcular presiones, como en el ejemplo11

11 Adaptado de
J.W. Kane and M.M. Sternheim. Physics.

Wiley, 1988

siguiente.

Ejemplo 3.6.1 Ascenso por ósmosis. Disolución de sacarosa en agua.

Consideremos un tubo con una disolución de sacarosa (C12H22O11) en agua al 1 % en masa en contacto
con un depósito de agua pura a través de una membrana semipermeable. La temperatura es de 27 ◦C y
la densidad del agua ρagua = 1000 kg/m3. ¿Cuánto ascenderá la columna de agua debido al efecto de la
ósmosis?
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SOLUCIÓN

La columna subirá hasta una altura h tal que la presión adicional equilibre la presión osmótica:

π = cRT = ρgh⇒ h =
cRT

ρaguag
(3.6.1.1)

donde además hemos supuesto que la densidad de la disolución ρ no cambia mucho respecto de la del
agua ρ ≃ ρagua. Necesitamos por tanto calcular la concentración en un volumen mol/m3 de la disolución.
Primero calculamos la masa de agua en un volumen V = 1 m3. Usando la densidad

m = ρV ≃ ρagua × 1 m3 = 1000 kg (3.6.1.2)

La masa de sacarosa por cada m3, correspondiente al 1 % será entonces de

msacarosa = 0,01×m = 10 kg = 104g⇒ c = 104g/m3 (3.6.1.3)

Para pasar a mol/m3 necesitamos calcular la masa de 1 mol de sacarosa:

Msacarosa = 12× 12 g/mol + 22× 1 g/mol + 11× 16 g/mol = 342 g/mol (3.6.1.4)

La concentración será

c =
msacarosa

VMsacarosa
=

104g/m3

342 g/mol
≃ 29,2 mol/m3 (3.6.1.5)

Finalmente, tomando T = 27 ◦C + 273 = 300 K, sustituyendo la concentración en (3.6.1.1):

h =
cRT

ρaguag
=

29,2 mol/m3 × 8,3 J/(mol ·K)× 300 K
1000 kg/m3 × 9,8 m/s2 ≃ 7,4 m (3.6.1.6)

3.7 Calor, ¿qué es?

Cuando ponemos en contacto dos cuerpos a distinta temperatura,
el cuerpo a mayor temperatura cede calor al más frío, de forma que
en general este último aumenta su temperatura (ver figura 3.10). El
mismo incremento de temperatura ∆T se puede conseguir a partir de
diferentes tipos de energía, como energía mecánica en el experimento
original de Joule, o energía eléctrica. Estos experimentos llevaron a
concluir que el calor es una forma de energía.

cuerpo caliente

Figura 3.10: Dos formas de calentar
agua: acercando un cuerpo más caliente
como una llama (arriba) o cediendo
energía eléctrica a través de una resis-
tencia (abajo).

Por ejemplo, la energía (en J) cedida por una resistencia eléctrica
de valor R (en Ω) cuando circula una intensidad de I (en A) durante
un tiempo t (en s) es:

E = I2Rt (3.20)

Si se cede a 1 g de agua un calor de 1 cal se consigue aumentar su
temperatura en 1 ◦C12. Ese mismo aumento de 1 ◦C se consigue

12 La definición de caloría se establece
para el aumento de 1 ◦C desde 14,5 ◦C
a 15,5 ◦C a presión de 1 atm. Sin em-
bargo, nosotros supondremos que es
equivalente a cualquier temperatura
inicial.

transfiriendo 4,18 J de energía eléctrica (o mecánica). Así, se establece
el equivalente mecánico del calor en:

1 cal = 4,18 J (3.21)
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Explicación según la teoría cinética

Ponemos en contacto dos gases a distinta T. Las partículas se
mueven al azar y comienzan a chocar. Cuando una partícula veloz
choca con una partícula lenta le cede parte de su energía cinética.
Así se va transmitiendo en general energía cinética de las partículas
veloces (del gas caliente) a las inicialmente lentas del gas frío. El gas
caliente pierde energía cinética en promedio (se enfría) y el frío la
gana (se calienta). Esa transferencia de energía es lo que conocemos
como calor transferido.

sopa caliente

sopa caliente

Figura 3.11: Se ha transferido E de la
parte en contacto con la sopa hasta la
parte lejana de la cuchara, a través del
material de la cuchara.

3.8 Transmisión de Calor

Vamos a ver 4 mecanismos para la pérdida de energía en forma
de calor. En un proceso de pérdida de calor, por ejemplo un animal
en un ambiente más frío que su temperatura, se pueden dar los 4

en mayor o menor medida. Tradicionalmente los mecanismos de
transmisión de calor son 3: conducción, convección y radiación.
Consideraremos aquí el efecto de la evaporación por separado13. 13 Normalmente se considera un

mecanismo de transferencia de calor (y
masa) por convección.

Conducción

Es la transmisión del calor (energía cinética de las partículas) a
través de un medio material. Un ejemplo común es el representado
en la figura 3.11. Microscópicamente, el calor se conduce debido a las
colisiones o transmisión de la vibración de unos átomos a otros:

En fluidos: colisiones entre átomos o moléculas

En metales: principalmente por los e− libres colisionando con los
átomos en la red cristalina

En otros materiales: vibraciones de la red que se propagan, como
en la figura 3.12.

sopa caliente

sopa caliente

Figura 3.12: Visión microscópica de la
transmisión del calor: la energía cinética
de vibración (proporcional a la T) se
transmite a través de la red cristalina de
los átomos del material.

y sólo si hay diferencia de T. De hecho, el flujo de calor14 a través

14 El flujo de calor q̇ es el ritmo al que
se transfiere calor a través de una
superficie por unidad de área de esa
superficie q̇ = Q̇

A

de un material es proporcional al gradiente de T. De esta forma,
el ritmo al que se transmite el calor en una situación como la de la
figura 3.13 es:

Figura 3.13: Transmisión de calor a
través de un cilindro con los extremos a
diferente temperatura

Q̇ = kA
T2 − T1

l
(3.22)

con

Q̇ :ritmo de transmisión de calor, potencia, o cantidad de energía
por unidad de tiempo transmitidos, en W
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A : área de la sección transversal a través de la que se transmite el
calor

T2 − T1 : diferencia de temperaturas entre los puntos o zonas entre
los que se transmite el calor

l : Separación entre los puntos a temperatura T1 y T2

k : conductividad térmica del material.

metal

madera

Figura 3.14: Al tocar un material con
conductividad alta (como metal), la
mano se enfría rápidamente, provocan-
do mayor sensación de frío que cuando
se toca uno bastante aislante (como
madera).

La k mide cómo de rápida es la transmisión de calor a través de un
material por unidad de longitud y grado. Sus unidades son:

k =
Q̇l

A(T2 − T1)
⇒ [k] =

J ·m
s ·m2 ·K =

W
m ·K (3.23)

Es por ejemplo responsable de la sensación térmica distinta al
tocar dos materiales diferentes (metal y madera) aunque estén a la
misma T (figura3.14). Si

k ↑↑⇒ buen conductor térmico (metales en general)

k ↓↓⇒ mal conductor térmico o aislante: (aire, poliespan, made-
ra,. . . )

D. Jou, J.E. Llebot, and C. Pérez
García. Física para ciencias de la vida. Mc
Graw-Hill interamericana de España,
Madrid, 1994Ejemplo 3.8.1 Ritmo metabólico

Para mantener constante una temperatura de 30 ◦C en una colonia de bacterias debemos suministrar15

15 Ejemplo adaptado de

30 W de potencia calefactora con una lámpara. La temperatura ambiente es de 15 ◦C. Las bacterias están
en un recipiente de vidrio de conductividad k = 0,2 cal/(s ·m · ◦C), área 20 cm2. El grosor del vidrio es
de 0,5 mm. ¿Cuál es el ritmo metabólico de la colonia (energía producida por las bacterias por unidad de
tiempo)?

SOLUCIÓN

La cantidad de calor que pierde la colonia por conducción a través del vidrio es

Q̇ = kA
Tc − Tamb

l
=

0,2× 4,18× (30− 15)J ·��m2 ·�K
0,5× 10−3��m2 · s ·�K

≃ 50,2 W (3.24)

k = 0,2 cal/(s ·m ·K) = 0,2× 4,18 J/(s ·m ·K) (3.25)

Para que se mantenga constante la temperatura de la colonia, la potencia que se pierde ha de igualar a la
que se suministra con la lámpara más la que generan las propias bacterias. La lámpara proporciona sólo
30 W de modo que el resto ha de ser lo que generan las bacterias con su metabolismo:

RM = (50,2− 30)W = 20,2 W. (3.26)
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Convección

Los fluidos suelen tener bajas k, conductividades térmicas. Sin
embargo pueden transmitir el calor rápidamente por medio de la
convección: proceso mediante el que se transfiere calor debido al
movimiento de una cierta cantidad de masa. Puede ocurrir por
ejemplo espontáneamente al calentar un fluido desde abajo y se
denomina convección natural (ver figura 3.15).

Figura 3.15: Corrientes de convección.
El agua más caliente de abajo se expan-
de, disminuyendo su densidad, por lo
que tiende a flotar. El agua más fría y
densa tiende a ocupar la zona del fondo.
El movimiento da lugar a las celdas de
convección.

Cuando el movimiento es asistido por una bomba o ventilador por
ejemplo, se habla de convección forzada. Ejemplos de convección
forzada son el calor perdido a través de la ventilación en los pulmo-
nes, donde el aire entra en general frío y sale más caliente o el calor
transportado por la sangre en la circulación.

De toda la energía consumida en forma de alimentos, en torno al
80 % se desprende en forma de calor. La conductividad térmica del
tejido biológico es bastante baja16 por lo que son necesarios otros

16 (< 1 W/(m ·K)), similar a la del agua

mecanismos para evacuar el calor. La sangre se calienta al pasar
por las partes más internas del cuerpo y se desplaza hasta las zonas
más superficiales del cuerpo, como los capilares debajo de la piel,
donde el calor se puede perder por conducción más eficientemente al
atravesar un menor espesor, por radiación o por evaporación (figura
3.16).

Radiación
sangre

interior

piel

exterior

Figura 3.16: Convección forzada El
corazón bombea la sangre desde el
interior del cuerpo a zonas superficiales
donde se enfría por conducción a través
de un espesor de tejido menor, por
radiación o evaporación.

Hemos visto hasta ahora mecanismos de transporte de energía
térmica a través de la materia. Sin embargo, ¿cómo llega el calor del
Sol a la Tierra a través del vacío? Llega en forma de radiación elec-
tromagnética. Los objetos a temperatura habitual en la Tierra radían
sobre todo en el infrarrojo, por lo que es la radiación infrarroja la
que se denomina radiación térmica. Cualquier cuerpo a T > 0 K
necesariamente emite energía en forma de radiación. El ritmo al que
se emite energía (calor) es

Q̇ = eσAT4 (3.27)

donde Q̇ es el ritmo de transmisión de calor o potencia radiada en W,
e la emisividad característica del material y de su superficie:

0 < e < 1.

e ≈ 1 para un cuerpo negro e ≪ 1 para cuerpos blancos y superfi-
cies pulidas17. 17 En realidad, para temperaturas

moderadas, lo más importante es la
emisividad en el infrarrojo, no en el
visible, de modo que el color en el
visible es solo ligeramente indicativo
de la emisividad del cuerpo. Por otro
lado, un “cuerpo negro” tiene una
definición concreta en física como
emisor y absorbedor perfecto en toda
longitud de onda, en la que no vamos a
entrar en este curso

σ = 5,67× 10−8 W/(m2 ·K4) es la constante de Stefan-Boltzmann y T
la temperatura del objeto en Kelvin y A el área del cuerpo a través
de la cuál se radia la energía.
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Balance de energía por radiación. Si la energía radiada Q̇ ∝ T4,
¿los cuerpos se enfrían hasta perder toda su energía y quedar a
T = 0? No, también absorben energía. Considérese una persona a
T1 en una habitación a T2 < T1. El ambiente emite energía de forma
proporcional a T4

2 , que es absorbida por el cuerpo. El balance neto de
energía para la persona es:

Q̇neto = Q̇emitido − Q̇absorbido = eσAT4
1 − ασAT4

2 (3.28)

donde α es el coeficiente o poder de absorción (fracción de energía
absorbida). Para un cuerpo general tanto la emisividad e como el co-
eficiente de absorción α dependen de la temperatura o de la longitud
de onda de la radiación considerada. Aquí solo consideraremos cuer-
pos llamados “grises” donde tanto α como e son constantes. Entonces,
la ley de Kirchhoff18 dice que α = e por lo que el balance neto es

18 Cuando la emisividad y el poder de
absorción dependen (fuertemente) de la
longitud de onda o de la temperatura
de emisión, se puede establecer la ley
de Kirchhoff para una determinada
longitud de onda ϵ(λ) = α(λ) o
para una determinada temperatura
de emisión. Si un cuerpo de estas
características (superficies selectivas)
recibe y emite radiación térmica en
longitudes de onda muy dispares, lo
habitual es utilizar (3.28) pero con la
emisividad y coeficiente de absorción a
las longitudes de onda adecuadas para
establecer el balance.

Q̇neto = eσA(T4
1 − T4

2 ) (3.29)

La igualdad α = e se deduce al imponer que si un cuerpo alcanza
el equilibrio con un cuerpo negro (emisor perfecto) a una cierta
temperatura, entonces el flujo de calor entre ambos debe anularse.
Para que esto pueda ocurrir a una temperatura cualquiera, la única
solución es que α = e.

Ejemplo 3.8.2 Flujo neto

Calcular el flujo neto de energía que pierde un ser humano desnudo en una habitación a 25 ◦C. Tome
e = 0,75 para la piel humana, un área superficial de 1,5 m2 y una temperatura de la piel de Tpiel = 33 ◦C.

SOLUCIÓN

Q̇neto = eσA(T4
1 − T4

2 ) = 0,75× 5,67× 10−8 W/(m2 ·K4)× 1,5 m2
[
(33 + 273)4 − (25 + 273)4

]
K4 ≃ 56 W

(3.8.2.1)

Opcional. Ley de desplazamiento de Wien

El máximo de la emisión de un cuerpo negro se da a una de-
terminada longitud de onda que depende de la temperatura,
según la ley de desplazamiento de Wien:

λmax =
b
T

, donde b = 2,9× 10−3 m/K (3.30)
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Figura 3.17: La longitud de onda del máximo de
emisión se desplaza hacia longitudes de onda cortas
al aumentar la temperatura.
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Evaporación

Cuando se evapora una cantidad m de agua, esta absorbe un calor:

Q = mlevap (3.31)

donde levap es el calor latente de evaporación del agua, esto es, la
cantidad de energía necesaria para evaporar 1 kg de agua, levap =

2260× 103 J/kg. ¿A qué ritmo pierde calor el cuerpo por evaporación?

Q̇ = ṁlevap (3.32)

donde ṁ es el ritmo al que se evapora el agua en kg/s.

Figura 3.18: Enfriamiento por evapo-
ración. El cuerpo cede calor al sudor,
provocando la evaporación del agua.

3.9 Calorimetría

Calor específico de sólidos y líquidos.

El calor que es necesario transferir a, o extraer de, un cuerpo19 de 19 Sólido o líquido, gases por ahora no

masa m para variar su temperatura es

Q = mc∆T (3.33)

donde

∆T = Tf − Ti es la diferencia entre la temperatura final Tf y la
inicial Ti. Si siempre se utiliza final menos inicial tenemos que:

Tf > Ti ⇒ ∆T > 0⇒ Q > 0 (el cuerpo absorbe calor)

Tf < Ti ⇒ ∆T < 0⇒ Q < 0 (el cuerpo cede calor)

c, calor específico, es característico del material. Es el calor ne-
cesario para aumentar la temperatur de 1 kg del material 1 K o
equivalentemente 1 ◦C. Sus unidades son, por tanto:

c =
Q

m∆T
⇒ [C] =

J
kgK

=
J

kg◦C
(3.34)

De la definición anterior de caloría (ver ecuación (3.21)) sabemos que
el calor específico del agua es

cH2O = 1 cal/g/◦C = 4,18× 103 J/(kg · ◦C) (3.35)

Calor latente

Al estudiar la evaporación, hemos visto que es necesario propor-
cionar calor a una sustancia para que pase de estado líquido a gas.
En realidad esto ocurre en cualquier cambio de fase y el calor se
denomina calor latente20. Veamos algunas características más de los 20 La denominación entalpía de cambio

de fase es más correcta, pero aún no
hemos explicado la entalpía
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cambios de fase.
Cuando una sustancia cambia de fase (de sólido a líquido o de

líquido a gas, por ejemplo) la temperatura permanece constante
mientras coexisten las 2 fases aunque haya aporte o cesión de calor.
Por ejemplo, el calor aportado a un bloque de hielo a su temperatura
de fusión (0 ◦C a 1 atm) se emplea totalmente en producir el cambio
de fase, como en la figura 3.19.

Figura 3.19: Cambio de fase. Mientras
hay coexistencia de fases (hielo + agua,
en este caso) su temperatura permanece
igual a la temperatura del cambio de
fase. Todo el calor aportado se emplea
en convertir el agua sólida en líquida.
Una vez se funde completamente, el
calor aportado producirá aumento de
temperatura.

El calor latente l de fusión, evaporación, sublimación, etc. . . es el
calor necesario para fundir, evaporar, sublimar, etc. . . completamente
1 kg de una determinada sustancia. De modo que para una cantidad
m de sustancia, el calor necesario será

Q = ml (3.36)

Por convención, los calores latentes se dan siempre como positivos,
como en la tabla 3.3 para el agua. Sin embargo, el signo de Q será
positivo si el cuerpo absorbe calor en el proceso y negativo si el
cuerpo lo cede. Si en un cambio de fase (fusión de sólido a líquido
por ejemplo) se absorbe un calor Q = mlfusión, en el proceso inverso
(solidificación) el cuerpo cede Q = −mlfusión. De este modo, para los
cambios de fase, hay que establecer el signo correcto para el calor “a
mano”. En la tabla 3.2 se listan los distintos cambios de fase.

Cambio de fase Nombre Q

sólido→ líquido fusión mlfusión

líquido→ sólido solidificación −mlfusión

líquido→ gas evaporación o ebullición mlevap

gas→ líquido condensación −mlevap

sólido→ gas sublimación mlsublim

gas→ sólido sublimación inversa −mlsublim

Tabla 3.2: Cambios de fase comunes y
calor intercambiado por una cantidad
m de sustancia al verificarlos, con
indicación del signo.

Cambio l(kJ/mol)

fusión 6.01

ebullición 40.7
sublimación 46.7

Tabla 3.3: Valores de calores latentes de
cambio de estado para el agua.

Ejemplo 3.9.1 Calor intercambiado en un proceso con cambio de fase

¿Cuánta energía debe extraer un refrigerador de 1,5 kg de agua a 20 ◦C para hacer cubitos de hielo
a −12 ◦C? Datos: Los calores específicos del agua y del hielo son cH2O = 4,18 × 103 J/(kg · ◦C) y chielo = 2100 J/(kg · ◦C)

respectivamente. El calor latente de fusión del agua es 333× 103 J/kg.

SOLUCIÓN
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agua agua hielo hielo
enfriar enfriarsolidificar

Los calores de los distintos procesos son, según lo indicado en la figura:

Q1 = mcH2O∆T1

Q2 = −mlfusion (3.9.1.1)

Q3 = mchielo∆T2

De modo que el calor total extraído del agua (cedido por el agua) será:

QT = Q1 + Q2 + Q3 = 1,5 kg× 4,18× 103 J/(kg · ◦C)× (0− 20)◦C− 1,5 kg× 333× 103 J/kg+

+ 1,5 kg× 2100 J/(kg · ◦C)× (−12− 0)◦C ≃ −6,6× 103 J
(3.9.1.2)

El signo menos indica que el calor es cedido por el agua.

Balance de calor

En un sistema aislado completamente, sin intercambio de ener-
gía con el exterior, el calor cedido por una parte del sistema ha de
ser igual al calor absorbido por la otra parte. Por ejemplo, para 2

partes del sistema a distinta temperatura (como en la figura 3.20)
considerando el calor en valor absoluto

Figura 3.20: Calor intercambiado entre
2 partes de un sistema. En un sistema
aislado del exterior, con 2 partes a
distinta temperatura, el calor cedido por
una parte es igual al absorbido por la
otra. En este caso la parte 1 cede 3 J y la
parte 2 los absorbe.

calor perdido por 1 = calor ganado por 2 (3.37)

O de forma más rigurosa, llamando Q1 al calor intercambiado por
la parte 1 y Q2 al intercambiado por la parte 2

21 y considerando su

21 Obviamente, si hay más componentes
del sistema, se considerarán sus calores
también

signo (positivo si se absorbe, negativo si se cede) tenemos

Q1 + Q2 = 0 (3.38)

Un concepto importante para la calorimetría es la temperatura
de equilibrio Te. El intercambio de calor cesa en el momento en el
que todos los elementos dentro del recipiente aislado se encuentran
a la misma temperatura, esto es, se encuentran en equilibrio a la
temperatura Te. El balance de energía ha de hacerse considerando
todos los procesos de absorción y cesión del calor que suceden entre
los estados iniciales de las diferentes partes del sistema y el estado
final de equilibrio Te.

El balance de energía permite por ejemplo calcular Te o las pro-
piedades desconocidas de alguna sustancia, como en el ejemplo22

22 Adaptado de

D. Jou, J.E. Llebot, and C. Pérez
García. Física para ciencias de la vida. Mc
Graw-Hill interamericana de España,
Madrid, 1994

siguiente
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Ejemplo 3.9.2 Determinación del calor específico de una sustancia

Dentro de un calorímetro (que suponemos que no absorbe ni cede calor) tenemos 100 g de triclorome-
tano a 35 ◦C. Añadimos 1,75 kg de agua a 18 ◦C y volvemos a cerrar el calorímetro. Transcurrido un cierto
tiempo, la mezcla se estabiliza a 18,22 ◦C. ¿Cuál es el calor específico del triclorometano? Suponga que no
hay pérdidas de calor a través del calorímetro ni al abrir ni cerrar.

SOLUCIÓN

El calor absorbido por el agua es cedido por el triclorometano que está inicialmente más caliente. Por
tanto

QTCM + Qagua = 0 (3.9.2.1)

Ambas sustancias cambian su temperatura (no hay cambios de fase). Utilizando la expresión correspon-
diente del calor y tomando siempre la diferencia de temperaturas como la final menos la inicial, esto es,
∆TTCM = (18,22− 35)◦C y ∆TH2O = (18,22− 18)◦C

QTCM = mTCMcTCM∆TTCM (3.9.2.2)

QH2O = mH2OcH2O∆TH2O

Utilizando (3.9.2.1) y despejando cTCM obtenemos

cTMC =
−mH2OcH2O∆TH2O

mTCM∆TTCM
=
−(1,75 kg)(4,18× 103 J/(kg · ◦C))(18,22◦C− 18◦C)

(0,1 kg)(18,22◦C− 35◦C)
≃ 959 J/(kg · ◦C)

(3.9.2.3)

El balance de calor puede complicarse si hay un cambio de fase
de alguno de los elementos. Esto podría suceder cuando la T de
cambio de fase de alguna de las sustancias es intermedia entre la
temperatura más alta y la más baja de las sustancias inicialmente.

3.10 Las leyes de la Termodinámica

Sistema. Estado. Variables de estado. Proceso
S

Alrededores

Universo = Sistema + Alrededores
Figura 3.21: Definición de sistema,
alrededores y universo termodinámico.

Es conveniente definir algunos conceptos centrales en la termodi-
námica (figura 3.21):

Sistema (S): conjunto de objetos que estamos estudiando. Ejem-
plos: un gas en un pistón, una célula, los reactivos y productos en
una reacción.

Alrededores o ambiente: El resto que no pertenece al sistema y lo
rodea.

Universo: sistema + alrededores.

Los sistemas se clasifican como

Figura 3.22: Un calorímetro cerrado es
un ejemplo de sistema cerrado y aislado



72 luis dinis

Cerrados: el sistema no intercambia materia con los alrededores.
Estos a su vez pueden ser:

• Aislados: no intercambian energía (ni calor ni trabajo), por
ejemplo el calorímetro de la figura 3.22.

• No aislados: intercambian energía.

Abiertos: sistemas que intercambian materia (y probablemente
energía también) con los alrededores. Ejemplo: los seres vivos o un
calorímetro abierto (figura 3.23).

Figura 3.23: Ejemplo de sistema abierto
que intercambia materia y energía en
forma de calor.

Estado. El estado en que se encuentra un sistema viene determinado
por sus variables de estado. Son magnitudes físicas que se aplican
al sistema entero como T, V, P por ejemplo. Suelen cumplir una
determinada ecuación de estado como por ejemplo en un gas ideal
PV = nRT.

Proceso. Un proceso es un camino (una sucesión de diferentes
estados) por el cual cambiamos de un estado inicial a otro estado
final. Ejemplos son transformaciones isotermas (sin cambio de T),
adiabáticas (sin intercambio de calor), etc. . . Normalmente los repre-
sentaremos como un camino desde un estado inicial a otro en un
diagrama como en la figura 3.24.

Funciones de estado. Las funciones de estado son cantidades
que solo dependen del estado (de las variables de estado) y NO del
camino por el que se ha llegado a dicho estado. Veremos varias como
la energía interna, entropía, energía libre de Gibbs, entalpía, etc. . . .
El trabajo y el calor NO son funciones de estado y dependen del
proceso concreto.

A

B

Figura 3.24: Proceso A → B en un dia-
grama PV, presión frente a volumen.

Primera Ley. Trabajo, calor y energía interna

Consideremos la energía total de un sistema de partículas, esto es,
la suma de las energías potenciales y cinéticas de todas las partículas
que lo componen. Esto se denomina energía interna U23. Según 23 A veces a esto se le llama energía

térmica, ya que según veremos en
un instante, un cuerpo puede perder
energía interna al cederla en forma de
calor a otro cuerpo

vimos en mecánica, podemos aumentar el contenido de energía de un
sistema realizando trabajo (mecánico) sobre él de modo que:

∆U = U f −Ui = Wsobre (3.39)

S

Alrededores

Figura 3.25: Primer principio y criterio
de signos. Tomaremos el criterio que
dice que el Q > 0 cuando es absorbido
por el sistema y W > 0 cuando lo
realiza el sistema (a costa de su ener-
gía interna). Si se tomara el criterio
mecánico para el trabajo W = Wsobre
entonces el primer principio se escribi-
ría ∆U = Q + W.

Sin embargo, en Termodinámica es frecuente usar un criterio de
signos diferente y considerar el trabajo positivo (W > 0) cuando
es realizado por el sistema y negativo (W < 0) cuando se realiza
sobre el sistema. Esto es, utilizar el trabajo realizado por el sistema
(en lugar de sobre) y que llamaremos simplemente W. Puesto que
W = Wpor = −Wsobre, la conservación de la energía (mecánica solo,
sin calor) queda

∆U = U f −Ui = −W (3.40)
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Finalmente, según la teoría cinética, el intercambio de calor entre dos
cuerpos corresponde también a una transferencia de energía de uno
a otro. Por tanto, es posible extraer energía de un sistema o cedérsela
en forma de calor Q. Así, la primera ley de la termodinámica estable-
ce la conservación de la energía en procesos en los que además de
trabajo W existe intercambio de calor Q:

∆U = Q−W (3.41)

En esta expresión, el Q ha de llevar su signo correcto según el cri-
terio que dice que es Q > 0 cuando es absorbido por el sistema y
Q < 0 cuando lo cede. El criterio de signos se resume en la figura
3.25.

Hemos detallado mucho sobre Q en secciones anteriores, veamos
algunos detalles sobre la energía interna y el W.

Energía interna

El primer principio tiene otro mensaje importante, además de
la conservación de la energía. La energía interna es una función de
estado, su variación ∆U solo depende del estado final e inicial24 del 24 De sus variables de estado de hecho,

presión, temperatura, etc. . .proceso y es independiente del camino empleado para llegar del estado
inicial al final. En contraste, el valor de Q y W dependen del proceso.
La energía interna es la suma de las energías de todas las partículas
del sistema y es en general difícil de calcular. Incluso en ese caso
veremos que puede resultar útil.

Existen algunos casos en los que se puede calcular explícitamente,
por ejemplo, los gases ideales. El resultado depende del número de
átomos en la molécula.

Gas ideal monoatómico (He, Ar, etc. . . ). En la sección 3.4 relativa
a la teoría cinética vimos que para un gas ideal de N partículas,
debido a que no interactúan salvo en los choques, su energía es
sólo cinética y obteníamos:

U(g.i. monoat.) =
N

∑
i=1

Ecin,i = Ecin,1 + Ecin,2 + . . . + Ecin,N =

=
3
2

NkT =
3
2

nRT

(3.42)

La última igualdad se obtiene de NK = nR, donde n es el número de
moles y R la constante de los gases ideales.
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Opcional.
El factor 3 de la fórmula (3.42) se obtenía debido a que hay 3 direc-
ciones en el espacio en las que una partícula se puede trasladar y
tener energía cinética. Decimos que tiene 3 grados de libertad. Una
molécula formada por 2 átomos, además de poder trasladarse
en 3 direcciones puede rotar a mayor o menor velocidad en 2 di-
mensiones adicionales –la dirección de una varilla en el espacio se
determina por 2 ángulos–. Así, una molécula de 2 átomos puede
acumular energía cinética en 5 grados de libertad. El resultado
es que la energía interna de un gas ideal diatómico es

Gas ideal diatómico (CO, H2, O2, N2, etc. . . )

U(g.i. diat.) =
N

∑
i=1

(Ecin,tras,i + Ecin,rot,i) =
5
2

NkT (3.43)

Para un gas diatómico a alta temperatura (del orden de miles de ◦C),
hay que incluir la energía cinética y potencial asociada a la vibración
y el resultado es 7/2NkT.

Figura 3.26: Una molécula diatómica
tiene 2 grados de libertad adicionales
(a los 3 de traslación) asociados a las
posibles rotaciones

El W en algunos procesos.

Vamos a calcular el W en algunos procesos sencillos realizados
con un gas ideal que se expande o comprime (cambia su volumen).25 25 El gas ideal, está muy alejado de

los sistemas biológicos en principio,
pero es interesante porque: es sencillo
y permite estudiar la termodinámica
con ejemplos concretos; los gases
involucrados en reacciones químicas
pueden sufrir grandes variaciones de
volumen, lo que da lugar a valores
grandes del W; el gas ideal es una
buena aproximación para disoluciones
diluidas.

Para ello supongamos un gas a una determinada presión P dentro de
un pistón con un émbolo móvil, como en la figura 3.27.

Proceso isobaro (P = cte.). Si el émbolo de área A se desplaza una
longitud ∆x bajo la acción de una presión constante P, el trabajo
realizado es, según la definición de la mecánica de “fuerza ×
desplazamiento”:

W = F∆x = PA∆x = P∆V, ya que (3.44)

F = PA y ∆V = A∆x (3.45)

Figura 3.27: Pistón. Un gas ideal den-
tro de un pistón con émbolo móvil. Si
desplazamos el pistón una longitud
∆x el gas aumenta su volumen una
cantidad ∆V = A∆x.

Es interesante notar que si el incremento de volumen ∆V = Vf − Vi

es positivo (∆V > 0, expansión) el trabajo resulta positivo (lo efectúa
el gas) y si ∆V < 0 el gas se comprime, el trabajo es negativo y lo
realizamos nosotros en contra de la presión del gas. Esto es coherente
con el criterio de signos expuesto en la primera ley. En un diagrama
P − V un proceso isóbaro tiene el aspecto de la figura 3.28. Como
vemos en la figura, el trabajo corresponde al área bajo la curva del
proceso, con signo positivo si es una expansión y negativo si es
una compresión. Esta noción nos permite generalizar el trabajo a
cualquier proceso:
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Figura 3.28: Proceso isóbaro. Un gas
se expande (izquierda) o comprime
(derecha) a presión constante P0. En
ambos casos, el trabajo coincide nu-
méricamente con el área encerrada
bajo la línea del proceso (área naranja
rallada). En el caso de la expansión
W = +“área” mientras que en la
compresión W = −“área”

Proceso Volumen Trabajo

Expansión ∆V > 0 W > 0
Compresión ∆V < 0 W < 0

Tabla 3.4: El signo del trabajo en un
cambio de volumen.

Proceso general. El trabajo corresponde a + ó - el área bajo la
curva del proceso (+ para expansión, - para compresión)26. Esto es

26 Matemáticamente esto también se
puede calcular como W =

∫
PdV, pero

en general utilizaremos el área.

válido también para sólidos y líquidos.

Figura 3.29: Proceso General. El W > 0
si el Vf > Vi (expansión) como en la fi-
gura de la izquierda. Si Vf < Vi (com-
presión) entonces W < 0 (figura de la
derecha).

Ejemplo 3.10.1 Cálculo de W utilizando áreas en proceso con P ̸= cte.

Calcule el trabajo (con su signo) que realiza un gas ideal que reco-
rre el proceso de la figura correspondiente a una compresión desde
una presión y volumen iniciales Pi = 101 kPa, Vi = 20× 10−3 m3 a
presión y volumen finales de Pf = 202 kPa y Vf = 10× 10−3 m3.

SOLUCIÓN
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El trabajo corresponde al área bajo la línea del proceso (en este
caso un triángulo naranja + el rectángulo azul) con signo negati-
vo ya que se trata en este caso de una compresión. Comenzamos
calculando el área del triángulo naranja

W1 = −(área triángulo) = −1
2
(Vi −Vf )(Pf − Pi) =

=
1
2
(20× 10−3 m3 − 10× 10−3 m3)(202 kPa− 101 kPa) =

= −505 J (3.10.1.1)

El área marcada de azul es (también negativa pues es compresión):

W2 = −(área rectángulo) = −Pi(Vi −Vf ) = −(101 kPa)(20× 10−3 m3 − 10× 10−3 m3) =

= −1010 J (3.10.1.2)

Finalmente, el trabajo total del proceso i→ j es la suma:

Wtotal = W1 + W2 = −1515 J (3.10.1.3)

Proceso isócoro (V = cte.). En un proceso en el que no haya
cambio de volumen W = 0 (figura 3.30, izq.).

Suma de procesos. El trabajo total es la suma de los trabajos de los
procesos individuales con su signo (figura 3.30, der.).

Figura 3.30: Izquierda: Proceso isócoro.
El trabajo es nulo pues no hay expan-
sión ni compresión. Derecha: Suma
de procesos El trabajo total es la suma
(algebraica) de los trabajos individuales

Ciclo. Un ciclo es un proceso con inicio y fin en el mismo estado.
El trabajo total en un ciclo es el área encerrada dentro del ciclo.
Se deduce de dividir el ciclo en 2 tramos, el superior y el inferior.
Como tienen signos contrarios, el área fuera del ciclo se cancela.
El Wciclo será positivo para un ciclo recorrido en el sentido de las
agujas del reloj y negativo para un ciclo en contra de las agujas
del reloj (figura 3.31) .

Proceso isotermo. Un proceso isotermo es un proceso realizado a
T = cte. Corresponde al área bajo la curva igualmente. En un gas
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Figura 3.31: Trabajo en un ciclo. El tra-
bajo del ciclo como suma de un trabajo
de expansión y otro de compresión. A
la izquierda, el trabajo de expansión
“gana” al de compresión y el ciclo tiene
Wciclo > 0. A la derecha sucede lo
contrario y Wciclo < 0.

ideal, las isotermas corresponden a hipérbolas P = nRT/V en el
diagrama P−V.

Figura 3.32: Proceso isotermo. Isoter-
mas de gas ideal P = nRT/V y trabajo
en un proceso isotermo desde i hasta f .

Opcional.
En un gas ideal, el trabajo se puede calcular en general usando la ley de los gases ideales y la definición
integral del trabajo. Por ejemplo, para una expansión o compresión isoterma tenemos:

W =
∫ f

i
PdV =

∫ Vf

Vi

nRT
V

dV = nRT
∫ Vf

Vi

dV
V

=

= nRT(log Vf − log Vi) = nRT log
Vf

Vi

(3.46)

Proceso adiabático (Q = 0). Un proceso adiabático es aquel en
el que no hay intercambio de calor. El trabajo se puede calcular
según el primer principio que, para Q = 0, se escribe

W = −∆U = Ui −U f si (Q = 0) (3.47)

El primer principio aplicado a algunos procesos en el gas ideal.

Para el gas ideal monoatómico o diatómico la energía interna
es sencilla y solo depende de T, U(T) = 3

2 nRT o U(T) = 5
2 nRT.

Aplicamos el primer principio en algunos proceso para un gas ideal
monoatómico (3/2) pero es fácil generalizar a diatómico (5/2).
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isoterma

adiabática

Figura 3.33: Proceso adiabático. Las
adiabáticas tienen más pendiente que
las isotermas en un gas ideal.

Proceso isotermo en gas ideal. Para un proceso isotermo Tf = Ti

tenemos

∆U = U f −Ui =
3
2

nRTf −
3
2

nRTi =
3
2

nR(Tf − Ti) = 0 (3.48)

El primer principio queda entonces

Q = W (gas ideal y Tf = Ti) (3.49)

Esto se cumple para cualquier proceso cuya Tf = Ti aunque no sea
isotermo.

Proceso adiabático (Q = 0) en gas ideal.

∆U = −W ⇒W = −∆U =
3
2

nR(Ti − Tf ) (adiab. gas ideal) (3.50)

El primer principio aplicado a ciclos.

En un ciclo el estado final e inicial coinciden. Por tanto ∆U =

U f −Ui = U f −U f = 0 ya que la U es función de estado. El primer
principio dice entonces

Q = W (en un ciclo) (3.51)

Unidades en expresiones tipo presion×volumen: ¿atm · L o J?
OJO!! 1 atm · L ̸= 1 J. La equivalencia es
1 atm · L = 101 JEl producto de presión por volumen (PV) tiene unidades de

energía y se utiliza como acabamos de ver para calcular trabajos en
los diagramas P − V por ejemplo. En el sistema internacional las
unidades correctas son Pa y m3 respectivamente y efectivamente su
producto es “julios”

[P][V] = Pa ·m3 = N ·m3/m2 = N ·m = J (3.52)

Aunque NO es sistema internacional, se puede utilizar la atm para
presión y el litro (L) para el volumen y por tanto utilizar atm · L para
energía o trabajo, sabiendo que NO son equivalentes y que no se
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pueden sumar atm · L con J. La equivalencia es fácil de obtener y será
necesaria en problemas en que aparecen las dos:

1 atm · L ≃ 101× 103 Pa× 1× 10−3 m3 = 101 J (3.53)

Primera Ley y metabolismo animal. Ley de Kleiber

Para realizar los procesos de la vida se necesita, entre otras cosas,
energía. Las plantas la obtienen mediante la fotosíntesis. Los anima-
les a partir de la energía guardada en los enlaces químicos de los
alimentos, utilizando reacciones químicas, que generan energía en
forma de W y Q. Se puede utilizar el primer principio para analizar
estos procesos.

Supongamos que durante un tiempo ∆t una persona realiza una
cantidad de trabajo mecánico W > 0 (sube escaleras, monta en bici,
etc. . . ). En muchos casos ese W se puede medir. En general habrá
también una cantidad de calor que abandone el cuerpo Q < 0. ¿Se
puede medir? Sí, por ejemplo, aislando la persona en una habitación
y midiendo la cantidad de calor que hay que extraer para mantener
la T de la habitación constante. Según el primer principio tenemos
entonces que

∆U = Q−W < 0 (3.54)

esto es, el organismo va consumiendo su energía interna al realizar
algún proceso. ¿Cuando recupera energía interna, esto es, tiene un
∆U > 0? Al ingerir alimentos, que poseen energía almacenada en sus
enlaces químicos.

En metabolismo es más habitual medir los ritmos de producción de
calor, trabajo o consumo de energía, esto es, la energía por unidad de
tiempo o potencia. Dividiendo por ∆t tenemos

∆U
∆t

= Q̇− Ẇ < 0, (3.55)

donde el punto expresa el ritmo: Q̇ = Q/∆t es el ritmo de produc-
ción de calor (calor por unidad de tiempo, o potencia) y Ẇ = W/∆t
la potencia mecánica. Las unidades de los ritmos son las de potencia:

[Q̇] = [Ẇ] =

[
∆U
∆t

]
= J/s = W (3.56)

Además, el ritmo de consumo de energía ∆U
∆t se puede medir re-

gistrando la velocidad o tasa de consumo de oxígeno. La energía
procede de reacciones similares a la combustión de los alimentos que
necesitan oxígeno. La más habitual es la de la glucosa

1 mol de C6H12O6 + 134,4 L de O2 −−→ 6 CO2 + 6 H2O producen 2870 kJ
(3.57)
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Midiendo el consumo de O2 en litros puede obtener la energía con-
sumida. Un manera fácil es expresarlo en función del “equivalente

energético del oxígeno” EEO =
Eproducida

cantidad de O2
:

EEOglucosa =
2870 kJ
134,4 L

= 21,4 kJ/L (3.58)

¿Qué tiene de útil el EEO? Que es prácticamente el mismo para todas
las sustancias que el cuerpo suele utilizar para generar E, como se
muestra en la tabla 3.5 (adaptada de 27) y podemos tomar el valor 27 J.W. Kane and M.M. Sternheim.

Physics. Wiley, 1988medio de 20,2 kJ/L para calcular:

Alimento EEO (kJ/L) Contenido de E (kJ/g)

Glúcidos 21.1 17.2
Proteinas 18.7 17.6

Grasas 19.8 38.9
Etanol 20.3 29.7
media 20.2

Tabla 3.5: EEO de distintos alimentos.
El EEO es muy parecido para todos
los alimentos y podemos tomar por
tanto su valor medio para estimar la
energía consumida. Esto no ocurre con
la energía por unidad de masa.

|∆U| = 20,2 kJ/L×VO2(L) (3.59)

Tasa o ritmo metabólico.
Se conoce como tasa metabólica al ritmo al que se consume la ener-
gía interna del organismo para una determinada actividad

RM =

∣∣∣∣∆U
∆t

∣∣∣∣ en W (3.60)

La tasa metabólica basal RMB es la tasa correspondiente a “estar
despierto descansando”. Es aproximadamente proporcional a la masa
corporal y en humanos es 1,2 W/kg para hombres y 1,1 W/kg para
mujeres. Para una mujer de masa 65 kg sería

RMB = (1,1 W/kg)(65 kg) = 71,5 W (3.61)

El RM asciende al realizar alguna actividad para proporcionar la
energía necesaria (ver tabla3.6). El cuerpo humano tiene en general
baja eficiencia y aunque una parte se utilice para realizar W casi toda
la energía del RM se transforma en calor.

Actividad RM/mcuerpo (W/kg)

Despierto tumbado ~1.1, |1.2
De pie 2.6
Correr 18

Montar en bici 8

Tabla 3.6: RM. El RM de distintas
actividades expresado por unidad de
masa del cuerpo de la persona que la
realiza.Ejemplo 3.10.2 Energía utilizada en correr.

¿Cuánta energía utiliza un mujer de m = 65 kg que corre durante 30 minutos? Si la energía la obtuviera
exclusivamente a partir de su grasa corporal, ¿cuánta grasa habría consumido en ese tiempo?

SOLUCIÓN

a) Según la tabla 3.6 corriendo se consumen unos 18 W por cada kilo de masa corporal. El ritmo será∣∣∣∣∆U
∆t

∣∣∣∣ = (18 W/kg)(65 kg) = 1170 W (3.10.2.1)

y el consumo total de energía

|∆U| =
∣∣∣∣∆U

∆t

∣∣∣∣ ∆t = (1170 W)(30 min)(60 s/min) = 2106 kJ (3.10.2.2)
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b) La grasa proporciona 38,9 kJ/g de energía. Para producir 2106 kJ necesitamos

mgrasa =
2106 kJ

38,9 kJ/g
≃ 54 g (3.10.2.3)

Ley de Kleiber.

Figura 3.34: El modo de vida y las nece-
sidades energéticas están relacionadas
con el tamaño del animal. ¿Por qué los
ratones tienen movimientos frenéticos y
los elefantes son de movimientos más
lentos? Proporcionalmente a su masa,
los ratones tienen un metabolismo más
rápido que los elefantes. Los ratones
necesitan ingerir en torno al 15 % de su
peso en comida al día, mientras que un
elefante apenas llega al 6 %. ¿A qué se
debe? Esta sección nos da pistas sobre
este fenómeno. Dibujo de L.D.

El ritmo de metabolismo basal sigue una ley de tipo alométrico,
esto es hay determinada relación entre el ritmo metabólico basal y el
tamaño o masa del cuerpo del animal. Según Kleiber28 28 M. Kleiber. Body size and metabolism.

Hilgardia, 6(11):315–353, January 1932

RMB ≃ 3,6m0,73 (3.62)

para los animales de sangre caliente, desde el ratón al elefante29. Esto 29 K. Bogdanov. El físico visita al biólogo.
MIR, Moscú, 1989significa que aunque el RMB (y el gasto diario de energía y por tanto

las necesidades de alimento) es mayor para animales mayores, el
ritmo NO es directamente proporcional a la masa (exponente 1) si no
que crece más despacio. En relación a su masa, el ritmo de animales
mayores es más lento, como se muestra en el siguiente ejemplo.

Ejemplo 3.10.3 Ritmo Metabólico del ratón y el elefante.
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Suponiendo correcta la ley de Kleiber, el ritmo metabólico específico (RMBE)–el ritmo por cada kilo–
para el ratón y el elefante serían

RMBEr = 3,6
m0,73

r
mr

= 3,6m−0,27
r

RMBEe = 3,6
m0,73

e
me

= 3,6m−0,27
e (3.10.3.1)

y por tanto
RMBEr

RMBEe
=

(
mr

me

)−0,27
=

(
me

mr

)0,27
(3.10.3.2)

Tomando masas de me = 6000 kg y mg = 19 g obtenemos

RMBEr

RMBEe
=

(
me

mr

)0,27
=

(
6000 kg
0,019 kg

)0,27
= 30,5 veces (3.10.3.3)

En proporción a su masa, el “ritmo al que viven” los ratones es de unas 30 veces más rápido que el de los
elefantes. De hecho, la longevidad media de un ratón Mus musculus es aproximadamente de 1 a 2 años,
mientras que para el elefante Loxodonta africana es en torno a 40-60 años, lo cual da una relación parecida.
La misma relación aproximadamente de 30 la encontramos en la frecuencia cardiaca en reposo de 300-800

pulsaciones por minuto para el ratón y de 20-30 para el elefante, o en el periodo de gestación de 20 días a
22 meses respectivamente.

¿3/4 ó 2/3? El exponente de la ley de Kleiber es muy cercano a
0,75 = 3/4. Existe algo de controversia en cuanto al exponente exacto
y el origen de la ley, aunque parece aceptado que está entre 2/3 y
3/4. Una posible justificación en cuanto a la razón de esta ley se
obtiene del balance entre el calor generado y el calor expulsado al
exterior, aunque esto produce un exponente 2/3.

Supongamos la situación de reposo en la que un animal no realiza
trabajo W = 0 y su ritmo metabólico es el basal. Según hemos visto el
ritmo al que se produce calor en el cuerpo de un animal será

Q̇gen =

∣∣∣∣∆U
∆t

∣∣∣∣ = RMB (3.63)

Por otro lado, el calor se pierde hacia el medio ambiente de forma
proporcional a la superficie, como vimos en la transmisión del calor
Q̇perd ∝ A. Por ejemplo en el calor por conducción30. 30 Aunque consideremos otro mecanis-

mo, el ritmo también será proporcional
al área

Q̇perd = k
∆T

l
A (3.64)

Como solo nos interesa el exponente, podemos agrupar todo lo que
va delante del área en un solo coeficiente a = k∆T/l

Q̇perd = aA (3.65)



física aplicada a la biología 83

Para seguir avanzando necesitamos relacionar el área del animal con
su masa. Los animales de mayor masa tendrán mayor área de piel.
Vamos a suponer un animal esférico de tamaño o radio R. Aunque
los animales no son esféricos, sí se cumple que su volumen es una
distancia al cubo, su superficie una distancia al cuadrado, etc. . . .
Como veremos con eso es suficiente para calcular el exponente.
Tomando un animal esférico como el de la figura 3.35 tenemos que
su área es A = 4πR2 y su volumen V = 4πR3/3. Recordando que la
densidad es ρ = M/V podemos relacionar área con masa:

m = ρ
4
3

πR3 ⇒ R =

(
3

4πρ

)1/3
m1/3 ⇒ R2 =

(
3

4πρ

)2/3
m2/3

⇒A = 4πR2 = 4π

(
3

4πρ

)2/3
m2/3

(3.66)

Agrupando términos en una constante b = 4π
(

3
4πρ

)2/3
podemos

expresar el área más sencillamente

A = bm2/3 (3.67)

Utilizando la expresión del área (3.67) en (3.65) escribimos el calor
perdido como

Figura 3.35: Vaca esférica. Animal
esférico considerado en el texto. Aun-
que los animales no son esféricos, el
exponente calculado es el mismo que
considerando otras formas.

Q̇perd = ab m2/3 (3.68)

Para que el animal mantenga su T constante, tiene que existir un ba-
lance entre el calor perdido y el calor generado, de donde obtenemos
utilizando (3.63) y (3.68)

Q̇gen = Q̇perd ⇒ RMB = ab m2/3 (3.69)

Este argumento predice un aumento del RMB con la masa

RMB ∝ m2/3 (3.70)

del tipo de ley de Kleiber, pero con exponente 2/3 algo menor a 0,73.
Es interesante señalar que algunos estudios31 más recientes que el de 31 C. R. White and R. S. Seymour.

Mammalian basal metabolic rate
is proportional to body mass2/3.
Proceedings of the National Academy of
Sciences, 100(7):4046–4049, April 2003

Kleiber efectivamente encuentran un exponente cercano a 2/3.

Entalpía

Muchos procesos en biología se realizan a P = cte. (por ejemplo
los que se realizan a presión atmosférica). Resulta conveniente definir
la función de estado termodinámica llamada entalpía

H = U + PV (3.71)

La entalpía es función de estado ya que para calcularla solo hacen
falta variables de estado. ¿Qué utilidad tiene la entalpía? Se utiliza en
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cualquier sistema termodinámico, no solo gases, y tiene la siguiente
propiedad. Calculemos su variación en un proceso de un estado
inicial i a uno final f

∆H = H f − Hi = U f + Pf Vf − (Ui + PiVi) = ∆U + Pf Vf − PiVi (3.72)

En el caso de que la presión sea constante (Pf = Pi = P) en el proceso
entonces Pf Vf − PiVi = P(Vf −Vi) = P∆V y la variación de entalpía
es

∆H = H f − Hi = ∆U + P∆V (P = cte.) (3.73)

Ahora bien, en un proceso a P = cte. el término P∆V es el trabajo de
expansión/compresión, de modo que ∆U = Q− P∆V y entonces

∆H = H f − Hi = Q− P∆V + P∆V = Q (P = cte.) (3.74)

Esto es en un proceso a presión constante la variación de entalpía
∆H coincide con el calor intercambiado Q. Sin embargo no son lo
mismo en general: ∆H depende solo del estado final e inicial y Q
depende del proceso concreto. En la figura se comparan dos procesos,
a y b con los mismos estados inicial y final. El proceso a es a P = cte.
y en él el sistema absorbe 30 J en forma de calor. El proceso b no es a
presión constante. Tenemos

Figura 3.36: Entalpía es función de es-
tado. Dos procesos a y b que empiezan
y acaban en los mismos estados tienen
la misma variación de entalpía. Solo en
el proceso a a P = cte. se cumple que
Q = ∆H.

Proceso a: ∆Ha = H f − Hi = 30 J (3.75)

Qa = 30 J

Proceso b: ∆Hb = H f − Hi = 30 J

Qb ̸= Qa

Otras propiedades de H.

Como función de estado también cumple que

Ciclo (i = f )⇒ ∆H = H f − Hi = H f − H f = 0 (3.76)

En proceso inverso f → i⇒ ∆H f→i = Hi − H f = −∆Hi→ f (3.77)

Para un gas ideal monoatómico por ejemplo

H = U + PV =
3
2

nRT + nRT =
5
2

nRT, puesto que PV = nRT
(3.78)

En una reacción química como esta por ejemplo

C6H12O6(s) + 6 O2(g) −−→ 6 CO2(g) + 6 H2O(l)

∆H = −2808 kJ/mol

Figura 3.37: Combustión de la glucosa.
En la combustión de la glucosa se
liberan 2808 kJ/mol cuando se realiza a
presión constanteA + B −−→ C + D (3.79)

tenemos que ∆H = Hprod − Hreac = HC + HD − HA − HB. Si ∆H >

0 la reacción es endotérmica y necesita absorber Q = ∆H > 0
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para verificarse a presión constante. Si ∆H < 0 la reacción será
exotérmica, liberará un calor Q = ∆H < 0 si se hace a presión
constante y esta energía estará disponible para utilizarse en algún
otro proceso. Por ejemplo, la energía liberada en la reacción de
combustión de la glucosa (fig. 3.37) se puede utilizar por el cuerpo
para verificar algún otro proceso que necesite energía.

Figura 3.38: Reacción verificada a
presión constante. Estado inicial en el
que los reactivos están en fase líquida
(arriba) y estado final (abajo) en el que
al menos uno de los productos está en
fase gas. La mayor parte del cambio de
volumen se debe a la aparición del gas.

Pero, ¿por qué ∆H representa mejor la energía disponible para
aprovechar que ∆U que es precisamente la variación de energía
entre productos y reactivos? Para entender esto, supongamos
que se verifica, dentro de un pistón mantenido a P = cte. una
reacción exotérmica entre reactivos en disolución (no gases) y
como resultado se produce un gas, como en la figura 3.38. Para
producir el gas (que ocupa un volumen Vg frente a 0 inicialmente)
es necesario hacer un W = P∆V, donde ∆V = Vprod − Vreac es el
cambio de volumen de los productos menos el de los reactivos. Al
verificar la reacción, una energía P∆V se utiliza necesariamente para
la expansión del gas contra la presión cte. y no puede utilizarse
para otra cosa. Veámoslo con un ejemplo.

Ejemplo 3.10.4 Reacción exotérmica con producción de gas

Se sabe que en la reacción A(l) + B(l) −−→ 2 C(g) la variación de energía interna es −200 kJ/mol. Si la
reacción se verifica a P = 1 atm y T = 25 ◦C, ¿cuál será la variación de entalpía y el calor liberado por la
reacción?

SOLUCIÓN

La variación de entalpía será, puesto que P es constante, ∆H = ∆U + P∆V = Q. Necesitamos calcular el
término P∆V esto es el trabajo de expansión. Por cada mol de reactivo A se producen 2 moles de C. Usan-
do la ley de los gases ideales podemos calcular el Vf que ocupan. O mejor aún, puesto que el volumen
inicial de gas es Vi = 0

P∆V = P(Vf −Vi) = PVf = nRT (3.80)

Entonces, la ∆H cuando reacciona 1 mol de A

Q = ∆H = ∆U + P∆V = ∆U + nRT = −(200 kJ/mol)(1 mol) + (2 mol)(8,31 J/(K ·mol))(298 K) =

= (−200 + 5)kJ = −195 kJ
(3.81)

por cada mol de A que reaccione. El calor coincide con ∆H al ser la P constante.
Nota: es posible que los líquidos también sufran algún cambio de volumen en la reacción (de hecho en

este caso desaparecen), pero este es normalmente muy pequeño frente a los cambios de volumen asociados
a los gases (debido a la mucho mayor densidad de líquidos frente a gases) y se suele despreciar.
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Segunda Ley. Entropía

La segunda ley permite distinguir los procesos que ocurren espon-
táneamente en la naturaleza y los que no. En los ejemplos represen-
tados en la figura 3.39 se cumple la conservación de la energía, tanto
en el proceso directo como en el inverso. No están prohibidos por la
primera ley pero sin embargo suelen ocurrir en la naturaleza solo en
uno de los dos sentidos.

SíNo

A B A B

Sí

No

Sí

No

a) b)

c)

Figura 3.39: a) Un vaso cae al suelo y se
rompe en pedazos. La energía potencial
se transforma en energía para romper
los enlaces dentro del vidrio y en forma
de calor. b) Las moléculas de un gas,
inicialmente confinadas en una pequeña
región se expanden hasta ocupar todo
el volumen disponible. c) Una parte
más caliente de un sistema aislado cede
calor a una parte más fría y equilibran
sus temperaturas.

En términos sencillos, la segunda ley dice:

Los cambios en la naturaleza ocurren de manera espontánea de La 2ª ley de la Termo en palabras
llanasforma que la energía y la materia se dispersan, reparten o desorde-

nan y de forma que un sistema aislado tiende al equilibrio.

Una pista de la razón de este comportamiento nos la aporta la
teoría cinética, según la cual las moléculas están en continuo movi-
miento y en cierto sentido es como si se movieran al azar. De esta
manera, los sistemas tienden a colocarse en los estados macroscópi-
cos (de T, P, etc. . . ) más probables (los que corresponden a un mayor
número de estados microscópicos)32. En el ejemplo de la figura 3.39b)

32 Con esta visión en mente, en realidad
la segunda ley simplemente dice que
lo que solemos ver en la naturaleza es
simplemente aquello más probable.

hay muchas más maneras de colocar las N partículas en toda la caja
que si lo hiciéramos solamente en la sección recuadrada. Tendemos a
ver estados macroscópicos que corresponden al recipiente lleno con
mucha mayor probabilidad33.

33 Si el número de partículas es muy
grande como ocurre con el número de
moléculas en una cantidad apreciable
de cualquier gas, esta probabilidad es
infinitamente mayor hasta el punto
de que cualquier otro estado no es
observable en la edad del universoEjemplo 3.10.5 La baraja de cartas y la segunda ley.

Tomemos para empezar 5 cartas de la baraja, del mismo palo y del 1 al 5. Llamamos microestado al
orden exacto en que están las cartas, por ejemplo, {3,2,5,1,4}. Como son permutaciones de 5 elementos,
tenemos 5! = 5× 4× 3× 2 = 120 microestados distintos. Supongamos que con nuestros sentidos solo
pudiéramos percibir o solo estuviéramos interesados en si las cartas están o no formando escalera. En-
tonces tenemos solo los 2 siguientes macroestados definidos por una cualidad que llamamos orden o
“escaleridad” por ejemplo:
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Estado con alto orden, Escalera: solo formado por 2 microestados {1,2,3,4,5} y {5,4,3,2,1}

Estado con bajo orden. El resto de los microestados los consideramos desordenados y los agrupamos
en el (macro)estado Desordenado: {1,4,2,3,5},{1,3,4,5,2},etc. . . . Este macroestado engloba 120− 2 = 118
microestados diferentes.

El movimiento aleatorio de las moléculas está representado en este ejemplo por la acción de barajar. Co-
menzamos con el estado Escalera y barajamos bien. Lo más probable (118 veces de cada 120 en promedio)
es que acabemos con un microestado correspondiente al estado Desordenado. La evolución espontánea
corresponde a pasar de Escalera a Desordenado. El proceso inverso puede ocurrir, pero es poco probable
(menos de 2 % de probabilidad), incluso aunque barajemos muchas veces es difícil recuperar el estado
Escalera. El estado Desordenado representa el estado de equilibrio. Esto es aún más acusado según va-
mos añadiendo cartas al juego. Es interesante señalar que desde el punto de vista microscópico, todas las
ordenaciones particulares ({1,2,3,4,5} o {4,5,2,1,3}) tienen en principio la misma probabilidad de salir tras
un barajado aleatorio. La diferencia entre el estado macroscópico Desordenado y el Escalera consiste en el
número de microestados compatibles con cada uno.

Escalera Desordenado

Barajar
muy probable = espontáneo

poco probable = no espontáneo

Figura 3.40: La analogía de la baraja.
Cuando barajamos lo más probable es
pasar de un estado de Escalera a uno
no secuencial. El proceso inverso, de
un estado Desordenado a una escalera
puede ocurrir con 5 cartas, aunque es
difícil. Con 40 cartas se vuelve extrema-
damente poco probable. En un sistema
físico grande (macroscópico), el número
de “cartas” con el que jugamos, esto es,
de moléculas es astronómico.

Forma macroscópica de la segunda ley. Entropía

La medida de la “dispersión” o “desorden” de la materia y la
energía es la entropía S. La segunda ley dice que:

En un sistema aislado la entropía siempre crece o permanece La 2ª Ley de la Termo en su forma
clásicaconstante:

∆Saislado ≥ 0.

El cambio de entropía se puede medir en un proceso reversible (a T
constante)34 según 34 Se puede generalizar a T variable

mediante una integral
∆S =

Qreversible
T

(3.82)

donde T es la temperatura a la que se lleva a cabo el proceso. La S definida según (3.82), es una
medida de la aleatoriedad o dispersión
añadida al sistema.
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Qreversible es el calor transferido al sistema de forma reversible.
Un proceso es reversible si se lleva a cabo de forma que se está siem-

pre muy cerca del equilibrio (tanto mecánico como térmico: no hay
diferencias grandes de presión ni de temperatura). Por ejemplo, si en
un proceso se transfiere W o Q para que el proceso sea reversible :

Reversible Irreversible

Figura 3.41: Presión. El proceso de la
izquierda es reversible, las presiones es-
tán casi equilibradas en todo momento.
Con un ligero incremento o descenso de
la presión interior podemos hacer que
el gas se expanda o se comprima. No
ocurre así en el proceso de la derecha
que corresponde a una expansión
irreversible.

La presión exterior tiene que ser en todo momento muy cercana de
la presión del sistema P ≈ Pext, como en la figura 3.41 (izquierda).

La parte que cede calor tiene que estar a la misma temperatura
aproximadamente que la parte que absorbe calor. En la figura 3.42,
T1 ≈ T2 (izquierda).

1 2 1 2

Figura 3.42: Temperatura. El proceso
de la izquierda es reversible, las tempe-
raturas están casi equilibradas en todo
momento. Modificando ligeramente la
T1 por encima o debajo de T2 podemos
revertir el sentido de la transferencia
de Q. No ocurre así en el proceso de
la derecha que corresponde a una
transferencia irreversible de calor.

Estrictamente, ningún proceso real es así, es una aproximación
similar a suponer que no hay rozamiento o que algo está completa-
mente aislado, etc. . .

Sin embargo, también se puede calcular ∆S para procesos irrever-
sibles. Tenemos que imaginar un proceso reversible con igual estado
inicial y final que el proceso irreversible y calcular ∆S para el proceso
reversible. Después, la entropía es una función de estado y por tanto
su variación no depende del proceso concreto por lo que es válida
para el proceso irreversible también (figura 3.43).

reversible

irreversible
Figura 3.43: S es función de estado. Po-
demos calcular ∆S a través del camino
a y este valor será el mismo para todo
proceso que comience en el estado i y
acabe en f

Ejemplo 3.10.6 Variación de S en un proceso reversible y otro irreversible

1 kg de hielo a Th = 0 ◦C se funde y transforma totalmente en agua líquida en un ambiente a Tamb.
Calcule la variación de entropía en el caso de que Tamb = 0 ◦C y para Tamb = 20 ◦C. ¿En cuál de las dos
situaciones el proceso es reversible? Datos: El calor latente de fusión del hielo es l = 334 kJ/kg.

SOLUCIÓN

Para que el hielo se funda es necesario suministrarle una cierta cantidad de calor Qh = ml

a) En el primer caso, Tamb = Th de modo que la transferencia de calor se realiza sin apenas diferencia de
temperatura (podemos suponer que el ambiente está a una temperatura solo ligeramente superior de
modo que el calor necesario fluya del ambiente hacia el trozo de hielo, por ejemplo a Tamb = 0,0001 ◦C y
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para calcular tomamos Tamb = 0 ◦C). De modo que este proceso sucede de forma reversible y calculamos
la variación de entropía del hielo en el proceso de fusión según la definición

∆Sh =
Qrev

T
=

Qh
Th

=
334 kJ/kg× 1 kg

273 K
≃ 1,22× 103 J/K (3.10.6.1)

Nótese que ∆Sh es positivo y esto es lógico pues el estado final (agua líquida) es más desordenado que
el estado inicial (agua sólida). En el proceso inverso, la congelación, tendríamos ∆Scong

h < 0.

b) En el caso de Tamb = 20 ◦C el proceso es irreversible, pues la transferencia de calor se hace entre dos
cuerpos a temperaturas distintas. No obstante, para el hielo, el proceso tienen el mismo estado final
(agua a 0 ◦C, solo estamos analizando la fusión, no un posible calentamiento posterior) e igual estado
inicial (hielo a 0 ◦C) que en el apartado anterior, de modo que, como S es función de estado tenemos
que:

∆Sh = 1,22× 103 J/K (3.10.6.2)

La diferencia entre ambos procesos, el a) y el b) se encuentra analizando el ambiente o alrededores (o como
veremos más adelante, el universo = alrededores + sistema). Según la conservación de la energía, sabemos
que Qamb = −Qh. De modo que la variación de entropía de los alrededores vale en el caso

a) reversible (Tamb = 273 K):

∆Samb =
Qamb
Tamb

=
−Qh
Tamb

= −1,22× 103 J/K (3.10.6.3)

b) e irreversible (Tamb = 293 K):

∆Samb =
Qamb
Tamb

=
−Qh
Tamb

=
−334 kJ/kg× 1 kg

293 K
≃ −1,14× 103 J/K (3.10.6.4)

¿Cómo predice la segunda ley la espontaneidad o no de los procesos?

O equivalentemente, ¿cómo distinguimos un suceso espontáneo de
otro que no lo es? Tenemos que aplicar la segunda ley a un sistema
aislado. En general hay estas opciones:

El sistema de interés es aislado. Los procesos espontáneos son
aquellos que tienen ∆S ≥ 0.

El sistema está hecho de varias partes que intercambian calor. Es
necesario aplicar la segunda ley al conjunto completo. Teniendo
en cuenta que la entropía de un sistema cualquiera es la suma de
las entropías de las partes35 tenemos que los procesos espontáneos 35 Técnicamente, se dice que S es

aditiva.cumplen ∆Stotal = ∆S1 + ∆S2 + . . . ≥ 0. Nótese que cada una de
ellas por separado (∆S1, ∆S2, etc. . . ) puede ser positiva o negativa.

El sistema intercambia calor con sus alrededores. Es un caso
particular de la anterior muy frecuente y relevante. Hay 2 partes
sistema + alrededores y conjuntamente forman el universo que
es aislado. Los procesos espontáneos son aquellos que tienen
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∆SUniv = ∆S + ∆Salr ≥ 0. Además la fuente, por ser muy grande, se ∆Sfoco = Qfoco
Tfoco

, siempre para un foco

térmicoconsidera siempre que cambia poco su estado termodinámico, en
particular su T, y por tanto ∆Salr = Qalr/Talr independientemente
de si el proceso analizado es o no reversible36. 36 Mark Waldo Zemansky and Ri-

chard H. Dittman. Calor y termodinámica.
McGraw-Hill, 1984Veamos cómo predice la espontaneidad del paso de calor de

cuerpos calientes a fríos con un ejemplo.

Ejemplo 3.10.7 Dos partes de un sistema intercambian calor

Supongamos que un sistema aislado está hecho de 2 partes (parte 1 y parte 2) cuyas masas son muy
grandes y se encuentran a temperaturas diferentes T1 = 100 ◦C y T2 = 50 ◦C. Si intercambian 1 J de calor,
calcular la variación de entropía si el calor pasa de la parte caliente a la fría o bien sucede al contrario.
¿Cuál de los dos sucesos es espontáneo?

SOLUCIÓN

1 2
Suponemos primero que el calor pasa del caliente al frío, de modo
que Q1 = −1 J (1 cede) y Q2 = −Q1 = 1 J (2 absorbe). Como las ma-
sas son grandes, podemos suponer que 1 J transferido no cambia las
temperaturas prácticamente y calcular las variaciones como procesos
a T = cte.. Entonces, las variaciones de entropía serán:

∆S1 =
Q1

T1
=

−1 J
(273 + 100)K

= −0,0027 J/K (3.10.7.1)

∆S2 =
Q2

T2
=

1 J
(273 + 50)K

= +0,0031 J/K

y la variación total de entropía será ∆Stotal = ∆S1 + ∆S2 = −0,0027 J/K + 0,0031 J/K = 0,0004 J/K > 0.
En el caso contrario, que 1 J fuera transferido de la parte fría a la caliente ahora Q1 = 1 J y Q2 = −1 J

y el resultado total sería ∆Stotal = −0,0004 J/K < 0. Como el sistema total es un sistema aislado, lo
único compatible con la segunda ley es el primer caso con ∆Stotal > 0 y por tanto el calor se transfiere
espontáneamente del cuerpo caliente al frío y no al revés.

Energía libre de Gibbs

Frecuentemente encontramos sistemas que intercambian energía
con sus alrededores que consideramos un foco térmico a T = cte y a
p = cte. Por ejemplo: una reacción química se da en una célula den-
tro del cuerpo a 37 ◦C, una persona intercambia calor con una piscina
a 27 ◦C, etc. . . En tal caso resulta útil definir la función termodinámica
G energía libre de Gibbs y utilizar lo aprendido en la sección ante-
rior37. Supongamos que en dicho sistema se da un proceso a P y T 37 Aunque es especialmente útil en

esos casos, es una función de estado
y por tanto su variación se puede
calcular conocido el estado final e
inicial, independientemente del proceso

constantes y el sistema intercambia un calor Q con los alrededores,
de modo que Qalr = −Q. Para los alrededores tenemos:

∆Salr =
−Q

T
(3.83)
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El segundo principio aplicado al sistema aislado compuesto por
sistema + alrededores dice:

∆Stotal = ∆S + ∆Salr = ∆S +
−Q

T
≥ 0, (3.84) S

Alrededores

Universo = Sistema + Alrededores
Figura 3.44: Energía libre de Gibbs.El
sistema S intercambia energía con
sus alrededores en procesos a T y p
constantes. En esta situación la energía
libre de Gibbs resulta especialmente útil.
Esto es de hecho lo habitual en muchos
procesos biológicos.

que a veces se expresa como ∆S ≥ Q
T . El signo igual se da para

procesos reversibles y entonces ∆S = Q
T .

Para procesos a presión constante hemos visto al hablar de la
entalpía que Q = ∆H por lo que podemos escribir (3.84) como

∆Stotal = ∆S +
−∆H

T
≥ 0 (3.85)

donde ahora todo lo que aparece son funciones de estado del sistema.
Multiplicando por T tenemos

T∆Stotal = T∆S− ∆H ≥ 0, (3.86)

donde ya se ve que la cantidad importante es T∆S− ∆H. Si definimos
G = H − TS = U + pV − TS tenemos para un proceso isóbaro e
isotermo:

∆G = ∆H − ∆(TS)=∆H − (TS f − TSi) = ∆H − T∆S = −T∆Stotal.

(a T = cte, p = cte) (3.87)

y por tanto los procesos espontáneos –aquellos que cumplen la
segunda ley– son tales que ∆Stotal ≥ 0 ⇒ ∆G ≤ 0. De este modo
podemos calcular ∆G, que solo depende de variables del sistema,
para comprobar la espontaneidad de los procesos a T y p constantes
en sistemas que intercambian energía (Q y/o W) con sus alrededores:

∆G = −T∆Stotal =

{
Espontáneo ⇔ ∆Stotal ≥ 0⇔ ∆G ≤ 0

No espontáneo ⇔ ∆Stotal < 0⇔ ∆G > 0
(3.88)

El caso ∆G = 0 corresponde a procesos reversibles o en equilibrio.
Nótese que el signo de ∆G podría modificarse al cambiar la tempe-
ratura en algunos casos. Por último, los procesos no espontáneos

Peter Atkins and Julio de Paula.
Physical Chemistry for the Life Sciences. W.
H. Freeman, January 2011

(∆G > 0) se podrían no obstante producir si se acoplan a un se-
gundo proceso 2 que libere suficiente energía libre de forma que
∆G2 + ∆G ≤ 0. Veamos cómo aplicar todo esto en un ejemplo38:

38 Adaptado por el autor de:

Ejemplo 3.10.8 Formación del complejo NAD+ + lactato deshidrogenasa.

Se sabe experimentalmente que al producirse la unión de la nicotinamida adenina dinucleótido con
la enzima lactato deshidrogenasa la variación de entropía vale ∆S = −16,8 J/(K ·mol) a T = 25 ◦C y
pH=7.0 y p = 1 bar. Al producirse la reacción se libera calor, en concreto, la entalpía de reacción vale
∆H = −24,2 kJ/mol. El signo negativo de la variación de entropía es esperable puesto que se forma una
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estructura más agregada y compacta. ¿Cómo es posible entonces que esta reacción se dé espontáneamente
(si disminuye la entropía)?

SOLUCIÓN

Según lo explicado en las secciones anteriores, para estudiar la espontaneidad de un proceso es necesa-
rio considerar la variación de entropía del sistema y de sus alrededores. Alternativamente, para un proceso a
T y p constantes también podemos estudiar el signo de ∆G.

a) Utilizando ∆Stotal:

∆Salr =
Qalr

T
=
−Q

T
=
−∆H

T
=

24,2 kJ/mol
298 K

= 81,2 J/(K ·mol)⇒ (3.10.8.1)

∆Stotal = ∆S + ∆Salr = −16,8 J/(K ·mol) + 81,2 J/(K ·mol) = 64,4 J/(K ·mol)

Por tanto, ∆Stotal > 0 y la reacción es espontánea a esa temperatura.

b) Mediante ∆G

G = H − TS⇒ (a T, p cte.) ∆G = ∆H − T∆S = −24,2 kJ/mol + (298 K)(16,8 J/(K ·mol)) = −19 kJ/mol.
(3.10.8.2)

Dado que ∆G < 0 el proceso es espontáneo.

Interpretación de ∆G como trabajo “útil”

El significado profundo de G se puede comprender en sistemas
que verifican procesos a T, p constantes en los que además del trabajo
habitual de expansión/compresión p∆V existe otro tipo de trabajo
Wotro:

Wtotal = p∆V + Wotro (3.89)

donde Wotro puede representar el trabajo necesario para algún otro
tipo de proceso como puede ser por ejemplo llevar a cabo un reacción
química acoplada, trabajo eléctrico,etc. . . En este caso, el primer
principio dice

∆U = Q−W = Q− p∆V −Wotro (3.90)

que llevado a la definición de G, para un proceso a T,p constantes39 39 El resultado es el mismo si partimos
de ∆G = ∆H − T∆S teniendo en
cuenta que si hay trabajo Wotro entonces
∆H = Q−Wotro utilizando también el
primer principio.

∆G = ∆U + p∆V − T∆S = Q− p∆V −Wotro + p∆V − T∆S =

= Q− T∆S−Wotro ⇒Wotro = Q− T∆S− ∆G
(3.91)

Si el proceso es reversible, como hemos visto, ∆S = Q
T y entonces

Wotro = −∆G (3.92)

lo que significa que −∆G corresponde al trabajo, distinto al de expan-
sión, que se puede extraer en un proceso reversible o que hay que
aportar para verificar el proceso, dependiendo del signo que tenga.
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Para procesos irreversibles, ∆S ≥ Q
T y entonces

Wotro ≤ −∆G. (3.93)

Puesto que Wotro es positivo si lo hace el sistema, significa que si ∆G
es negativo (el proceso libera energía para usarla) el trabajo máximo
que se puede extraer es −∆G. Si por el contrario el proceso consume
energía ∆G > 0 entonces el trabajo que tenemos que poner nosotros
Wotro es al menos ∆G para lograr que se verifique el proceso40. Si una 40 Como ya se ha dicho antes, ese

trabajo puede venir de una reacción por
ejemplo que tenga ∆G < 0 y que se dé
de forma acoplada.

reacción química (a T, p ctes.) libera energía, por ejemplo, ∆G = −8 J
entonces el trabajo útil que se puede hacer con esa energía es como
mucho 8 J. Si la reacción necesitara ∆G = 8 J para producirse, tendría
que acoplarse a otra que produzca al menos ∆G = 8 J. Veamos un par
de ejemplos41 41 Adaptados de

Peter Atkins and Julio de Paula.
Physical Chemistry for the Life Sciences. W.
H. Freeman, January 2011Ejemplo 3.10.9 Hidrólisis del ATP

La reacción de hidrólisis del ATP en condiciones de pH = 7 y T = 37 ◦C:

ATP4−(aq) + H2O(l) −−→ ADP3−(aq) + HPO4
2−(aq) + H3O+(aq) (3.10.9.1)

tiene las siguientes valores de entalpía y energía libre de reacción:

∆H = Hprod − Hreact = −20 kJ/mol (3.10.9.2)

∆G = Gprod − Greact = −31 kJ/mol

La reacción tiene una ∆S > 0 puesto que el efecto neto es que se rompe una molécula, lo que da más
posibles configuraciones en el espacio. Esto significa que la reacción produce 20 kJ/mol de calor si se da
a presión constante, pero que pueden llegar a aprovecharse hasta 31 kJ/mol –debido al término entrópico
(−T∆S)– para realizar alguna tarea útil dentro de la célula, ya descontado el posible trabajo de expansión.

Ejemplo 3.10.10 Oxidación de la glucosa

Otras veces el efecto de considerar T∆S es más pequeño. En el caso de la glucosa a T = 25 ◦C p = 1 bar
tenemos que

C6H12O6 + 6 O2 −−→ 6 CO2 + 6 H2O (3.10.10.1)

produce ∆H = −2808 kJ/mol y ∆G = −2828 kJ/mol, menos de 1 % de diferencia. Por cierto, con estos
datos, ¿podemos calcular ∆S para la reacción de glucosa? ¿Qué estado tiene mayor entropía, productos o
reactivos?

SOLUCIÓN

∆G = ∆H − T∆S⇒ ∆S =
∆H − ∆G

T
=
−2808 kJ/mol + 2828 kJ/mol

(273 + 25)K
= 67 J/(K ·mol) (3.10.10.2)
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Como ∆S = Sprod − Sreact > 0, los productos tienen mayor entropía, lo que es consistente con que son
moléculas aparentemente más sencillas.

Ejemplo 3.10.11 Estimación de ∆G en un proceso metabólico

Un pájarillo de 30 g vuela desde el suelo a una rama a 10 m por encima. Utilizando la energía liberada
por la glucosa ∆Gmolar = −2828 kJ/mol calcule la masa mínima de glucosa necesaria para realizar dicha
tarea. La fórmula de la glucosa es C6H12O6

SOLUCIÓN

El trabajo es el necesario para incrementar la energía potencial del pajarillo de masa m:

Wotro = mgh = (30× 10−3 kg)(9,8 m/s2)(10 m) (3.10.11.1)

Si la oxidación de 1 mol de glucosa produce ∆Gmolar, entonces n moles producen ∆G = n∆Gmolar y esa
energía producida en la oxidación es la que se utiliza para realizar el trabajo mecánico (recuérdese el
cambio de signo entre ∆G y Wotro):

Wotro = −n∆Gmolar ⇒ n =
−Wotro

∆Gmolar
. (3.10.11.2)

Finalmente, una vez conocidos los moles n necesarios, la masa total de glucosa se haya multiplicando por
la masa de 1 mol de glucosa M = 180 g/mol

mg = nM =
−Wotro

∆Gmolar
M =

−(30× 10−3 kg)(9,8 m/s2)(10 m)

−2828× 103 J/mol
× 180 g/mol ≃ 0,19 mg (3.10.11.3)

3.11 Fluctuaciones

En la sección 3.5 hemos visto como no todas las partículas en un
gas a una T tiene la misma velocidad (y por tanto la misma Ec), si
no que existe una distribución, la distribución de Maxwell. Es un
caso particular de un principio más general que establece que, en
un sistema en equilibrio a T, la fracción de partículas que tienen
una determinada energía E es proporcional a un factor exponen-
cial42. La fracción de partículas con energía E o equivalentemente la 42 conocido como factor de Boltzmann

probabilidad de encontrar 1 partícula con energía E es

Prob(E) ∝ e−
E

kT (3.94)

k es la constante de Boltzmann. En cierto sentido puede decirse que
la distribución es el resultado del equilibrio de dos tendencias, las de
las partículas a disminuir su energía y la de la agitación térmica que
tiende a mantenerlas en movimiento. Veamos algunas consecuencias
interesantes.
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Fórmula barométrica

Figura 3.45: Variación de la presión
con la altura z. La densidad del aire en
la atmósfera disminuye con la altura
de forma exponencial. Es el resultado
del balance de dos tendencias, la de
la gravedad, a acumular las partículas
abajo y la agitación térmica que tiende a
dispersarlas en todas direcciones.

Un ejemplo concreto de ese equilibrio de tendencias es la distribu-
ción de un gas sometido a la acción de la gravedad. Es bien conocido
que la densidad del aire desciende con la altura (ver figura 3.45). La
gravedad tiende a acumular las moléculas del gas cerca del suelo
(donde tienen menor energía potencial) mientras que la acción de la
agitación térmica tiende a homogeneizar la densidad. El resultado, en
equilibrio, lo podemos encontrar utilizando el factor de Boltzmann.
La energía de 1 molécula de masa mmolécula en el campo gravitatorio
es mmoléculagz donde z es la altura desde el nivel del suelo. La densi-
dad de moléculas a cada altura z será proporcional a la probabilidad
de encontrar de una molécula con una energía mmoléculagz, es decir:

ρ(z) ∝ Prob(z) ∝ e−
mmoléculagz

kT (3.95)

La constante de proporcionalidad se fija sabiendo que a z = 0
tenemos una cierta densidad ρ0:

ρ(z) = ρ0e−
mmoléculagz

kT . (3.96)

Si se trata de un gas ideal, podemos relacionar densidades y presio-
nes ya que

PV = NkT ⇒ P =
N
V

kT = ρkT, (3.97)

con ρ = N
V en mol/m3. Por tanto, P y ρ son proporcionales, así que

podemos escribir:

P(z) = P0e−
mmoléculagz

kT . (3.98)

con P0 la presión a nivel z = 0. A ésta se la conoce como fórmula
barométrica y expresa la P a una altura z conocida la presión a z = 0.

Ley de Nernst

membrana

Flujo por
difusión

Flujo
eléctrico

Figura 3.46: Ecuación de Nernst. Un
ion con carga q tiene distinta energía
eléctrica dentro que fuera de la célula
debido a la diferencia de potencial
de membrana y tendrá tendencia a
desplazarse hacia menor energía. Por
otro lado, la difusión tiende a igualar
concentraciones.

Otro ejemplo de este equilibrio de tendencias sucede en el caso de
tener de las membranas biológicas. Las membranas de las células
presentan cargas que generan un campo eléctrico y por tanto una
diferencia de potencial entre el exterior y el interior en torno a unos
−70 mV43.

43 El valor es ciertamente muy variable
e incluso puede llegar a ser positivo,
pero esto no es importante para esta
discusión

Un ión de carga Q tiene una energía eléctrica asociada proporcio-
nal al potencial eléctrico44 y a la carga, que es diferente en el interior

44 Veremos esto con detalle en el tema
siguiente, aunque debería ser más o
menos conocido

y el exterior de la célula debido a la diferencia de potencial eléctrico:

Eext = qVext

Eint = qVint (3.99)

Debido a la acción del campo eléctrico los iones tienden a situarse en
el interior o exterior de forma que minimicen su energía eléctrica. Por
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otro lado, la agitación térmica o la difusión tiende a homogeneizar
las concentraciones. En el equilibrio, si el ión puede atravesar la mem-
brana sin dificultad, el flujo producido por ambos efectos se equilibra
y no existe flujo neto. La diferencia de potencial VN

int − VN
int para la

que se alcanza el equilibrio para unas determinadas concentraciones
interna [ion]int y externa [ion]ext se denomina potencial de Nernst. Se
puede calcular suponiendo de nuevo que la probabilidad de encon-
trar un ion dentro o fuera de la membrana es exponencial, y que la
concentración es proporcional a esta probabilidad:

Prob(E) ∝ e−
E

kT ⇒

 [ion]ext ∝ e
−Eext

kT = e
−qVN

ext
kT

[ion]int ∝ e
−Eint

kT = e
−qVN

int
kT

(3.100)

donde hemos utilizado (3.99). La fracción será:

[ion]ext

[ion]int
=

e
−qVN

ext
kT

e
−qVN

int
kT

= e−q(VN
ext−VN

int) (3.101)

Tomando logaritmos:

VN
ext −VN

int = −
kT
q

log
[ion]ext

[ion]int
⇒ (3.102)

VN
int −VN

ext =
kT
q

log
[ion]ext

[ion]int
(3.103)

q es la carga del ion con su signo, y el log es neperiano. Utilizaremos
esta ecuación para estudiar la transmisión del impulso nervioso.

Equilibrio químico

Ciertas reacciones químicas necesitan que los reactivos interaccio-
nen con suficiente energía como para superar una barrera energética,
antes de proseguir hasta convertirse en productos, tal como se mues-
tra en la figura 3.47. La energía necesaria la pueden obtener de la
energía cinética contenida en las partículas por el hecho de estar a
T. Considerando el estado de transición, la energía necesaria para
moverse hacia la derecha (hacia productos) será:

reactivos

productos

estado de
transición

avance de la reacción

Figura 3.47: Perfil energético de una
reacción química. Los reactivos han de
superar una cierta barrera de energía
antes de convertirse en productos

E→ = Etrans − Ereac = ∆Ebarrera (3.104)

La reacción avanza hacia los productos a un ritmo proporcional a
la fracción de (o probabilidad de encontrar ) átomos o moléculas de
reactivos que tengan energía mayor a la necesaria para avanzar. La
probabilidad o fracción de átomos con energía suficiente es exponen-
cial:

P→ ∝ e−
E→
kT (3.105)
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y entonces el ritmo k→ al que reaccionan es

k→ ∝ [reac]e−
E→
kT , (3.106)

con [reac] la concentración de los reactivos. Análogamente, para la
reacción inversa, la energía necesaria es E← = Etrans − Eprod. La
velocidad de reacción inversa k← será

k← = [prod]e−
E←
kT . (3.107)

En el equilibrio químico se cumple

k← ∝ k→ ⇒
[prod]
[reac]

= e−
(E→−E←)

kT (3.108)

Con la definición habitual de energía de reacción ∆Ereaccion = Eprod −
Ereac tenemos

∆Ereaccion = Eprod − Ereac = Eprod − Etrans + Etrans − Ereac = E→ − E←
(3.109)

de donde
[prod]
[reac]

= e
−∆Ereaccion

kT (equilibrio) (3.110)

Por ejemplo, si la energía de reacción ∆Ereaccion < 0 (como en
la figura 3.47), la reacción está desplazada en el equilibrio hacia
mayor concentración de productos. La T alta tiende a igualar las
concentraciones en general.





4
Electricidad

4.1 ¿De qué trata el capítulo?

La conexión entre electricidad y vida es muy estrecha. Algu-
nas de las observaciones que las relaciona se remontan a los experi-
mentos de Galvani en el siglo XVIII sobre la naturaleza eléctrica del
impulso nervioso o la constatación en la antigüedad de la existencia
de peces eléctricos.1 1 Parece ser que los experimentos de

Galvani inspiraron a Mary Shelley
para la escritura de Frankenstein. Sin
llegar a esos extremos, la relación entre
electricidad y vida es sin duda muy
estrecha

Por poner algunos ejemplos, podemos citar que las interacciones
de biomoléculas como los fosfolípidos de las membranas, las que do-
minan el plegamiento de proteínas o la conformación del ADN son,
en última instancia, eléctricas. A una escala mayor, el transporte de
iones a través de membrana, el potencial de membrana y el potencial
de acción son fenómenos eléctricos. Los sensores que proporcionan
los sentidos a los animales convierten las diferentes señales que de-
tectan en un impulso eléctrico (electroquímico) que se transmite al
cerebro. Finalmente, algunos animales tienen directamente sensores
de campo eléctrico que detectan las débiles corrientes que generan
otros animales.

En este capítulo, dedicaremos una sección especial al análisis de la
transmisión del impulso nervioso, un tema clásico de la biofísica.

4.2 Carga eléctrica. Conservación de la carga

Existen 2 tipos de carga eléctrica, que llamamos positiva y negati-
va. 2 tipos de carga: + y -

Frotando algunos objetos podemos poner de manifiesto la carga.
Lo que sucede es que se transfiere algo de carga de un objeto al otro
y ambos quedan cargados. Aparece una fuerza entre ellos ya que las
cargas de distinto signo sufren una atracción. Las cargas de igual
signo sufren una fuerza repulsiva. Aunque las cargas se pueden
transferir, está bien establecido el principio de conservación de la
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carga:

ha perdido

ha ganado

eléctricamente
neutros

Figura 4.1: Conservación de la car-
ga. Arriba: objetos sin carga inicial o
Qtotal = 0. Abajo: los objetos se cargan
uno con +4e y otro con −4e de modo
que la carga total sigue siendo la misma
que antes Qtotal = +4e− 4e = 0.

En cualquier proceso, la carga total se mantiene constante,

entendiendo como carga total la suma (con su signo) de todas las
cargas presentes en el fenómeno estudiado. Por ejemplo, si frotamos
dos objetos eléctricamente neutros (inicialmente ninguno tiene carga)
se puede transmitir carga de uno a otro, pero siempre de manera que
la carga negativa de uno sea igual a la positiva del otro (figura 4.1).

En los átomos que conforman la materia que vemos, la carga
positiva se encuentra en el núcleo, en los protones, y la negativa en
los electrones:

protón: + e
electrón: − e

con e = 1,602× 10−19 C

siendo e la carga más pequeña que puede existir libremente, cono-
cida como carga fundamental. La unidad de la carga en el sistema
internacional es el Coulomb (símbolo C) y lo definiremos más tarde.

Conductores y aislantes

Algunos materiales conducen (dejan fluir, transmiten) fácilmente
la carga eléctrica a su través y otros no. Los llamamos conductores y
aislantes (figura 4.2).

metal

aislante

Figura 4.2: Conductores y aislantes.
Arriba: Situación inicial, un objeto
cargado y otro neutro. Medio: al po-
nerlos en contacto mediante un buen
conductor, la carga se puede transmitir
de uno a otro. Abajo: los aislantes no
dejan fluir la carga a su través.

Los metales tienen sus electrones poco ligados a los núcleos y
muy móviles, por lo que en general son muy buenos conductores.
Volveremos a este tema de forma más precisa cuando veamos la
resistencia eléctrica.

4.3 Fuerza entre cargas. Ley de Coulomb

Como toda fuerza, la fuerza eléctrica entre dos cargas tiene módu-
lo, dirección y sentido.

Módulo de la fuerza

Dos cargas eléctricas, Q1 y Q2 de distinto signo se atraen (o si son
de igual signo se repelen) con una fuerza de módulo

F =
k|Q1||Q2|

r2 (4.1)

con

Q1 y Q2, las cargas respectivas en C

r la distancia que las separa, en m
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la constante de Coulomb k que depende del medio en el que se
encuentran las cargas, por ejemplo en el vacío k = 9× 109 N ·m2/C2

Lo que significa más precisamente es que la carga 1 ejerce una fuerza
sobre la carga 2 de módulo dado por (4.1), igual en módulo a la
fuerza que la carga 2 ejerce sobre la carga 1, según nos dice la 3ª ley
de Newton.

Dirección

Las fuerzas eléctricas apuntan en la dirección de la línea que une
las posiciones de las dos cargas.

Sentido

Si las dos cargas son de signo contrario, las partículas se atraen,
por lo que la carga 1 ejerce una fuerza sobre la 2 que apunta hacia
la carga 1 y trata de acercarla hacia sí. Igualmente, por la 3ª ley de
Newton, la fuerza que 2 ejerce sobre 1 es desde 1 hacia 2. Como
vectores

Figura 4.3: Arriba: fuerzas entre cargas
de distinto signo. Abajo: fuerzas entre
cargas de igual signo. En ambos casos,
F⃗12 es la fuerza que la carga 1 hace so-
bre la carga 2 y F⃗21 la fuerza que ejerce
2 sobre 1. Nótese que las fuerzas se
pintan sobre los objetos que las sienten.

F⃗12 = −F⃗21 (4.2)

donde F⃗12 es la fuerza que 1 ejerce sobre 2 y F⃗21 la que 2 ejerce sobre
1. En caso de cargas de igual signo, las fuerzas apuntan en sentidos
contrarios a estos, de forma que tienden a separar las cargas. Esto se
resume en la figura (4.3)

4.4 Ley de Coulomb vectorial

Todo lo explicado en la sección anterior sobre la fuerza de Cou-
lomb se puede resumir en una sola fórmula, sencilla de “construir”.
Vamos a encontrar la expresión para la fuerza que ejerce la carga Q1

sobre una carga Q2 colocada en una posición diferente. Se basa en el
concepto de vector unidad, que es un vector que apunta en una cierta
dirección que nos interesa y tiene módulo uno. La fuerza eléctrica
tiene la dirección que une las dos cargas, así que construyamos un
vector unidad en esa dirección. Supongamos que la carga Q1 está en
una posición dada por r⃗1 como en la figura (en el plano, sus coorde-
nadas serán algo como r⃗1 = (2, 3)m o r⃗1 = (−1, 5)m o algo así). La
carga Q2 está en la posición r⃗2. El vector que va desde el punto de
coordenadas r⃗1 al punto r⃗2 tiene la dirección que nos interesa, y se
calcula fácilmente:

Figura 4.4: El vector r⃗12 es el vector que
va desde la posición de la carga 1 a la
de la carga 2. Es un vector que marca la
dirección de la fuerza entre las cargas.

r⃗12 = r⃗2 − r⃗1 (4.3)
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Además el módulo de este vector |⃗r12| es la distancia que separa las
cargas. Con él podemos construir fácilmente un vector unidad en esa
dirección. Si dividimos r⃗12 por su módulo, el vector resultante tiene
módulo unidad:

u⃗12 =
r⃗12

|⃗r12|
⇒ |u⃗12| =

|⃗r12|
|⃗r12|

= 1 (4.4)

y por supuesto sigue apuntando en la misma dirección y sentido que
r⃗12.

Utilizando el vector unidad u⃗12 es fácil escribir la ley de Coulomb
en su forma vectorial. La fuerza de Coulomb que la carga 1 ejerce
sobre 2 entonces es:

F⃗12 = k
Q1Q2

|⃗r12|2
u⃗12 (4.5)

Es muy importante fijarse en lo siguiente. Por un lado, la fuerza F⃗12

tiene el módulo dado por la ley de Coulomb. En efecto, tomando el
módulo

|F⃗12| = k
|Q1Q2|
|⃗r12|2

|u⃗12| = k
|Q1||Q2|
|⃗r12|2

(4.6)

donde el valor absoluto en las cargas se debe a que el módulo es
una cantidad siempre positiva y hay que recordar que |⃗r12|2 es la
distancia que separa las cargas al cuadrado, como establece la ley de
Coulomb. Por otro, el vector F⃗12 tiene la misma dirección de u⃗12 ya
que es un número multiplicado por dicho vector. Finalmente, si se
introducen correctamente los signos de las cargas, F⃗12 tiene además el
sentido correcto:

Figura 4.5: Arriba: la fuerza que ejerce
1 sobre 2 lleva la dirección de u⃗12 y el
mismo sentido. Abajo: la fuerza que
ejerce 1 sobre 2 lleva la dirección de u⃗12
y sentido contrario

cargas del mismo signo: Q1Q2 > 0 y F⃗12 apunta hacia el mismo
sentido de u⃗12, esto es, desde 1 hacia 2 (1 repele la carga 2).

cargas de signo contrario: Q1Q2 < 0 y F⃗12 apunta hacia el sentido
contrario de u⃗12, esto es, desde 2 hacia 1 (1 atrae la carga 2).

como se observa en la figura 4.5.
Para acabar, la manera más compacta de escribirlo todo es sustituir

el valor de u⃗12 = r⃗12
|⃗r12|

y obtener para dos cargas situadas en r⃗1 y r⃗2:

F⃗12 = k
Q1Q2

|⃗r12|3
r⃗12, con r⃗12 = r⃗2 − r⃗1 (4.7)

La fuerza que ejerce 2 sobre 1 se podría calcular de igual forma
teniendo en cuenta que ahora hay que usar el vector r⃗21 = r⃗1 − r⃗2 y ver
que el resultado es

F⃗21 = −F⃗12 (4.8)

como predice la 3ª ley de Newton.
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Ejemplo 4.4.1 Ley de Coulomb vectorial

Figura 4.6: Disposición de las cargas del
ejemplo.

Una carga Q1 = 6 µC se encuentra en la posición (1,2) dada
en metros. Otra carga se encuentra en (5,5)m y tiene un valor de
Q2 = −4 µC. Calcule la fuerza que ejerce 1 sobre 2 y la fuerza de 2

sobre 1 en el vacío.
Datos: k=9× 109 N ·m2/C2

SOLUCIÓN

Primero calculamos el vector que une las cargas

r⃗12 = r⃗2 − r⃗1 = (5, 5)− (1, 2) = (5− 1, 5− 2) = (4, 3)m (4.4.1.1)

y su módulo
|⃗r12| =

√
42 + 32 =

√
16 + 9 = 5m (4.4.1.2)

que es la distancia que las separa. Calculamos ahora la fuerza con la fórmula (4.7):

F⃗12 = k
Q1Q2

|⃗r12|3
r⃗12 = k

(6 µC)(−4 µC)

(5 m)3 (4, 3) ≃ −0,0017(4, 3) = (−0,0069,−0,0052)N = (−6,9,−5,2)mN

(4.4.1.3)
que son las coordenadas del vector. Ambas coordenadas son negativas, como corresponde a un vector que

apunta hacia abajo a la izquierda según los ejes de la figura 4.6.
La fuerza que ejerce la carga 2 sobre la carga 1 se calcula de forma análoga o directamente:

F21 = −F12 = −(−6,9,−5,2)mN = (6,9 , 5,2)mN (4.4.1.4)

también representada en la figura.

La constante dieléctrica

La ley de Coulomb se expresa con una constante delante k

F = k
Q1Q2

r2 (4.9)

que vale en el sistema internacional y para el vacío k = 9× 109 N ·
m2/C2 y tiene otros valores en diferentes medios como el agua, aceite,
etc. Otra manera equivalente de expresar esa constante es mediante
la permitividad del vacío ϵ0, así

F =
1

4πϵ0

Q1Q2

r2 (4.10)

Comparando ambas expresiones, tenemos

k =
1

4πϵ0
⇒ ϵ0 =

1
4πk

≃ 8,85× 10−12 C2/(N ·m2) (4.11)
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Cuando las cargas se encuentran en otro medio que no es el
vacío, como el agua, la fuerza eléctrica se apantalla2 de forma que la 2 Debido a las cargas presentes en el

medio, lo veremos luego tras hablar
del campo eléctrico en los medios
dieléctricos

constante es diferente. Por ejemplo, en lugar de ϵ0 tendremos una ϵ

de mayor valor y la fuerza pasa a ser

F =
1

4πϵ

Q1Q2

r2 (4.12)

o lo correspondiente en su forma vectorial. La manera habitual
de dar el valor de ϵ es de forma indirecta, mediante la constante
dieléctrica del medio que es

K =
ϵ

ϵ0
(4.13)

Por ejemplo, para el agua tenemos que K = 80,4 y por tanto3 3 No confundir la constante dieléc-
trica K con la constante de la ley de
Coulomb kϵ = ϵ0K = 80,4ϵ0 (4.14)

y la ley de Coulomb en el agua queda

F =
1

4πϵ

Q1Q2

r2 =
1

80,4× 4πϵ0

Q1Q2

r2 (4.15)

es decir, las fuerzas eléctricas son en agua unas 80 veces más débiles
que en el vacío, a igualdad de cargas y distancias.

4.5 Campo eléctrico

El campo eléctrico es una idea útil en física y muchas ramas de
la ciencia. Una vez calculado el campo, permite olvidarse de las
cargas que lo generan y centrarse en el efecto sobre las cargas que lo
experimentan.

El campo eléctrico en cada punto del espacio se define como la
fuerza eléctrica (por unidad de carga) que sentiría una pequeña carga
de prueba situada en ese punto4. Matemáticamente, 4 Por el efecto de otras cargas preexis-

tentes en una zona cercana

E⃗ =
F⃗
q

(4.16)

donde F⃗ es la fuerza que siente la carga q5. Es un vector definido 5 Como es independiente de la carga
de prueba que se pone, suele ser lo más
fácil pensar en que ponemos una carga
positiva de prueba

en todo punto del espacio alrededor de una o varias cargas. Sus
unidades son

[E] =
[F]
[q]

= 1 N/C (4.17)

Una vez establecido un campo creado por una o por múltiples
cargas en un punto del espacio, si situamos otra carga q′ en ese
punto, ésta sentirá una fuerza dada por

Figura 4.7: Izquierda: La carga Q1
establece un campo E⃗ en todo punto del
espacio. Derecha: Una nueva carga q′

situada donde existe un campo E⃗ siente
una fuerza q′ E⃗, independientemente de
qué carga o cargas lo hayan creado.

F⃗(sobre q′) = q′E⃗ (4.18)
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Como se ve, la idea de campo eléctrico separa la interacción eléctrica
en dos partes, por un lado existen cargas que generan campo eléc-
trico en el espacio. Después, cuando otras cargas se sitúan en algún
punto del espacio donde existe un campo eléctrico, surge una fuerza
sobre estas nuevas cargas debida al campo (figura 4.7).

Campo creado por una carga puntual

Figura 4.8: Para calcular el campo
creado por Q en un punto del espacio,
situamos una carga de prueba en el
punto, medimos la fuerza. El campo es
el resultado de la fuerza dividido por la
carga q.

Empecemos calculando el campo creado por una carga puntual
de valor Q en un punto del espacio. Para simplificar, situamos nues-
tro origen de coordenadas encima de la carga Q que crea el campo.
Calculemos el campo que genera en un punto situado en las coor-
denadas r⃗, como en la figura 4.8. Para ello colocamos una carga test
q en el punto de coordenadas r⃗. La fuerza que siente, según (4.7)
(tomando r⃗1 = 0 y r⃗2 = r⃗) es

F⃗ = kQq
r⃗
|⃗r|3 (4.19)

y de la definición de campo

E⃗ =
F⃗
q
= kQ

r⃗
|⃗r|3

(
o bien, E⃗ =

1
4πϵ0

Q⃗r
|⃗r|3

)
(4.20)

carga que crea el campo

punto donde
calculamos
el campo

otro punto donde
calculamos
el campo

Figura 4.9: El campo creado por una
carga positiva es radial y hacia afuera y
decrece con el cuadrado de la distancia
a la carga.

carga que crea el campo

punto donde
calculamos
el campo

otro punto donde
calculamos
el campo

Figura 4.10: El campo creado por una
carga negativa es radial, apunta hacia la
carga, y decrece con el cuadrado de la
distancia a la carga.

Recordando el vector unitario, en este caso r⃗
|⃗r| vemos que el campo

creado por una carga Q en un punto situado en la posición r⃗ respecto
de ella, tiene

la dirección de la linea que une la carga y el punto donde estamos
hallando el campo (dada por el vector r⃗). Es radial.

módulo |E⃗| = k|Q|
|⃗r|2 . Recuerde que |⃗r| es la distancia entre el punto y

la carga.

tiene sentido “hacia afuera” (el mismo que r⃗) si la carga Q es
positiva y sentido “hacia la carga” (sentido contrario a r⃗) si la
carga Q es negativa.

Todo esto se resume en las figuras 4.9 y 4.10.
Finalmente, si tuviéramos la carga Q en un punto r⃗1 que no sea el

origen de coordenadas, haciendo el mismo proceso, llegamos a

E⃗ = kQ
r⃗12

|⃗r12|3
(4.21)

donde la carga que crea el campo Q está en r⃗1 y el punto donde
calculamos el campo en r⃗2 e igual que antes r⃗12 = r⃗2 − r⃗1, como
en la figura 4.11. Esta expresión es útil si tenemos varias cargas en
diferentes sitios y queremos calcular el campo total, como en la
siguiente sección.

carga que 
crea el campo

punto donde
calculamos
el campo

Figura 4.11: Los vectores necesarios
para calcular el campo creado por una
carga que no está situada en el origen
de coordenadas
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Superposición de campos

Además, en caso de que haya varias cargas que generan el campo,
puesto que las fuerzas se suman vectorialmente, el campo total
generado por varias cargas en un mismo punto es la suma de los
campos que crea cada una de ellas por separado

E⃗total = E⃗1 + E⃗2 + E⃗3 + . . . (4.22)

Campo creado por placa plano paralelas

Un objeto cualquiera, una esfera, un plano, un bolígrafo, una cé-
lula, una proteína, puede en algún caso tener carga eléctrica no nula.
Las cargas eléctricas se distribuyen en el objeto6 y crea un campo 6 La forma concreta depende de sus

propiedades eléctricaseléctrico a su alrededor que será la suma (vectorial) de los campos
creados por cada carga. A esto en física se le llama una distribución
de carga. Para nosotros será interesante el campo generado entre
dos superficies planas paralelas cargadas con la misma cantidad de
carga Q, una positiva y otra negativa (placas planoparalelas). Esta
situación es parecida a la que sucede en una membrana biológica y
nos servirá como modelo para estudiar las propiedades eléctricas de
las membranas. El campo dentro de una membrana

biológica se parece al campo entre dos
placas planoparalelas

plano cargado
positivamente

Figura 4.12: Vista transversal de un
plano uniformemente cargado. El
campo en un punto P es perpendicular
al plano. Las cargas situadas en A y en
B, a la misma distancia de P y con valor
igual, generan campos cuyas compo-
nentes paralelas al plano se compensan
exactamente.

Empecemos por el campo creado por un plano infinito (bueno,
muy grande en comparación con la distancia a la que miramos el
campo) cargado positivamente con una carga total Q, con la carga
repartida uniformemente. Si el plano es grande, por simetría pode-
mos ver que el campo tiene que ser perpendicular al plano. Esto se
ve claramente en la figura 4.12, pues el punto P donde calculamos el
campo siempre va a tener cargas a un lado y a otro que crean cam-
pos cuyas componentes paralelas al plano son iguales y de sentido
contrario. Se compensan por tanto y solo quedan componentes per-
pendiculares al plano. Un cálculo detallado7 muestra que si miramos

7 Que se escapa del objeto de este curso

en puntos no muy lejanos del plano y lejos a su vez de los bordes, el
campo es independiente de la distancia al plano y vale en módulo:

|E⃗
1plano| =

Q
2Aϵ0

(4.23)

El campo apunta en un eje perpendicular al plano, hacia afuera para
un plano con carga + y hacia el plano si la carga es -, como en las
figuras 4.13 y 4.14. Donde

Q es el valor de la carga total del plano (como número positivo
siempre)

A es el área

ϵ0 permitividad del vacío
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A veces se expresa en función de la densidad superficial de carga
σ = Q

A :

|E⃗
1plano| =

σ

2ϵ0
(4.24)

plano cargado
positivamente

Figura 4.13: Campo eléctrico creado por
una placa cargada positivamente con
carga +Q. Es perpendicular al plano,
apunta hacia afuera.

plano cargado
negativamente

Figura 4.14: Campo eléctrico creado por
una placa cargada negativamente con
carga −Q. Es perpendicular al plano,
apunta hacia el plano.

Con esto podemos calcular fácilmente el campo entre dos planos
cargados con cargas opuestas +Q y −Q. Teniendo en cuenta que el
campo será superposición (suma vectorial) del campo creado por
el plano positivo y el negativo, y teniendo en cuenta que el campo
creado por el positivo apunta hacia afuera del plano, pero el negativo
crea campo que apunta hacia el plano negativo. Entonces, en el
espacio entre los dos planos, los dos campos apuntan en el mismo
sentido (desde el positivo hacia el negativo) y el valor total es la
suma (ver figura 4.15)

|E⃗
2planos| =

Q
2Aϵ0

+
Q

2Aϵ0
=

Q
Aϵ0

(región interior a los planos) (4.25)

En la región externa a los dos planos, el campo creado por el plano
positivo y el del negativo apuntan en sentidos opuestos y se anula
(figura 4.15):

|E⃗
2planos| =

Q
2Aϵ0

− Q
2Aϵ0

= 0 (región externa a los planos) (4.26)

Resumiendo, el campo en la región entre dos planos cargados con
la misma carga pero de signos opuestos es uniforme (igual en todo
punto en módulo, dirección y sentido), perpendicular a los planos y
apuntando desde el positivo al negativo. Fuera de las placas se anula.
Se muestra en la figura 4.16.

Figura 4.15: Arriba: El campo entre 2

planos cargados con +Q y −Q apunta
en el mismo sentido en la región entre
los planos y en sentidos contrarios en
el exterior de las placas. Abajo: Suma
vectorial de los campos generados por
cada plano.

Figura 4.16: El campo entre 2 placas
paralelas es uniforme en el interior y
nulo en el exterior.
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El campo eléctrico en la membrana plasmática
exterior celular

interior celular

membrana

Figura 4.17: Arriba: La membrana
celular adquiere cierta carga en su
superficie exterior e interior, por re-
distribución de iones disueltos. La
conservación de la carga implica que la
carga positiva de una cara se compensa
con la negativa de la otra. Abajo: Mode-
lo de membrana como dos placas plano
paralelas.

Las membranas de la mayoría de las células vivas, debido a las
diferentes permeabilidades de los iones, acaban con algo de carga
positiva en su superficie exterior y algo de carga negativa en la
interior, en reposo8. Aunque la membrana no es plana, su superficie

8 A veces la polaridad se invierte, como
veremos en la transmisión del impulso
nervioso

es grande (hasta miles de micras cuadradas) mientras que el espesor
es relativamente pequeño (unos pocos nanometros) de modo que en
una pequeña porción, la curvatura no será grande. Para estudiar el
flujo de iones, podemos pensar en la membrana como si fuera un par
de planos paralelos cargados, con un campo eléctrico uniforme en el
interior de la membrana.

Por otro lado, el espacio en la membrana no es vacío, por lo que
para el módulo del campo eléctrico dentro de la membrana tenemos
que sustituir la permitividad del vacío ϵ0 por la permitividad de la
membrana ϵ:

E =
σ

ϵ
=

Q
Aϵ

(4.27)

donde cabe recordar ϵ = Kϵ0 con K constante dieléctrica. La constan-
te dieléctrica de la membrana celular está en el rango de 3 o 5 aunque
otros autores dan valores superiores9,10.

9 D.C. Giancoli. Física: Principios con apli-
caciones. Prentice Hall Hispanoamérica,
México, 1997

10 J. C. Weaver and K. H. Schoenbach.
Biodielectrics. IEEE Transactions on
Dielectrics and Electrical Insulation,
10(5):715–716, October 2003. Conference
Name: IEEE Transactions on Dielectrics
and Electrical Insulation

Ejemplo 4.5.1 Densidad superficial de carga de la membrana

Estime la densidad superficial de carga de una membrana biológica sabiendo que el valor de la constan-
te dieléctrica es 6 y el campo eléctrico 1× 107 N/C. Datos: Permitividad del vacío ϵ0 = 8,9× 10−12 N ·C2/m2

SOLUCIÓN

Directamente de (4.27) escribimos

σ =
Q
A

= ϵE = Kϵ0E = 6(8,9× 10−12 C2/(N ·m2))(1× 107 N/C) = 5,3× 10−4 C/m2 (4.5.1.1)

Lineas de campo

Para representar el campo creado por cargas o distribuciones de
carga podemos pintar el valor del vector en determinados puntos. No
obstante, esto puede llegar a ser confuso si tratamos de representar
el campo en puntos cercanos. Otra manera de representar el campo
es mediante las líneas de campo. Las líneas de campo son líneas en
las que el campo es tangente en cada punto (indicando por tanto
la dirección). El sentido se indica con una flecha. Finalmente, si
representamos las líneas equiespaciadas en ángulo, el campo resulta
ser más intenso donde las líneas están más juntas, por lo que también
indican indirectamente el módulo. En la figura 4.18 se representan



física aplicada a la biología 109

las líneas de campo para las cargas y distribuciones que hemos visto
hasta ahora.

Figura 4.18: Izquierda: Líneas de campo
de una carga positiva. Centro: Líneas de
campo de una carga negativa. Derecha:
Líneas de campo entre placas cargadas.
Los vectores dibujados en un punto
muestran que el vector campo es tan-
gente a la línea de campo. Las líneas de
campo “nacen” en las cargas positivas y
“mueren” en las cargas negativas.

Campo eléctrico y conductores en equilibrio

En los buenos conductores como los metales, los electrones tienen
mucha libertad para moverse. Por tanto, las cargas eléctricas en un
conductor tienden a separase lo más posible, acumulándose en la
superficie. Por otro lado, se alcanza el equilibrio rápidamente y las
cargas se colocan de forma que el campo eléctrico es perpendicular
a la superficie. De no ser así, si hubiera componente de E⃗ tangencial
a la superficie, aparecería una fuerza tangencial, como las cargas
se pueden mover fácilmente, se moverían, lo cual contradice que
hayamos llegado al equilibrio. La única posibilidad de equilibrio es
que el campo sea perpendicular a la superficie.

Figura 4.19: Campo eléctrico alrededor
de una esfera conductora cargada. En
un conductor en equilibrio, la carga se
acumula en la superficie y el campo E⃗
es perpendicular a la superficie. En la
figura se representa el corte de la esfera
con el plano del papel o de la pantalla.

El caso anterior de dos placas planas paralelas de metal es un
buen ejemplo de esto (figura 4.18). El campo es perpendicular a las
placas. En una esfera metálica cargada, la carga se acumula en la
superficie y es radial, similar al campo de una carga puntual (figura
4.19).

4.6 Potencial eléctrico

Energía potencial eléctrica

Al igual que con la fuerza gravitatoria, hay una energía potencial
asociada a la fuerza eléctrica. Pensemos por ejemplo en un electrón
(carga −e) que depositamos en reposo en una zona donde hay un
campo eléctrico, en el punto B de la figura 4.20 por ejemplo. El elec-
trón sentirá una fuerza F⃗e = −eE⃗ y (si no hay otra fuerza actuando)
una aceleración (de módulo) a = Fe/me = e/me|E⃗|. Al cabo de
un tiempo habrá acelerado hasta una cierta velocidad v y tendrá
una energía cinética asociada 1

2 mev2. ¿De dónde viene esa energía?
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De energía potencial que tenía acumulada por estar en un campo
eléctrico.

Podemos verlo de otro modo. Para llevar el electrón por ejemplo
desde el punto A al punto B hay que luchar contra una fuerza eléctri-
ca F⃗e = −eE⃗ y desplazarlo una cierta distancia, por lo que realizamos
un trabajo W. Ese W queda acumulado como (cambio) de energía
potencial eléctrica.

Figura 4.20: Fuerza eléctrica sobre un
electrón en un campo eléctrico. Si solo
actúa esa fuerza, un electrón dejado en
reposo en el punto B acelerará hacia la
izquierda (en dirección de la fuerza) y
al cabo de un tiempo adquiere cierta
velocidad.

Definiremos la energía potencial eléctrica en base a esto. El cambio
de energía potencial eléctrica de una carga q entre dos puntos A
(inicial) y B (final) será:

∆Ep = EpB − EpA = −WFe
AB (4.28)

donde WFe
ab es el trabajo que realiza la fuerza eléctrica sobre la carga q

al pasar de A a B. Recordando la relación entre trabajo de una fuerza
y su contraria, también se puede definir como

∆Ep = EpB − EpA = Wyo
AB (4.29)

donde Wyo
ab es el trabajo de la fuerza “que hago yo” en contra de la

fuerza eléctrica para llevar la carga q desde A hasta B, y que queda
acumulado como energía potencial11. 11 Esto es exactamente igual que con la

energía potencial gravitatoria, comparar
con la expresión (1.36)

El trabajo podría ser en general una integral complicada. Aquí
veremos unos casos simples. Lo importante es que la fuerza eléctrica
es conservativa y ese trabajo no depende del camino exacto de A
a B, solo de la posición inicial y final. Al igual que sucedía con la
gravedad, de modo que la energía potencial eléctrica tiene sentido y
además da lugar de nuevo a la conservación de la energía.
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Conservación de la energía

Al igual que pasaba con la gravedad, si no hay fuerzas de roza-
miento, solo fuerzas eléctricas tenemos que

WFe
ab = ∆Ec (4.30)

donde WFe
ab es el trabajo neto de las fuerzas eléctricas. El trabajo neto

de las fuerzas aplicadas es la variación de energía cinética (igual que
vimos en (1.42)). Utilizando (4.28) tenemos

WFe
ab = −∆Ep = ∆Ec ⇒ ∆Ep + ∆Ec = 0 (4.31)

es decir, tomando la energía mecánica como Ec + Ep tenemos de nuevo
la conservación de la energía mecánica, simplemente ha cambiado el
tipo de energía potencial.

Potencial eléctrico

Para evitar calcular trabajos para cargas positivas y negativas, es
útil utilizar el potencial eléctrico V. La relación es la siguiente, una
variación de potencial V entre dos puntos A y B es

∆VAB = VB −VA =
∆Ep

q
=
−WFe

AB
q

(4.32)

donde ∆Ep es la variación de energía potencial de la carga q entre
el punto A y el B. O bien, una carga q en un punto donde hay un
potencial V tiene una energía potencial Ep = qV y

∆Ep = EpB − EpA = q∆V = q(VB −VA) (4.33)

Las unidades del potencial son por tanto

[V] =
[E]
[Q]

=
J
C

= 1 V (4.34)

que recibe el nombre de “voltio” en honor a Volta12. Con esto, po- 12 De aquí deriva también voltaje, aun-
que lo correcto es hablar de diferencia
de potencial

demos calcular diferencias de potencial para diversas configuracio-
nes de campo eléctrico. Vamos a ver 2, potencial creado por cargas
puntuales y potencial en las placas plano paralelas. Este último es
aplicable al potencial de membrana de las células, como veremos.

Ejemplo 4.6.1 Conservación de la energía

Un protón parte de un punto A en reposo y llega a un punto B con una cierta velocidad final v f . Entre
el punto A y B hay una diferencia de potencial eléctrico VB −VA = −10 V. ¿Cuánto vale la velocidad final?
Datos: Carga del protón: q = +e = 1,6× 10−19 C, masa de un protón: mp = 1,7× 10−27 kg
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SOLUCIÓN

Utilizando la relación entre energía potencial eléctrica y potencial eléctrico calculamos la diferencia de
energía potencial entre ambos puntos (final menos inicial):

∆Ep = EpB − EpA = qVB − qVA = q(VB −VA) = (1,6× 10−19 C)(−10 V) = −1,6× 10−18 J (4.6.1.1)

El protón pierde energía potencial, que transforma en energía cinética:

∆Ec + ∆Ep = 0⇒ Ec f − Eci = −∆Ep ⇒ Ec f = −∆Ep ⇒
1
2

mpv2
f = −∆Ep (4.6.1.2)

donde se ha tenido en cuenta que Eci = 0. Despejando

v f =

√
−2∆Ep

mp
=

√
2(1,6× 10−18 J)
1,7× 10−27 kg

≃ 4,4× 104 m/s (4.6.1.3)

Nótese que al ser la diferencia de energía potencial negativa, con el signo negativo queda un número
positivo y el resultado tiene sentido. Así, las cargas positivas caen espontáneamente hacia abajo en el
potencial (en B hay un potencial 10 V menos que en A, por ejemplo en A 24 V y en B 14 V). Las cargas
negativas por el contrario, suben espontáneamente por el potencial. Para comprobarlo, podemos repetir
el ejercicio suponiendo ahora un electrón que parte del punto B en reposo y llega a A, con la misma
diferencia de potencial VB − VA = −10 V. OJO, el punto final es A ahora y el inicial B y la carga de un
electrón es q = −e

∆Ep = q(VA −VB) = −e(10 V) = −1,6× 10−18 J (4.6.1.4)

al igual que antes y la velocidad sale diferente por la diferente masa del electrón (me = 9,1× 10−31 kg) pero
se puede calcular

v f =

√
−2∆Ep

me
≃ 1,9× 106 m/s (4.6.1.5)

Las cargas negativas tienden a subir en el potencial, las positivas tienden a bajar. Esto es consistente con
el hecho de que situadas en el mismo campo eléctrico la fuerza que sienten unas y otras tienen sentidos
contrarios. Por último, decimos que tienden a bajar en el potencial, por ejemplo, igual que una piedra
tiende a caer en el campo gravitatorio, aunque por supuesto puede subir si le damos velocidad inicial hacia
arriba. Igual una carga positiva podría subir en un potencial si la lanzamos con velocidad suficiente.

Potencial eléctrico creado por cargas puntuales

Ahora que sabemos que el potencial eléctrico es algo parecido a
la energía y por tanto resulta útil, veamos cómo calcular el poten-
cial creado por diferentes cargas. Vamos a ver 2 casos, las cargas
puntuales y las placas paralelas cargadas (o membrana celular).

Para calcular el potencial creado por una carga positiva Q en
un punto alejado de ella una distancia r tenemos que acudir a la
definición:
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VB −VA = −
WFe

AB
q

(4.35)

esto es, tenemos que calcular el trabajo de la fuerza eléctrica Fe = qE
sobre una carga q cuando pasa de un punto A a otro B en el campo
eléctrico E. Recordando el campo E creado por una carga a una
distancia r de la carga Q:

E =
kQ
r2 (4.36)

que apunta radialmente. Como depende del cuadrado de la distancia
y por tanto la fuerza sobre la carga q, Fe = qE = kQq

r2 depende de la
posición, y el trabajo hay que calcularlo con una integral (la integral
de 1/r2, que es, −1/r). Pongamos que movemos la carga q desde un
punto a distancia rA de Q a una distancia rB de Q en línea recta de
forma radial, como en la figura 4.21. Hacerlo así, nos permite tomar
el ángulo entre fuerza y desplazamiento como 0 y cos θ = 1. Como
la fuerza eléctrica es conservativa, el trabajo no depende del camino
exacto, solo de posición final e inicial. La diferencia de potencial es
entonces

carga que crea el campo

A B

Figura 4.21: La diferencia de potencial
VB −VA es el trabajo de la fuerza eléctri-
ca desde el punto A al punto B. Como
se ve en la figura, si calculamos el traba-
jo en la línea recta radial, el coseno del
ángulo entre fuerza y desplazamiento
es siempre 1.

VB −VA = −
WFe

AB
q

=
−1
q

∫ rB

rA

Fedr = −
∫ rB

rA

Edr = −kQ
∫ rB

rA

1
r2 dr

(4.37)
Haciendo la integral, que es como

∫
1/x2dx = −1/x tenemos

VB −VA = kQ
(

1
rB
− 1

rA

)
=

(
kQ
rB
− kQ

rA

)
(4.38)

De aquí, podemos tomar el potencial creado por una carga Q en un
punto a una distancia r cualquiera como13 13 Esto equivale a tomar el valor V = 0

para el potencial a una distancia muy
grande. Como con las energías, lo
importante para la física es la diferencia
de potencial y la física no cambia si
cambiamos el 0 de lugar.

V =
kQ
r

(4.39)

Esta fórmula vale igualmente para una carga negativa sin más que
poner en Q el valor con su signo correcto.

Potencial creado por varias cargas

Figura 4.22: Dos cargas generan un
potencial en un punto P del espacio.

La ventaja de trabajar con el potencial, sobre el campo, es que no
es un vector, es simplemente un número (con su signo). Así, si en
una región del espacio hay varias cargas, el potencial eléctrico en
un punto se calcula como la suma de los potenciales creados en ese
punto por todas las cargas14. Por ejemplo, si tenemos 2 cargas Q1 y

14 Al igual que en el campo, el potencial
se extiende por todo el espacio, de
modo que tenemos que especificar en
qué punto calculamos el potencial

Q2 y queremos un calcular el potencial total en un punto P como en
la figura 4.22, a distancia r1 de la carga 1 y a distancia r2 de la carga
2, tenemos:

Vtotal(en P) = V1 + V2 =
kQ1

r1
+

kQ2

r2
(4.40)
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y si tuviéramos más cargas creando potencial, pues se suman más
términos. Aquí es fácil ver que las cargas negativas hacen disminuir
(hacia −∞) el potencial en un punto, mientras que las positivas lo
aumentan (hacia +∞).

Energía potencial de una configuración de cargas

Recordemos la relación entre el potencial V en un punto P del
espacio y la energía que tiene una carga q si la situamos ahí que
hemos visto en 4.33:

Ep = qV(en P) (4.41)

Ese potencial V en el punto donde está q lo puede haber creado una
carga, dos, tres o las que queramos, es igual.

Ahora, supongamos que el potencial V en ese punto lo ha creado
una sola carga puntual Q, la energía que tiene q será

Ep = qV(creado por Q en P) = kq
Q
r

(4.42)

donde r es la distancia entre las cargas. Igual, podríamos pensar que
q crea un potencial kq/r en el punto donde está Q y la energía de Q
sería

Ep = QV(creado por q en el punto donde está Q) = kQ
q
r

(4.43)

y el resultado es exactamente el mismo. Esta energía potencial es en
realidad la energía de interacción de la pareja.

Figura 4.23: Para calcular la energía
total, hay que sumar (con su signo) las
contribuciones de cada pareja. Cada pa-
reja contribuye una vez con un término
del tipo kQQ′/r

Si en lugar de 2 cargas solo, tenemos un conjunto de más cargas
Q1,Q2,Q3, etcétera, la energía total de interacción eléctrica será la
suma a todas las parejas posibles de términos kQ1Q2/r, contando
cada pareja 1 sola vez

Ep = ∑
parejas

k
QiQj

rij
(4.44)

con rij la distancia entre las cargas i y la j. Por ejemplo para tres
cargas Q1, Q2, Q3 como en la figura 4.23 será

Ep = k
(

Q1Q2

r12
+

Q1Q3

r13
+

Q2Q3

r23

)
(4.45)

Este número puede ser lógicamente positivo o negativo, dependiendo
de los valores de las cargas y las distancias.

El signo de la energía potencial

Para una configuración de cargas (dos o más), el signo de la ener-
gía potencial refleja si es una configuración ligada o no. Considere-
mos la configuración que sea como un estado final. Si consideramos
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un estado inicial en el que las cargas están infinitamente separadas su
energía inicial es Epi = 0, entonces la energía de interacción

Ep = k
(

Q1Q2

r12
+

Q1Q3

r13
+

Q2Q3

r23
+ . . .

)
= Ep f − Epi = Wyo (4.46)

representa la diferencia de energía entre las dos situaciones, o lo que
es lo mismo, el trabajo que nos cuesta crear dicha configuración de
cargas trayéndolas desde el infinito en contra de las fuerzas eléctricas.
Si la energía potencial final es positiva, nos ha costado trabajo y
tenderán a separarse cuando las soltemos, igual que nos cuesta
trabajo aumentar la energía potencial de una piedra aumentando
su altura. Si la energía final es negativa (por ejemplo 2 cargas, una
positiva y otra negativa) lo que nos cuesta trabajo es llevarlas de
nuevo al infinito, esto es separarlas en contra de la fuerza eléctrica
que tiende a juntarlas. Una energía potencial total negativa representa
un estado ligado, al que hay que proporcionar energía para romperlo,
similar a la energía de un enlace químico. Con esta idea en mente,
podemos calcular la energía de enlace de hidrógeno entre las bases
nitrogenadas en el ADN, como en el siguiente ejemplo.

Ejemplo 4.6.2 Energía de interacción A-T y G-C en el ADN

Basándose en la figura, estimar la energía necesaria para separar la adenina de la timina, suponiendo
que la distancia entre átomos dentro de cada base es 0,10 nm. Las cargas de los átomos son 8,0× 10−20 C
para el oxígeno y 3,0× 10−20 C para el nitrógeno y el hidrógeno. Repetir el cálculo para el par guanina-
citosina.
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SOLUCIÓN

Adenina-Timina
Para separar la Adenina de la Timina hay que vencer las fuerzas netas que se establecen entre los átomos
de la Adenina y los de la Timina, debido a las cargas eléctricas, y realizar un trabajo. Como hemos visto
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en teoría, el trabajo coincide con la variación de energía potencial entre dos estados: el final, totalmente
separadas A y T, y el estado inicial reflejado en la figura. Como en el estado final, los átomos dentro de
cada base mantienen sus posiciones, la energía de interacción entre átomos dentro de la misma molécula
no contribuye a la energía de enlace A-T. Tenemos por tanto que calcular la energía potencial asociada a la
situación de la figura, considerando parejas de átomos en bases diferentes y utilizando la expresión (4.45).
Utilicemos la expresión con los átomos O · · ·H − N en el primer enlace de hidrógeno, la fila de arriba

c

O
H

H

c

N EpOHN = k
(

QOQH
rOH

+ QOQN
rON

)
(4.6.2.1)

donde según la figura las distancias son rON = 28 nm y rOH = (0,28− 0,10)nm = 0,18 nm Sustituyendo
los valores de las cargas

EpOHN = (9× 109 N ·m2/C2)

[
(−8× 10−20 C)(3× 10−20 C)

(0,18× 10−9 m)
+

(−8× 10−20 C)(−3× 10−20 C)

(0,28× 10−9 m)

]
=

= −4,3× 10−20 J
(4.6.2.2)

El primer término es negativo como corresponde a una atracción que tiende a ligar, mientras que la
interacción O-N contribuye con un término positivo en la energía. Para la segunda fila, N − H · · ·N, tenemos
de forma similar

EpNHN = k
(

QNQH
rNH

+
QNQN

rNN

)
(4.6.2.3)

con rNH = (0,30− 0,10)nm = 0,20 nm y rNN = 0,30 nm. Para hacer un cálculo correcto, tendríamos que
considerar otras interacciones “en diagonal” como por ejemplo entre el H de la Adenina en la primera fila
y el N de la Timina en la segunda. Sin embargo, no tenemos información sobre esas distancias, por lo que
no lo podemos calcular. Por otro lado, como la energía decrece con la distancia, y las distancias en diagonal
son mayores, podemos suponer que van a contribuir poco al resultado final.

Recolectando los 4 términos que tenemos, la energía de enlace de A-T es

EpAT = EpNHN + EpOHN ≃ −5,6× 10−20 J (4.6.2.4)

El resultado es negativo. Corresponde a un estado ligado y habría que hacer un trabajo o proporcionar
una energía de 5,6× 10−20 J para separar la Adenina y la Timina totalmente.
Guanina-Citosina
Procedemos de igual forma, calculando la energía de interacción entre los átomos en las tres filas en las
que se forma enlace de hidrógeno

EpGC = k
(

2
QOQH

rOH
+ 2

QOQN
rON

+
QNQN

rNN
+

QNQH
rNH

)
(4.6.2.5)

donde las distancias son un poco diferentes ahora rOH = 0,19 nm, rNN = 0,29 nm, rNN = 0,30 nm y
rN H = 0,20 nm. Los dos primeros sumandos están multiplicados por 2 porque corresponden a la fila de
arriba y a la inferior, que son iguales. El resultado final es

EpGC = −9,2× 10−20 J (4.6.2.6)

La energía de enlace es mayor en G-C (hay que proporcionar mayor energía para separarlas) como co-
rresponde al hecho de que tiene 3 enlaces de hidrógeno en lugar de 2. De hecho, la relación de energías es
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EpGC

EpAT
=

9,2
5,6
≃ 1,6 ≈ 3

2
(4.6.2.7)

Medidas experimentales15 dan para las energías de enlaces (en fase gas) valores algo superiores de 8,4×

15 Celia F. Guerra, F. Matthias Bic-
kelhaupt, J. G. Snijders, and E. Jan
Baerends. Hydrogen bonding in DNA
base pairs: Reconciliation of theory and
experiment. Journal of the American
Chemical Society, 122(17):4117–4128, 2000

10−20 J para A-T y de 14,6 × 10−20 J para el par G-C, de modo que nuestra cuenta simple es bastante
aproximada.

Diferencia de potencial entre dos placas paralelas cargadas

Volvamos a las 2 placas paralelas cargadas, modelo para la mem-
brana celular. Recordemos que el campo eléctrico entre las placas es
uniforme, apunta de la placa positiva a la negativa y vale en módulo
|E⃗| = σ

ϵ (ver ecuación (4.27)) con σ = Q
A la densidad superficial de

carga de la placa positiva. Calculemos la diferencia de potencial entre
las 2 placas. De la definición:

∆V = V+ −V− = Vb −Va =
−WFe

ab
q

(4.47)

Figura 4.24: El campo entre dos placas
cargadas apunta de la placa con carga
positiva hacia la placa negativa. La fuer-
za eléctrica sobre una carga q es qE en
el mismo sentido. Si movemos la carga
q desde la placa negativa a la positiva el
ángulo entre fuerza y desplazamiento
es 180◦.

tomando un punto b en la placa positiva y un punto a en la placa
negativa como en la figura 4.24. Tenemos que calcular el trabajo
WFe

ab de la fuerza eléctrica para llevar una carga q desde a hasta b. La
fuerza eléctrica sobre una carga q es

F⃗e = qE⃗ (4.48)

y apunta en la dirección del campo si tomamos una carga q positiva.
El campo va de la placa + a la − y es constante. Según la figura el
ángulo entre fuerza y desplazamiento es 180◦ y el trabajo

WFe
ab = q|E⃗|d cos(π) = −q|E⃗|d (4.49)

con d la separación entre las placas. La diferencia de potencial queda

∆V = V+ −V− =
−WFe

ab
q

=
q|E⃗|d

q
= |E⃗|d (4.50)

Nótese que es una cantidad positiva, el potencial de la placa positiva
es una cantidad |E⃗|d más alto que el potencial de la placa negativa.
Lo importante es la diferencia de potencial, podemos poner el cero
de potencial en cualquiera de las placas16. Por ejemplo, si tomamos el 16 Igual que podemos poner el 0 de

alturas en cualquier punto para calcular
∆Ep gravitatoria

cero de potenciales en la placa negativa V− = 0 entonces

V+ = V+ −V− = ∆V = |E⃗|d (4.51)

Si por el contrario, ponemos el cero de potencial en la positiva V+ =

0, entonces V− queda

V− = V− −V+ = −(V+ −V−) = −|E⃗|d (4.52)
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y en cualquier caso la diferencia V+ −V− es la misma. Esto es intere-
sante porque el potencial de membrana se define como Vint − Vext y
normalmente se toma Vext = 0. Veamos un par de ejemplos.

Ejemplo 4.6.3 Diferencia de potencial de membrana

En unas determinadas condiciones, el campo de la membrana celular vale 0,75× 107 N/C y apunta
desde la superficie exterior a la interior. El espesor de la membrana es de 8 nm. ¿Cuánto vale el potencial
de membrana? Si tomamos el potencial en la superficie exterior como 0 V, ¿cuánto vale el potencial en el
interior?

SOLUCIÓN

Si el campo apunta del exterior al interior, el exterior de la membrana está cargado positivamente y el
interior negativamente (el campo va de cargas + a -). El potencial del exterior (placa positiva) es superior al
del interior (placa negativa). Según hemos visto entonces:

Vext −Vint = V+ −V− = |E⃗|d = (0,75× 107 N/C)(0,8 nm) = 0,060 V = 60 mV (4.6.3.1)

Por tanto, el potencial de membrana, definido como Vint −Vext vale

Vint −Vext = −|E⃗|d = −60 mV (4.6.3.2)

Si tomamos Vext = 0 entonces
Vint = −60 mV (4.6.3.3)

Resumiendo

Membrana en polaridad normal.
Potencial de reposo.

exterior celular

interior celular

membrana

Ejemplo 4.6.4 Diferencia de potencial de membrana en polaridad inversa

Durante el potencial de acción, la polaridad de la membrana puede invertirse. Supongamos que el
campo de la membrana celular vale 0,4× 107 N/C y apunta desde la superficie interior a la exterior, al
contrario de la situación de reposo. El espesor de la membrana es de 8 nm. ¿Cuánto vale el potencial de
membrana? Si tomamos el potencial en la superficie exterior como 0 V, ¿cuánto vale el potencial en el
interior?

SOLUCIÓN



física aplicada a la biología 119

Si el campo apunta del interior al exterior, el interior de la membrana está ahora cargado positivamente
y el exterior negativamente (el campo va de cargas + a -). El potencial del interior (placa positiva) es
superior al del exterior (placa negativa). Según hemos visto entonces:

Vint −Vext = V+ −V− = |E⃗|d = (0,4× 107 N/C)(0,8 nm) = 0,032 V = 32 mV (4.6.4.1)

y ese es por tanto el potencial de membrana (siempre se define interior menos exterior). Si tomamos el
exterior cero Vext = 0 entonces

Vint = 32 mV (4.6.4.2)

Graficamente:

Membrana en polaridad invertida
exterior celular

interior celular

membrana

Relación campo eléctrico y potencial

Las placas paralelas nos permite establecer otra relación entre
campo y potencial eléctrico. Según hemos visto ∆V = V+ −V− = |E⃗|d,
de modo que

|E⃗| = ∆V
d

(4.53)

Si pensamos en una distancia pequeña entre dos puntos, el módulo
campo coincide con la variación del potencial por unidad de lon-
gitud, esto es, el gradiente del potencial. Además sabemos que el
campo apunta de donde hay mayor potencial a donde hay menor
potencial ya que va de cargas positivas a negativas y el potencial
cerca de cargas positivas es mayor que cerca de cargas negativas (ver
ejemplos anteriores). De hecho, rigurosamente si sabemos el potencial
en el espacio, el campo es el menos gradiente del potencial:

E⃗ = −grad(V), o bien E⃗ = −∇⃗V (4.54)

según las diferentes notaciones.

exterior celular interior celular

membrana

Figura 4.25: Potencial eléctrico a través
de la membrana celular. El salto de
potencial y el campo se restringen a la
zona interior a la membrana. Fuera el
potencial es constante y el campo nulo.

Sin entrar en detalles matemáticos, el campo apunta en la direc-
ción de mayor decrecimiento del potencial y es más intenso cuanto
más rápido varíe el potencial por unidad de longitud. Por ejemplo,
en zonas en las que el potencial es constante en el espacio, el campo
es nulo y viceversa. En la membrana celular, el campo está confinado
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a la región interna de la membrana, donde es uniforme y el potencial
pasa linealmente de 0 V a Vint mientras que en el exterior el potencial
es constante (y el campo nulo), como en la figura 4.25.

Superficies equipotenciales

Una superficie equipotencial es el lugar geométrico de los puntos
de igual potencial eléctrico o potencial constante. El campo eléctrico
es perpendicular a las superficies equipotenciales: si nos desplazamos
cualquier distancia por una superficie equipotencial, por definición
de diferencia de potencial, el trabajo es nulo, y por tanto la fuerza
eléctrica tiene que ser perpendicular a la superficie equipotencial.

En torno a una carga puntual, las superficies equipotenciales son
esferas (el potencial solo depende de la distancia a la carga, puntos
a igual distancia tienen igual potencial). En el interior de dos placas
plano paralelas cargadas con +Q y −Q son planos paralelos a las
placas (perpendiculares al campo).

Si dos superficies equipotenciales de potencial V1 y V2 están se-
paradas una distancia d, el módulo del campo es aproximadamente
E = |V1 −V2|/d. Resumiendo, dadas unas superficies equipotenciales,
el campo:

es perpendicular a las superficies en todo punto

entre 2 superficies cercanas, apunta de la superficie a potencial
más alto hacia la superficie a potencial más bajo17 17 El potencial es más alto cuanto más

cerca de +∞ y más bajo cuanto más
cerca de −∞. Por ejemplo, -6 es más
alto que -10.

es más intenso cuanto más juntas están las superficies

Figura 4.26: Superficies equipotenciales
(en color) superpuestas a las líneas de
campo (en negro). El campo es perpen-
dicular a las superficies equipotenciales,
va de potencial alto a más bajo, es más
intenso cuánto más cerca estén las
líneas.

Por último, vimos que en un buen conductor eléctrico el campo es
perpendicular a la superficie, de donde se deduce que la superficie
de un conductor es equipotencial, como por ejemplo las placas
paralelas de la figura 4.26.
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4.7 Capacidad de la membrana biológica

La combinación de dos planos paralelos cargados con carga Q y
−Q respectivamente es un elemento eléctrico que se conoce como
condensador o capacitor. Es un arreglo capaz de almacenar carga
separada una cierta distancia y por tanto acumula una cierta energía
eléctrica18. La relación entre la carga almacenada y la diferencia de 18 Los flashes de las cámaras se alimen-

tan con un condensador normalmente
porque es capaz de proporcionar ener-
gía a la bombilla muy rápidamente al
descargarse

potencial entre las placas es una magnitud física llamada capacidad C

C =
Q

∆V
(4.55)

y se mide en “faradios”

[C] = 1 C/V = 1 F (4.56)

En el caso de las placas cargadas, la capacidad resulta no depender
de la carga o el potencial impuesto, si no ser una constante:

C =
Q

∆V
=

Q
Ed

=
ϵA
d

(4.57)

puesto que el campo entre dos placas es E = Q
Aϵ , con A el área de las

placas, y d la distancia entre las placas. Así, diferencia de potencial y
carga son proporcionales en un condensador

Q = C∆V =
ϵA
d

∆V (4.58)

y cuanta más carga se acumule mayor será la diferencia de potencial
y viceversa. Esto vale igualmente para una membrana biológica
cargada. La capacidad de la membrana biológica depende del área
de la membrana obviamente (como en (4.57)), pero podemos dar un
valor para la capacidad por unidad de área de la membrana Cm

Cm =
C
A

=
ϵ

d
(4.59)

Un valor típico de la capacidad por unidad de área de las membranas
biológicas es

Cm = 1× 10−2 F/m2 (4.60)

para axones sin mielina, mientras que en axones con vaina de mielina
es sensiblemente menor, aproximadamente

Cm = 5× 10−5 F/m2 (4.61)

lo que tiene implicaciones para la transmisión del impulso nervioso,
como veremos más adelante.
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4.8 Corriente eléctrica

Pasamos a estudiar cargas en movimiento a través de un medio
material (un cable, una disolución, el axón) lo que se conoce como
corriente eléctrica. Para mantener una corriente eléctrica durante un
cierto tiempo se necesita proporcionar energía de forma continua,
por ejemplo mediante una batería o un generador. Los primeros
experimentos de corriente que dieron lugar a la invención de la
batería o pila por A. Volta estaban relacionados precisamente con la
“electricidad animal”, por parte de Galvani.

La batería

Las baterías no generan la carga eléctrica, si no que la ponen en
movimiento. Más específicamente las baterías proporcionan una dife-
rencia de potencial entre sus dos polos (uno positivo y otro negativo)
que mantiene la corriente. Por motivos históricos, esta diferencia
de potencial se conoce también como “fuerza electromotriz” pero
no es una fuerza. Las cargas eléctricas (los electrones en los cables
metálicos normalmente) llegan a la batería por un polo. Esta les pro-
porciona una cierta cantidad de energía q∆V y vuelven al circuito por
el otro polo donde esa energía se utiliza en los elementos eléctricos,
por ejemplo en una bombilla, para generar la luz y el calor.

Intensidad de corriente

La intensidad de corriente I es la cantidad de carga que atraviesa
una determinada sección de un circuito o un elemento eléctrico (una
bombilla, una resistencia, un ventilador. . . ) por unidad de tiempo:

I =
∆Q
∆t

(4.62)

Sus unidades son

[I] =
[Q]

[t]
=

1 C
s

= 1 A (4.63)

que recibe el nombre de “amperio”. La intensidad de corriente se
define de forma que una carga positiva circula desde el polo positivo
de la batería al polo negativo, perdiendo energía potencial eléctrica.
Dentro de la batería circula del polo negativo al positivo y gana
energía potencial eléctrica19. 19 La pila transforma energía química en

energía potencial eléctrica para hacer
esto

Este es el signo convencional de la intensidad de corriente, aunque
hoy sabemos que por ejemplo en los metales la conducción eléctrica
se debe a electrones poco ligados que circulan del polo negativo
al positivo de la batería a través del circuito. A todos los efectos20 20 Bueno, no todos, el efecto Hall

permite distinguir si los portadores
son positivos o negativos. Pero no
entraremos en eso en este libro.

una carga negativa circulando de “-” a “+” es como una positiva
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circulando de “+” a “-” por lo que tomaremos el sentido habitual de
la corriente.

Resistencia eléctrica. Ley de Ohm

En muchos casos la intensidad de corriente en un elemento eléc-
trico es proporcional a la diferencia de potencial que se le aplica21. A 21 Es un poco como el flujo de agua en

una tubería, que será mayor cuánto más
alto esté el depósito desde el que fluye
el agua.

esto se le conoce como ley de Ohm:

V = IR (4.64)

donde V es la diferencia de potencial aplicada al elemento eléctrico en
cuestión, I la intensidad que lo recorre, y R se conoce como resistencia
eléctrica, ya que a mayor R menor I para el mismo V aplicado. Aun-
que es una diferencia de potencial aplicado y sería mejor escribir ∆V
normalmente se acepta escribir V en la ley de Ohm.

Para muchos materiales, la R es aproximadamente constante y no
depende de la intensidad que recorra el elemento, sobre todo para
buenos conductores como los metales. La resistencia tiene unidades:

R =
V
I
⇒ [R] = 1 V/A = 1 Ω (4.65)

que recibe el nombre de “ohmio”. Veamos un ejemplo simple de la
ley de Ohm.

Ejemplo 4.8.1 Una bombilla conectada a un pila

Figura 4.27: Circuito del ejemplo 4.8.1.

La bombilla de la figura tiene una resistencia eléctrica de 6 Ω. La
batería es de 12 V. Calcular la intensidad de corriente que circula por
la bombilla.

SOLUCIÓN

La batería proporciona una diferencia de potencial de V = 12 V. Por el momento pensemos que los
cables no ofrecen resistencia y trasladan directamente el potencial de un otro extremo al otro del cable. La
bombilla tiene aplicada una diferencia de potencial entonces de V = 12 V. Utilizando la ley de Ohm sobre
la bombilla:

V = IR⇒ I =
V
R

=
12 V
6 Ω

= 2 A (4.8.1.1)

Nótese que el hecho de circular una corriente por la bombilla (o por cualquier resistencia) hace que las
cargas (de valor q) pierdan energía potencial eléctrica (qV) ya que antes de entrar en la bombilla las cargas
estaban a un potencial 12 V y salen a 0 V, por ejemplo, o cualquier otros dos números que den la misma
diferencia de potencial. ¿Dónde se ha ido esa energía? Obviamente se transforma en luz y calor emitidos
por la bombilla.

El origen microscópico de la resistencia de los materiales al paso
de la corriente eléctrica es variado. En el caso de los metales, se debe
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esencialmente a las colisiones de los electrones con los átomos de
la red cristalina del metal que están en vibración. En el caso de una
disolución, la electricidad se transmite si hay iones disueltos y la
resistencia dependerá de la mayor o menor movilidad de los iones
a través del fluido, de la cantidad o concentración de ellos, y de la
carga que tengan.

Resistividad de un cable eléctrico y del axón

La resistencia de un segmento de material conductor (un cable
por ejemplo) es proporcional a la longitud. A mayor longitud, mayor
número de colisiones de los electrones. Es además inversamente
proporcional al área de la sección transversal del conductor, pues
se puede mover mayor cantidad de carga a través del cable para la
misma diferencia de potencial:

R ∝
L
A

(4.66)

Finalmente, la resistencia depende del material del que este hecho
el cable. Esto se mide mediante una propiedad del material llamada
“resistividad” (ρ), de modo que

R = ρ
L
A

(4.67)

La resistividad es baja en los buenos conductores (metales) y alta
para los aislantes eléctricos. Las unidades de la resistividad son

ρ = R
A
L
⇒ [ρ] =

1 Ωm2

m
= 1 Ω ·m (4.68)

material ρ(Ω ·m)

Plata 15,9× 10−9

Cobre 16,8× 10−9

Agua de mar 0,3
Agua pura 2,5× 105

Vidrio 1010 − 1014

La resistividad del axón que transmite el impulso nervioso es,
según el libro de Kane22 de ρa = 2 Ω ·m. Los valores en la literatura

22 J.W. Kane and M.M. Sternheim.
Physics. Wiley, 1988

oscilan entre 0,3− 0,7 Ω ·m para los axones de calamar, y algo supe-
rior para vertebrados, en torno a 0,8− 2 Ω ·m siendo 1 Ω ·m un valor
comúnmente aceptado como valor representativo23. Es en general pa- 23 John Bekkers. Resistivity, Axial, pages

2617–2619. Springer New York, New
York, NY, 2015

recida al agua de mar, ya que es esencialmente agua con iones desde
el punto de vista eléctrico. Este valor es intermedio entre aislantes
y conductores, más bien aislante. Resulta quizás sorprendente que
el medio empleado para la transmisión del impulso nervioso sea de
un material que uno consideraría como un aislante de la electricidad.
Esto indica probablemente que dicha transmisión es en realidad más
complicada que la simple conducción eléctrica a través de un cable,
como veremos en secciones posteriores.

Ejemplo 4.8.2 Resistencia del axón
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Calcule la resistencia total R de una porción de 1 cm de largo de axón sabiendo que ρa = 1 Ω ·m y el
radio es r = 5 µm.

SOLUCIÓN

Utilizando directamente (4.67):

R = ρ
L
A

= ρ
L

πr2 =
(1 Ω ·m)(1 m)

π(5× 10−6 m)2 ≃ 1,3× 108 Ω (4.8.2.1)

Por comparación, si el cable estuviera hecho de cobre de diámetro razonable para un cable d = 0,08 mm,
bastante más grueso que el axón, se necesitarían unos 39 000 km de cable para tener la misma resistencia
eléctrica que el axón.

Circuitos

Un circuito eléctrico normalmente tendrá una batería o fuente de
alimentación y uno o varios elementos eléctricos con una determina-
da resistencia24, conectados por cables. En general la resistencia total 24 y capacidad, o autoinductancia, etc...

pero aquí veremos elementos resistivos
solo, salvo en el circuito RC

de los cables es muy pequeña frente a la resistencia de los demás
elementos, por lo que podemos habitualmente considerar que los
cables no tienen resistencia. Esto significa que el potencial es igual en
todos los puntos conectados por un cable (la diferencia de potencial
entre extremos de un cable es V = IR ≈ 0).

Vamos a estudiar los circuitos en situación estacionaria (corriente
constante) en corriente continua, no alterna. Veamos primero un
ejemplo muy sencillo, similar al anterior de la bombilla

Ejemplo 4.8.3 El circuito más simple

Figura 4.28: Circuito compuesto por
una resistencia, una batería y los cables
que los unen

La batería del circuito de la figura 4.28 es de 12 V y la resistencia
de 120 Ω. Diga cuál es la diferencia de potencial entre los bornes de
la resistencia y dónde es mayor el potencial en el punto a o b. Calcule
la intensidad que recorre el circuito.

SOLUCIÓN

Como interesan solo las diferencias de potencial, podemos tomar
el borne negativo de la batería como origen del potencial, esto es
V− = 0 V. El polo positivo tiene por tanto V+ = 12 V.

En los cables no hay caída o diferencia de potencial. De este modo,
en el punto a el potencial es el mismo que en el borne positivo de
la batería, 12 V. Igualmente, en b el potencial es 0. La diferencia de
potencial en los extremos de la resistencia es

Vab = Va −Vb = 12 V (4.8.3.1)



126 luis dinis

siendo el punto a el que está a mayor potencial. Eso significa que la
corriente fluye desde el punto a al b, como por otra parte sabíamos
por los polos de la batería. Finalmente calculamos el valor de la
intensidad:

Vab = IR⇒ I =
Vab
R

=
12 V

120 Ω
= 0,1 A (4.8.3.2)

que fluirá del borne positivo al negativo como se muestra en la
solución (figura 4.29).

Figura 4.29: Solución del circuito, se
indica el valor del potencial en los
puntos a y b y el sentido de la corriente

¿Qué ocurre si complicamos el circuito y ponemos 2 resistencias
seguidas (en serie)?

Resistencias en serie, circuito equivalente

Supongamos que ahora tenemos el circuito de la figura 4.30 con
dos resistencias en serie, de forma que la corriente pasa primero
por una resistencia y luego por la otra. ¿Cómo calculamos ahora la
intensidad de corriente que circula por el circuito?

Uno podría intentar aplicar la ley de Ohm a la resistencia R1

por ejemplo. Sin embargo, inicialmente no conocemos la diferencia
de potencial aplicada a la resistencia R1 que sería la diferencia de
potencial entre los puntos a y c. Conocemos Vab = Va −Vb que estará
dado por el voltaje de la batería, en este caso, Vab = Va − Vb =

12 V, pero este voltaje no sería el correcto para la ley de Ohm en la
resistencia R1 que cumple

Vac = Va −Vc = IR1 (4.69)

Análogamente, para la resistencia R2 tenemos

Vcb = Vc −Vb = IR2 (4.70)

donde es importante darse cuenta de que la intensidad que circu-
la por ambas resistencias es la misma, al estar colocadas en serie.
Sumando ambas ecuaciones tenemos

Vac +Vcb = Va−Vc +Vc−Vb = Va−Vb = Vab = IR1 + IR2 = I(R1 +R2)

(4.71)
o bien

Vab = I(R1 + R2)⇒ I =
Vab

(R1 + R2)
(4.72)

que nos permite calcular la intensidad que circula por el circuito
ya que Vab coincide con el voltaje de la batería, en este caso 12 V.
Por último, utilizando ahora (4.69) podemos calcular el voltaje en el
punto c (Vc) y las diferencias Vac y Vcb si fuera necesario.

Figura 4.30: Asociación en serie de dos
resistencias. La corriente que circula por
ambas es la misma.

Es útil pensar en el llamado circuito equivalente. Imaginemos que
mantenemos la batería pero sustituimos las resistencias R1 y R2
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por una sola que llamaremos resistencia equivalente Req, como en
el circuito de la figura 4.31. ¿Cuánto tiene que valer la resistencia
equivalente para que por el circuito equivalente circule la misma
corriente que en el que tiene R1 y R2? Aplicando la ley de Ohm a esta
resistencia equivalente tenemos

Figura 4.31: Este circuito será equiva-
lente al de la figura 4.30 si tomamos
Req = R1 + R2.

Vab = IReq ⇒ I =
Vab
Req

(4.73)

Comparando esta expresión con (4.72) vemos que

Req = R1 + R2 (4.74)

A todos los efectos eléctricos podemos sustituir la asociación serie de
R1 y R2 por una resistencia de valor igual a la suma de ambas.

Si tenemos más resistencias, podemos ir agrupando sucesivamente,
de modo que la resistencia equivalente de un conjunto de resistencias
R1, R2... RN colocadas en serie será la suma total de todas ellas:

Req = R1 + R2 + R3 . . . + RN (4.75)

Resistencias en paralelo, circuito equivalente

Otra posibilidad frecuente es conectar dos resistencias en paralelo,
de manera que la intensidad de corriente se divide o reparte entre
ambas ramas, pasando en general corrientes distintas por cada
resistencia, como en la figura 4.32. Esta es la manera en la que se
conectan los aparatos eléctricos en las casas por ejemplo en un ladrón
o una regleta.

¿Cómo calculamos la intensidad I que circula por el circuito? ¿y
las corrientes I1 e I2 que circulan por cada resistencia? Comenzamos
con la ley de Ohm

Vab = I1R1 (4.76)

Vab = I2R2 (4.77)

Figura 4.32: Asociación de dos resis-
tencias en paralelo. La diferencia de
potencial (Vab = Va − Vb) en los extre-
mos de ambas resistencias R1 y R2 es la
misma.

donde es importante señalar que la diferencia de potencial en los
bornes o extremos de cada resistencia es la misma, y en este caso es
conocida porque es directamente la de la batería. Podemos por tanto
despejar las intensidades I1 e I2:

I1 =
Vab
R1

(4.78)

I2 =
Vab
R2

(4.79)

¿Pero cuánto vale la intensidad total? La conservación de la carga
implica que

I = I1 + I2 (4.80)
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Veamos ahora el circuito equivalente. Sustituimos las dos resistencias
en paralelo por una sola Req. ¿Cuánto debe valer Req para que la
intensidad total sea la misma?.

Figura 4.33: Este circuito será equiva-
lente al de la figura 4.32 si tomamos
Req = R1 R2

R1+R2
.

En el circuito equivalente tendremos de nuevo

I =
Vab
Req

. (4.81)

En el circuito original, utilizando (4.80) y (4.79) tenemos

I = I1 + I2 ⇒ I =
Vab
R1

+
Vab
R2

= Vab

(
1

R1
+

1
R2

)
(4.82)

Con estas dos últimas ecuaciones vemos que ambos circuitos son
equivalentes si

1
Req

=
1

R1
+

1
R2
⇒ Req =

R1R2

R1 + R2
(4.83)

Al igual que antes, podemos a todos los efectos sustituir el circuito
de dos resistencias en serie de la figura 4.32 por uno con una sola
resistencia de valor Req como en la figura 4.33.

Finalmente, si tenemos más resistencias en paralelo sometidas a la
misma diferencia de potencial, por ejemplo N resistencias, podemos
ir agrupando de dos en dos y el resultado será

1
Req

=
1

R1
+

1
R2

+ . . .
1

RN
(4.84)

de donde se puede calcular el inverso de Req y después se invierte
para obtener el valor de Req.

Asociaciones de resistencias serie y paralelo

En el caso de que tengamos una combinación más complicada
de resistencias, podemos llegar a un circuito equivalente total sus-
tituyendo primero agrupaciones de resistencias en paralelo por su
equivalente y luego finalmente todas las que estén en serie por su
equivalente serie. Llegar al circuito equivalente nos permite calcu-
lar la intensidad que circula por el circuito al completo. Veamos un
ejemplo.

Ejemplo 4.8.4 Asociación de resistencias

En el circuito de la figura 4.34, donde Vbat = 24 V, R1 = 3 Ω, R2 = 2 Ω y R3 = 1,5 Ω calcule:

a) La intensidad que circula por el circuito

b) La diferencia de potencial aplicada a la resistencia R2

c) La intensidad de corriente I2 que circula por el la resistencia R2
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Figura 4.34: Circuito de ejemplo. Son co-
nocidos los valores de las resistencias y
el potencial aplicado a todo el circuito.

SOLUCIÓN

Comenzamos agrupando las resistencias en paralelo R2 y R3 y sustituyéndolas por su equivalente que
llamamos R23:

R23 =
R2R3

R2 + R3
=

(2 Ω)(1,5 Ω)

2 Ω + 1,5 Ω
≃ 0,86 Ω (4.8.4.1)

y sustituimos llegando al circuito equivalente de la figura 4.35. Ahora podemos agrupar R1 y R23 que

Figura 4.35: Paso 1. Circuito equiva-
lente tras sustituir la combinación R2
en paralelo con R3 por su resistencia
equivalente R23.

están en serie:
R123 = R1 + R23 = 3 Ω + 0,86 Ω = 3,86 Ω (4.8.4.2)

quedando el circuito equivalente total como en la figura 4.36. Con esto podemos calcular la intensidad

Figura 4.36: Paso 2. Circuito equiva-
lente tras haber agrupado todas las
resistencias. Ahora es fácil calcular la
intensidad total I que recorre el circuito.

que recorre el circuito

I =
Vbat
R123

=
24 V

3,86 Ω
≃ 6,22 A (4.8.4.3)
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Esta intensidad circula por las ramas sin bifurcar del circuito, como a través de la batería o por la resisten-
cia R1. Al llegar a las resistencias en paralelo se divide de forma que

I = I2 + I3 (4.8.4.4)

Para calcular por ejemplo la I2 podríamos aplicar la ley de Ohm a la resistencia R2

Vbc = I2R2 (4.8.4.5)

teniendo en cuenta que el potencial que se aplica a la resistencia no es el de la batería directamente.
Necesitamos calcular esa diferencia de potencial. Una manera es recurrir a la resistencia equivalente R23 y
el circuito de la figura 4.35. Por la resistencia R23 sí circula la intensidad total I y entonces

Vbc = IR23 = (6,22 A)(0,86 Ω) = 5,3 V (4.8.4.6)

Nótese que en las resistencias R2 y R3 cae el potencial 5,3 V. La otra caída de potencial hasta completar los
24 V de la batería ha de producirse en la resistencia R1 ya que Vac = Vab + Vbc, (puede comprobarse con
Vab = IR1). Finalmente, ya podemos calcular I2:

Vbc = I2R2 ⇒ I2 =
Vbc
R2

=
5,3 V
2 Ω

= 2,8 A (4.8.4.7)

De nuevo, tiene que cumplirse que I = I2 + I3 de donde podríamos sacar I3 o bien Vbc = I3R3. Si está
correctamente resuelto ambas deben dar lo mismo para I3, salvo error de redondeo.

Potencia eléctrica

Figura 4.37: La diferencia de potencial
Vab en los extremos de la resistencia R
hace que circule una intensidad dada
por la ley de Ohm I = Vab

R . La potencia
consumida o disipada en forma de calor
es P = IVab.

Cuando una cierta carga circula por un elemento eléctrico de
resistencia R, desciende en el potencial (recuerde que Vab = Va −Vb =

IR > 0, luego Va > Vb) y pierde energía. Esa energía se utiliza en el
aparato para producir el efecto deseado o se pierde en forma de calor,
o ambas cosas en general. Recordando la relación entre potencial
eléctrico y energía potencial eléctrica, Ep = qV, podemos calcular el
ritmo de consumo de energía o potencia consumida en el elemento
eléctrico. La potencia consumida o disipada por un elemento eléctrico
por el que circula una corriente I es

P =
qVab

t
= IVab (4.85)

Es fácil ver que la potencia eléctrica tiene en efecto las unidades
adecuadas:

[P] = [I][V] = 1 AV = 1
C
s

J
C

= 1 J/s = 1 W (4.86)

Además, en la resistencia se ha de cumplir Vab = IR, de modo que
la potencia se puede expresar de distintas formas, según convenga,
sustituyendo bien el potencial o la intensidad en la fórmula de la
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potencia. En general, la conservación de la energía impone que un
circuito la suma de las potencias consumidas por los elementos
ha de ser generada en la batería o la fuente de alimentación que
proporciona la diferencia de potencial. Recuerde que en la batería
la carga positiva aumenta su energía potencial desde que entra por
el borne negativo hasta que sale por el positivo. En último término
podemos ver la batería como un conversor de energía química en
eléctrica, que luego se utiliza en el resto del circuito.

4.9 Transmisión del impulso nervioso

Carga y descarga de un condensador

Como veremos más adelante, la transmisión del impulso nervioso
consiste en la despolarización y repolarización de la membrana del
axón. Puesto que la membrana tiene una cierta capacidad, cambiar
la carga eléctrica acumulada en la membrana es similar a cargar o
descargar un condensador.

Si conectamos una batería y un condensador, a través de una
resistencia obtenemos un circuito RC en serie, como en la figura
4.38. Al conectar la batería al condensador inicialmente descargado,
aparece una corriente eléctrica y el condensador de capacidad C va
acumulando carga y aumentando la diferencia de potencial a medida
que acumula carga. El proceso se detendrá cuando la diferencia de
potencial del condensador iguale al de la batería y la corriente deje
de fluir. Esto ocurre en un tiempo que es del orden de magnitud del
producto RC:

Figura 4.38: Circuito RC en el proceso
de carga. Inicialmente el potencial
del condensador (Va − Vb) es bajo, la
intensidad alta. La corriente que llega
al condensador carga las placas del
condensador. El potencial del conden-
sador aumenta y se opone al potencial
de la batería, reduciendo la intensidad
que circula por el circuito. Finalmente,
cuando los potenciales se igualan, la
corriente es nula y la carga no aumenta
más.

τ ∼ RC (4.87)

donde C es la capacidad del condensador y R la resistencia a través
de la cual pasa la corriente que llega al condensador. Es fácil com-
probar que RC es en efecto un tiempo, aunque a primera vista no lo
parece:

[R][C] = 1 ΩF (4.88)

Recordando las ecuaciones V = IR y Q = CV podemos escribir el
“ohmio” y el “faradio” en función de otras unidades

[R][C] = 1 ΩF = 1 V/A×C/V = 1 C/A = 1 C× s/C = 1 s (4.89)
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Figura 4.39: Carga de un condensador
en un circuito RC serie. R = 2 Ω y
C = 1 µF dan un tiempo de carga
τ = RC = 2 µs. La raya discontinua
horizontal marca el valor final de carga
Q f = CVbat con Vbat el voltaje aplicado
al condensador para cargarlo. Las rayas
verticales discontinuas marcan los
tiempos t = τ, t = 2τ y t = 3τ.

Al principio el condensador no tiene carga ni diferencia de po-
tencial entre sus placas (recuerde la relación entre diferencia de
potencial en un condensador y su carga Q = CV). La corriente es
muy alta inicialmente y el condensador acumula carga muy rápido.
Cuando está casi totalmente cargado, la diferencia de potencial en el
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condensador es casi igual a la de la batería, pero se opone al sentido
de la corriente inicial. Hacia el final de la carga, la corriente es muy
baja, casi nula. Esto supone un aumento exponencial25 de la carga 25 La dependencia exponencial se puede

obtener integrando la correspondiente
ecuación diferencial, lo que excede del
temario del curso

como en la figura 4.39. Como se ve en dicha figura, en un tiempo RC
el condensador ha alcanzado aproximadamente el 62 % de la carga
final y en 3RC prácticamente está totalmente cargado.

La descarga se produce de forma similar. Si conectamos un con-
densador cargado inicialmente a una resistencia como en la figura
4.40, este se descargará a través de la resistencia, con una corriente
inicialmente muy alta e irá disminuyendo a medida que decrecen
tanto carga como potencial del condensador. La forma de la curva
también es exponencial y el tiempo vuelve a ser del orden de RC.
Esto se puede ver en la figura 4.41.

Figura 4.40: Circuito RC en el proceso
de descarga. Inicialmente el conden-
sador se cargó utilizando una batería
de 12 V y el voltaje del condensador
(Va − Vb = 12 V). Se establece una
corriente alta inicialmente y el conden-
sador se descarga, disminuyendo su
carga y potencial de forma exponencial
hasta. La carga positiva se traslada a tra-
vés del circuito hasta la placa negativa
compensándose la carga. La descarga
finaliza cuando no queda carga en el
condensador.

Potencial de membrana. Ecuación de Nernst

Como hemos visto, en el interior de la membrana celular hay
habitualmente un campo eléctrico. Dependiendo del estado de
polarización de la membrana (normal o invertido) el campo eléctrico
puede apuntar hacia el interior o hacia el exterior de la célula. Este
campo eléctrico supone que hay una diferencia de potencial entre el
exterior y el interior, llamado potencial de membrana, Vm. El potencial
de membrana siempre se expresa como diferencia de potencial
interior menos exterior, y es habitual tomar Vext = 0, de modo que

Vm = Vint −Vext (4.90)

0 1 2 3 4 5 6
10 -6

0

1

2

3

4

5

6

10 -8

Figura 4.41: Descarga de un condensa-
dor en un circuito RC serie. R = 2 Ω y
C = 1 µF dan un tiempo de descarga
τ = RC = 2 µs. El condensador comien-
za con una carga Q0 = CVbat con Vbat
el voltaje que se aplicó al condensador
para cargarlo inicialmente. Las rayas
verticales discontinuas marcan los
tiempos t = τ, t = 2τ y t = 3τ.

Como hemos visto anteriormente, si Vm < 0 entonces el exterior
de la célula está a mayor potencial y el campo apunta del exterior al
interior de la célula. Esta es la polaridad normal. En caso de Vm >

0, el campo apuntará del interior al exterior. Esta es la polaridad
inversa.

En presencia de iones, estos pueden verse arrastrados por el
campo eléctrico (en el sentido del campo eléctrico en caso de iones
positivos y en contra del campo en caso de iones negativos). En
ausencia de otro efecto, esto tendería a acumular iones en uno u otro
lado de la membrana. Sin embargo, la agitación térmica produce
difusión y los iones tienen otra tendencia a difundir desde las zonas
de mayor concentración a zonas de menor concentración. Un ion
estará en equilibrio cuando ambas tendencias estén equilibradas.
La relación entre las concentraciones y el potencial de membrana
que produce el equilibrio está dado por la ecuación de Nernst (ver
sección sobre fluctuaciones 3.11).

VN
int −VN

ext =
kT
q

log
Cext

Cint
(4.91)
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donde Cint y Cext son las concentraciones de un determinado ion, k
la constante de Boltzmann, T la temperatura absoluta del sistema, q
la carga total de un ion con su signo, y finalmente VN

int − VN
ext es el

potencial de membrana al que se daría el equilibrio para ese cierto
ion.

exterior celular

interior celular

membrana

Flujo E Flujo Dif.

baja concent. K

alta concent. K

+

+

Figura 4.42: Flujos debidos a electrici-
dad (azul) y a difusión (rojo). En este
caso el campo eléctrico apunta hacia
adentro, arrastrando iones positivos co-
mo el potasio hacia el interior. Por otro
lado, el potasio está más concentrado
en el interior, por lo que se establece un
flujo de difusión hacia la zona menos
concentrada, en este caso el exterior.
Ambos flujos se equilibrarán cuando el
potencial de membrana coincida con el
potencial de Nernst del ion potasio.

Tomemos la situación del ion K+ reflejada en la figura 4.42. Como
está cargado positivamente, el campo eléctrico tiende a introducir
iones K+ en la celda, produciendo un flujo hacia adentro debido al
campo eléctrico. Por otro lado, como el potasio se encuentra más
concentrado en el interior que en el exterior tiene una tendencia a
salir debida a la difusión. Ambas tendencias se equilibran cuando se
cumple la ecuación (4.91) tomando los datos del potasio.

El potencial de membrana es uno solo en cada momento, y en
general, para un determinado ion no tiene por qué coincidir con
el potencial de Nernst de dicho ion. ¿Para qué nos sirve entonces
el potencial de Nernst de un ión? Tiene dos funciones principales,
relacionadas,

Permite saber qué flujo domina para un determinado ion, dadas
unas concentraciones y un potencial de membrana

Indica hacia dónde evolucionaría el potencial de membrana si se
dejara circular libremente el ion en cuestión

Para entender esto, basta con pensar que dejado libremente el sistema
tenderá hacia el equilibrio. Por otro lado, hay que recordar que un
ion positivo crea potencial positivo y uno negativo crea potencial
negativo. Así, si entran cargas positivas, esto tenderá a subir el
potencial interior hacia más positivo. Si entran cargas negativas, lo
modificará hacia más negativo.

Veamos algunos ejemplos.

Ejemplo 4.9.1 Potencial de Nernst del Na+

En una determinada célula, las concentraciones exteriores e interiores del ion sodio son [Na+]ext =

145 mol/m3 y [Na+]int = 12 mol/m3. Si el potencial de membrana es −90 mV y la temperatura T = 37 ◦C
indique

a) El sentido del flujo debido al campo eléctrico de membrana

b) El sentido del flujo debido a la difusión

c) El sentido del flujo neto si se permite el paso libremente al ion sodio.

SOLUCIÓN

a) Para responder a la primera pregunta, tenemos que ver en qué dirección apunta el campo eléctrico.
Puesto que el campo apunta de potenciales mayores a potenciales menores, en este caso de potencial
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interior celular
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Figura 4.43: Sentido de los flujos por
campo eléctrico, difusión y neto.

interior menor que el exterior, el campo apuntará de fuera a dentro. Como el Na+ es positivo, siente una
fuerza en la misma dirección y sentido que el campo, por lo que el Na+ tiene tendencia a entrar en la
célula debido al efecto del campo eléctrico.

b) El flujo de difusión lleva los iones de la zona de mayor concentración a la de menor concentración. En
este caso, del exterior al interior. De modo que debido a la difusión el ion Na+ tiene tendencia a entrar.

c) Puesto que los dos efectos, eléctrico y de difusión, tienden a introducir Na+ en la célula, el flujo neto irá
en el mismo sentido, desde el exterior al interior. Podemos corroborar esto calculando el potencial de
Nernst del sodio en estas condiciones

VN
Na+ = VN

int −VN
ext =

kT
q

log
[Na+]ext

[Na+]int
(4.9.1.1)

tomando q = 1,6× 10−19 C, T = 310 K y las concentraciones señaladas obtenemos

VN
Na+ = VN

int −VN
ext = +67 mV (4.9.1.2)

El sodio estaría en equilibrio con un potencial de membrana positivo (habría entonces campo hacia
el exterior y el flujo eléctrico compensaría el de difusión que seguiría siendo hacia dentro). Como
el potencial de membrana es inicialmente negativo, para que el sodio consiga llevar el potencial de
membrana interior de negativo hacia positivo, tendría que entrar en gran cantidad. El sodio al entrar, al
ser cargas positivas, harían subir el potencial hacia +66 mV. Esto corrobora el sentido del flujo neto que
hemos deducido anteriormente.

En el ejemplo anterior, ambos flujos apuntaban en el mismo senti-
do, por lo que ha sido muy fácil establecer el sentido del flujo neto.
Veamos cómo discernir el sentido del flujo neto cuando campo eléctri-
co y difusión producen flujos en sentido contrario.

Ejemplo 4.9.2 Potencial de Nernst del K+

En una determinada configuración, encontramos ion potasio en con las siguientes concentraciones:
[K+]ext = 4 mol/m3 y [K+]int = 155 mol/m3. Para un potencial de membrana −90 mV y la temperatura
T = 37 ◦C indique
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a) El sentido del flujo debido al campo eléctrico de membrana

b) El sentido del flujo debido a la difusión

c) El sentido del flujo neto si se permite el paso libremente al ion potasio.

SOLUCIÓN

a) El potencial es menor en el interior que en el exterior celular, por tanto, el campo eléctrico apunta desde
el exterior hacia el interior. El ion K+ tiene carga positiva, por lo que debido al campo eléctrico se ve
arrastrado hacia el interior.

b) La concentración de potasio es mayor en el interior que en el exterior, de modo que debido a la difusión,
el potasio tiene tendencia a salir.

c) En este caso, la difusión tiende a sacar el ion, el campo eléctrico a introducirlo. ¿Qué flujo es mayor?
Podemos responder calculando el potencial de Nernst del K+, que nos indica a qué potencial de mem-
brana se equilibran ambos flujos (y no hay flujo neto). Con los datos del enunciado tenemos, para estas
concentraciones, con q = +e = 1,6× 10−19 C:

VN
K+ = VN

int −VN
ext =

kT
q

log
[K+]ext

[K+]int
≃ −98 mV (4.9.2.1)

El ion K+ estaría en equilibrio en un potencial de membrana de -98 mV. El potencial de membrana en
la situación descrita es -90 mV por lo que el potasio se encuentra casi en equilibrio, siendo ambos flujos
muy similares en intensidad. No obstante hay una ligera tendencia hacia el equilibrio. Para llevar el
potencial de membrana de -90 mV hacia -98 mV transportando un ion positivo como el potasio la única
manera es que éste salga del interior, bajando aún más el potencial. Esto nos indica que el K+ tiene,
en esta situación, algo de tendencia a salir. Consecuentemente, además, podemos ver que el flujo que
apunta hacia afuera, el de difusión, es necesariamente ligeramente mayor.
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Figura 4.44: Sentido de los flujos por
campo eléctrico, difusión y neto.

Veamos también un ejemplo con un ion negativo.

Ejemplo 4.9.3 Potencial de Nernst del Cl−



136 luis dinis

En una determinada configuración, encontramos ion cloro en con las siguientes concentraciones:
[Cl−]ext = 120 mol/m3 y [Cl−]int = 4 mol/m3. Para un potencial de membrana −90 mV y la tempera-
tura T = 37 ◦C indique

a) El sentido del flujo debido al campo eléctrico de membrana

b) El sentido del flujo debido a la difusión

c) El sentido del flujo neto si se permite el paso libremente al ion.

SOLUCIÓN

exterior celular

interior celular

membrana
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NETO
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Figura 4.45: Sentido de los flujos por
campo eléctrico, difusión y neto.

a) De nuevo el campo eléctrico apunta del exterior al interior. No obstante, al tener el cloro carga negativa,
la fuerza que siente apunta en dirección contraria al campo, por lo que el campo eléctrico tiende a
extraer iones cloro.

b) El sentido del flujo debido a la difusión de cloro es hacia el interior, como corresponde al hecho de que
está más concentrado en el exterior.

c) Ambos flujos tienen sentidos contrarios. Para ver cuál es mayor calculamos el potencial de Nernst para
el ion cloro, teniendo en cuenta que ahora q = −e = −1,6× 10−19 C:

VN
Cl− = VN

int −VN
ext =

kT
q

log
[Cl−]ext

[Cl−]int
=

(4,28× 10−21 J)
(−1,6× 10−19 C)

log
120

4
≃ −91 mV (4.9.3.1)

El ion cloro se encuentra casi en perfecto equilibrio, ambos flujos prácticamente igual de intensos. Tiene
una ligerísima tendencia a entrar, y llevar el potencial de membrana hacia un poco más negativo.

El potencial de acción

El impulso nervioso consiste en un potencial de acción que despo-
lariza la membrana (invierte los signos de las cargas en el exterior e
interior) y se transmite a lo largo del axón. Después, el axón vuelve a
polarizarse en la situación normal, con carga positiva en el exterior y
negativa en el interior. El campo eléctrico o el potencial de membrana
sufren por tanto una inversión durante un breve periodo.

Ion Cext (mol/m3) Cint (mol/m3)

Na+ 145 12

K+
4 155

Cl− 120 4

otros(-) 29 163

Tabla 4.1: Concentración de iones en el
exterior e interior del axón.



física aplicada a la biología 137

Vamos a estudiar brevemente el potencial de acción. En la situa-
ción de reposo, las concentraciones de diferentes iones son como se
reflejan en la tabla 4.1. Además el campo eléctrico apunta hacia el
interior del axón y el potencial de membrana de reposo es en torno
a −90 mV. Las cargas eléctricas se colocan como en la figura 4.46,
con un pequeño exceso de carga positiva en el exterior y negativa en
el interior. Las concentraciones de la tabla son exactamente las que
hemos usado en los ejemplos de potencial de Nernst de la sección
anterior, por lo que las conclusiones que hemos obtenido se aplican
aquí también.

interior celular

membrana

exterior celular

exterior celular

exterior celular

interior celular
axón

Figura 4.46: Situación de reposo en el
axón. Polarización normal.

Supongamos que en el extremo izquierdo del axón producimos un
aumento del potencial. Esto puede hacerse con un microelectrodo, o
porque llega una onda de despolarización desde la izquierda. Pueden
darse dos situaciones, diferentes, dependiendo de si se supera un
determinado umbral que, para fijar ideas, vamos a situar en torno a
−50 mV:

El potencial sube pero no se supera el umbral (por ejemplo sube
hasta −60 mV. Esta perturbación decae y se vuelve a la situación
normal.

El potencial supera el umbral. Entonces se abren los canales de
Na+

exterior celular

interior celular

membrana

Flujo E Flujo Dif.

baja concent. Na

alta concent. Na
+

+NETO

Figura 4.47: Sentido de los flujos por
campo eléctrico, difusión y neto del ion
sodio al superarse el umbral y abrirse
los canales de sodio.

exterior celular

interior celular

membrana

Flujo E Flujo Dif.

+

+NETO
alta concent. K

+

baja concent. K
+

Figura 4.48: Sentido de los flujos por
campo eléctrico, difusión y neto del
ion potasio cuando se ha producido la
inversión del potencial y se abren los
canales de potasio.

Los canales de Na+ son unas proteínas transmembrana que están
controladas por el potencial de membrana. Al superarse el umbral, se
abren y dejan fluir libremente al ion Na+. Mirando la tabla, podemos
ver que el ion Na+ tiene tendencia a entrar en la célula debido a la
difusión. Además también entra debido al arrastre por el campo. De
este modo hay un gran flujo de ion sodio hacia dentro. La situación
es igual que la del ejemplo 4.9.1 como se ve en la figura 4.47. Esta
entrada de carga positiva hace aumentar el potencial en dirección
hacia el potencial de equilibrio del ion Na+, que como vimos en el
ejemplo es +33 mV. Esto está representado en la parte naranja de la
figura 4.49. Cuando el potencial alcanza un valor suficientemente po-
sitivo el ion Na+ deja de fluir. En ese momento se abren los canales
de K+. El potasio tiene un potencial de equilibrio (de Nernst) que
es negativo, en la condiciones de concentración dadas en la tabla y
que como calculamos en el ejemplo 4.9.2 es de −98 mV. Al abrirse los
canales, el K+ sale del axón. La situación del campo y del potasio se
representan en la figura 4.48.

Al extraer carga positiva del interior, el potencial comienza a dis-
minuir. El flujo de potasio lleva el potencial a valores negativos de
nuevo hasta un valor cercano a su potencial de Nernst, −98 mV. El
efecto de la apertura de los canales de K+ y la bajada del potencial
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apertura
canales
Na

estimulación
inicial

apertura
canales
K

bomba Na/K

umbral

reposo

potencial Nernst Na

potencial Nernst K

Figura 4.49: Comportamiento del poten-
cial de membrana durante el potencial
de acción: estimulación y superación
del umbral (morado), apertura de los
canales de sodio y flujo de sodio hacia
el interior (naranja), apertura de los
canales de potasio y flujo de potasio
al exterior (azul) y acción de la bomba
sodio-potasio (verde). El eje horizontal
representa el tiempo.

corresponden a la parte azul de la figura 4.49. Además, la inactiva-
ción de los canales de sodio, que se produce hacia el final de la fase
marcada como naranja, contribuye a que el potasio pueda repolarizar
la membrana26. Finalmente tras la hiperpolarización (cuando el po- 26 El estado inactivo del canal de sodio

es al parecer diferente del cerrado,
pero tampoco deja circular el sodio en
cualquier caso

tencial es más negativo que el de reposo, al final de la fase marcada
en azul) los canales de potasio se cierran.

Por último, con los canales cerrados, la bomba de sodio-potasio
devuelve el potencial de membrana a su situación de reposo, como
se ve en la parte verde de la figura 4.49. Tras un cierto tiempo los
canales vuelven a la situación inicial y el axón puede propagar otra
vez un nuevo potencial de acción.

Como resultado se ha generado un pulso de potencial, llamado
potencial de acción. Veamos ahora brevemente cómo se propaga a lo
largo del axón.

exterior celular

propagación del potencial de acción

axón

zona de polaridad
invertida

zona de polaridad
normal

interior celular

Figura 4.50: Propagación de la inversión
de polaridad. La inversión de polaridad
provoca una zona de potencial positivo
en el interior del axón y por tanto una
diferencia de potencial en la dirección
longitudinal. A su vez, esta diferencia
de potencial establece una corriente,
que transporta carga positiva en la
dirección longitudinal, propagando la
inversión de polaridad.

La depolarización (cargas positivas dentro, negativas fuera) de la
membrana del axón en una pequeña zona (figura 4.50) provoca una
diferencia de potencial en la dirección longitudinal del axón. A su
vez esta diferencia de potencial provoca una corriente de carga que
avanza a lo largo del axón, transportando carga positiva hacia una
zona adyacente. Como resultado, el potencial aumenta en la zona ad-
yacente (en la dirección de propagación del pulso, más a la derecha
en la figura). Si esta carga positiva consigue subir el potencial por
encima del umbral en la zona colindante, el mismo proceso anterior
se desencadena en la nueva zona (apertura canales de sodio, cambio
de polaridad, etc...). El potencial de acción se propaga por tanto a lo
largo del axón, regenerándose una y otra vez en cada tramo del axón.
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Esto hace que el potencial se transmita sin atenuarse. Por detrás de la
zona de depolarización, los canales de potasio y después la bomba de
sodio potasio repolarizan la membrana, devolviendo el potencial de
membrana a su valor (negativo) de reposo.

La regeneración del potencial en todos los tramos consume energía
y es lenta. Parte de la corriente se transmite a lo largo del potencial,
pero mucha se pierde a través de la membrana. En los axones con
vainas de mielina, esta impide la pérdida de corriente a través de
la membrana y el potencial de acción solo se regenera en los nodos
de Ranvier, unas pequeñas zonas de axón entre recubrimientos de
mielina sucesivos. Como consecuencia, el impulso es más rápido y
consume menos energía. En la siguiente sección vamos a estudiar un
modelo extremadamente simplificado para calcular la velocidad de
propagación del impulso nervioso en un axón con mielina.

Velocidad de propagación

vainas de mielina

nodos de Ranvier

axón

Figura 4.51: Axón con vainas de mielina.
Las vainas no dejan pasar los iones, que
solo pueden atravesar la membrana en
los nodos de Ranvier, donde hay una al-
ta concentración de canales de iones. El
potencial de acción solo se regenera en
los nodos, aunque la corriente eléctrica
si circula por el interior del axón.

Supongamos un axón con vainas de mielina de tamaño X. Supon-
gamos que el potencial de acción se encuentra en un determinado
nodo de Ranvier. El potencial de acción se habrá propagado una
distancia X cuando consiga provocar su regeneración en el siguiente
nodo y la velocidad de propagación será aproximadamente

v =
X
T

(4.92)

donde T es el tiempo que tarda el potencial de acción en saltar de
un nodo al siguiente. Para propagarse, el potencial debe superar
el umbral en el siguiente nodo. Para ello, como hemos visto, el
potencial del segmento de axón se depolariza, esto es, se invierte
la polaridad (se carga de forma positiva el interior y negativa el
exterior).

La membrana del axón se comporta, como hemos visto, como un
pequeño condensador de capacidad C. Cambiar la polaridad de un
tramo de axón corresponde por tanto a descargar primero, y cargar
con la polaridad contraria después, un condensador. Eléctricamente,
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este proceso corresponde a un circuito RC, donde el condensador que
constituye la membrana se carga a través de la resistencia del axón
por una corriente generada por una batería. La batería corresponde a
la diferencia de potencial ocasionada por el potencial de acción (ver
figura 4.52) entre dos nodos adyacentes.

dif. pot.
entre nodos

corriente
en el axón

Figura 4.52: Circuito que representa
eléctricamente la depolarización del
nodo siguiente al que se encuentra
el potencial de acción, separados una
distancia X. Se muestra el condensador
con polarización normal, el potencial de
la batería tiende a descargar y después
cargarlo con la nueva polaridad.

Como vimos, el tiempo característico de carga o descarga es del
orden

T ≃ RC (4.93)

donde C es la capacidad del tramo de axón de longitud X y R la
resistencia a través de la que se carga. Recuerde que la intensidad
que produce la depolarización recorre el axón longitudinalmente, por
tanto R corresponde también a la resistencia del tramo de axón de
longitud X. Teniendo en cuenta la forma cilíndrica de un segmento
de axón de radio r y longitud X, su superficie será A = 2πrX y la
capacidad total (ver sección 4.7):

C = Cm2πrX. (4.94)

Para la resistencia tenemos 27 (ver ejemplo 4.8.2) 27 En esta sección seguimos esencialmen-
te el texto de:

J.W. Kane and M.M. Sternheim. Physics.
Wiley, 1988

aunque en el citado texto utilizan
la resistencia hasta el punto medio
del fragmento del axón dando lugar
a la mitad de resistencia, para lo
que yo no encuentro justificación,
excepto, que el resultado se acerca
más a lo experimental. No obstante,
nosotros tomamos aquí el valor típico
de resistividad de 1 Ω ·m frente a
2 Ω ·m, por lo que el resultado final es
el mismo

R =
ρaX
πr2 (4.95)

de donde

T = RC =
2ρaCmX2

r
(4.96)

y la velocidad

v =
r

2ρaCmX
(4.97)

¿Cómo se compara esta fórmula con los datos reales? Si tomamos
una distancia típica de X ≃ 1 mm, con los datos de Cm de la membra-
na con mielina (ecuación (4.61)) y ρa típico del axón (ejemplo 4.8.2)
tenemos

v ≈ 10r m/(s · µm) (4.98)

que da la velocidad en m/s al poner el radio del axón en micras.
Según los experimentos en axones de gatos28, se obtiene algo como 28 John B. Hursh. Conduction velocity

and diameter of nerve fibers. American
Journal of Physiology, 127(1):131–139,
1939

v ≈ 12r m/(s · µm) que es parecido. Lo más interesante son la
consecuencias que podemos extraer de este modelo:

Figura 4.53: Circuito equivalente del
axón sin vaina de mielina. Parte de la
corriente generada se pierde a través de
la membrana Itm y no en depolarizar
el siguiente segmento de membrana,
ralentizando la transmisión.

1. La mielina aumenta la velocidad también al minimizar la pérdida
de corriente a través de la membrana, lo que implica que toda
la corriente se utilice para cargar el “condensador” que supone
la membrana. La corriente que se pierde a través de la membra-
na es como una resistencia en paralelo con el condensador de
la membrana (figura 4.53), que “roba” corriente al condensador,
ralentizando la carga. La mielina suprime dicha corriente trans-
membrana.
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Figura 4.54: Calamar con esquema de
su “axón gigante”. Hodgkin y Hux-
ley realizaron sus experimentos para
dilucidar el mecanismo del potencial
de acción con este tipo de axones
que alcanzan entre 0,5 mm y 1 mm
de diámetro, lo que facilita insertar
microelectrodos. Este trabajo les valió el
premio Nobel de Fisiología y Medicina.
Dibujo de L.D. basado en una foto de
Loligo vulgaris.

2. El potencial de acción solo se regenera en los nodos, una porción
pequeña del axón, de modo que hay menos gasto de energía.

3. Mayor r implica mayor v29. Los axones largos, para llevar señales 29 Modelos más complejos dan para los
axones sin mielina una dependencia
con la raíz cuadrada del radio. Expe-
rimentalmente parece confirmarse la
dependencia aproximadamente lineal
en axones mielinados.

eléctricas a grandes distancias suelen ser más gruesos. Más radio
implica mayor superficie y más gasto energético por lo que si no es
necesario serán de menor radio, como en el cerebro, por ejemplo.
Algunos invertebrados no usan mielina y utilizan axones de gran
radio, como el axón gigante del calamar de entre 0,5 mm y 1 mm
de diámetro (figura 4.54). Este axón gigante permitió a Hodgkin
y Huxley realizar sus estudios sobre la fisiología del impulso
nervioso.

4. La velocidad v ∝ 1
X . Menor espaciado de los nodos supone mayor

velocidad, pero también mayor gasto energético por el aumento
de regeneraciones del potencial de acción. Lo esperable es un X
óptimo en el que hay un compromiso entre ambos efectos.





5
Oscilaciones y ondas

5.1 ¿Por qué nos interesan las ondas?

Una parte de la información que nos llega del entorno lo hace en
forma de ondas, en particular a través de la luz y el sonido. La luz
y el sonido se propagan en forma de ondas, aunque de diferentes
características. Por tanto, algunos fenómenos típicos de las ondas,
reflexión, refracción y difracción por ejemplo, pueden tener su impor-
tancia biológica.

Las diversas modalidades de ojos, los oídos y otros órganos adap-
tados para la ecolocalización, son extremadamente sofisticados y
hacen uso de las posibilidades que ofrecen los fenómenos ondulato-
rios.

Por otro lado, algunas técnicas experimentales, como la microsco-
pía, también hacen uso de ondas, por lo que conocer las limitaciones
a la detección que impone el carácter ondulatorio puede resultar
interesante.

Las ondas propagan una perturbación consistente en un movi-
miento oscilante por lo que empezaremos estudiando el movimiento
armónico simple.

5.2 Movimiento oscilatorio armónico simple

El movimiento de vaivén de una masa enganchada en un resorte
o de un péndulo es un movimiento oscilante, que se repite cada
cierto tiempo, y armónico1 , esto es, que puede describirse con una 1 si la amplitud es pequeña

función armónica (seno o coseno). En el caso del muelle por ejemplo,
si lo desplazamos de su posición de equilibrio, tanto estirándolo
como comprimiéndolo, aparece una fuerza recuperadora. Esta fuerza
apunta hacia la posición de equilibrio y es más fuerte cuanto más
deformamos el muelle. Matemáticamente

F = −kx (5.1)
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donde x es la elongación del muelle respecto de la posición de equili-
brio, positivo para un lado y negativo para otro, como en la figura 5.1.
El signo menos indica que la fuerza apunta en el sentido contrario al
desplazamiento.

Figura 5.1: Una masa enganchada en
un muelle. Cuando se desplaza la masa
de la posición de equilibrio del muelle
(x = 0 en este ejemplo) aparece una
fuerza recuperadora que apunta en
la dirección del desplazamiento y en
sentido hacia la posición de equilibrio.

La segunda ley de Newton en ese caso nos dice que

F = ma⇒ ma = −kx o bien:
d2x
dt2 = − k

m
x (5.2)

ya que la aceleración es la segunda derivada de la posición respecto
del tiempo. El término k

m que aparece en la ecuación tiene unidades
de 1/s2 de modo que

ω =

√
k
m

(5.3)

es una frecuencia, denominada frecuencia angular del movimiento.
La ecuación (5.2) tiene una solución que se puede escribir así2:

2 La resolución de ecuaciones diferencia-
les está fuera del objeto de este curso.
No obstante puede comprobar que la
expresión es solución derivando dos
veces y sustituyendo en la ecuación

x(t) = A cos (ωt + ϕ) (5.4)

que nos da la posición de la masa m en cualquier instante de tiempo
t. La función coseno es periódica, de modo que el movimiento se
repite cada cierto tiempo, denominado periodo que se relaciona con
la frecuencia angular así:

T =
2π

ω
(5.5)

Otras veces es conveniente hablar de la frecuencia o número de
oscilaciones por segundo:

f =
1
T

=
ω

2π
(5.6)

que se mide en “hercios” en honor a Hertz y que corresponde a
1 Hz=1/s. El ángulo ϕ que aparece en (5.4) determina la posición
inicial de la masa

x(t = 0) = A cos(ϕ). (5.7)

Por último, A representa la amplitud del movimiento que corres-
ponde a la posición más alejada de la posición de equilibrio que
alcanza la masa. La posición está contenida entre A y −A:

−A ≤ x(t) ≤ A (5.8)

ya que la función coseno toma valores entre −1 y +1 incluidos.
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Opcional.

Para el caso de un péndulo, en lugar de una masa en un muelle, el movimiento tiene las mismas caracte-
rísticas, pudiéndose igual hablar de amplitud, frecuencia, periodo, etc. . . y las ecuaciones son las mismas
excepto que la frecuencia angular está dada por:

ω =

√
g
l

(5.9)

donde g es la aceleración de la gravedad y l la longitud del cable o cuerda de la que cuelga la masa m. La
frecuencia no depende de la masa en este caso.

Energía del movimiento armónico

La fuerza recuperadora de un muelle es conservativa. Conside-
remos un muelle en su posición de equilibrio. Cuando separamos
(estirando el muelle por ejemplo) la masa de su posición de equili-
brio, hacemos un trabajo que se acumula como energía potencial,
elástica en este caso. Si soltamos la masa, la masa comienza a mover-
se y la energía potencial se transforma en parte en energía cinética.
Matemáticamente, la energía potencial elástica vale:

Ep =
1
2

kx2 (5.10)

y si no se aplican más fuerzas sobre la masa, la conservación de la
energía dice que

1
2

kx2 +
1
2

mv2 = cte. (5.11)

El valor de la constante se puede determinar si tenemos información
de posición y velocidad en al menos 1 punto cualquiera de la trayec-
toria. Por ejemplo, sabemos que en el punto de mayor alejamiento
x = A la velocidad ha de hacerse 0, de modo que la constante vale
1
2 kA2 y

1
2

kx2 +
1
2

mv2 =
1
2

kA2 (5.12)

como se ve en el siguiente ejemplo.

Ejemplo 5.2.1 Energía total en un movimiento armónico

Una masa de 200 g está colocada en un muelle de constante recuperadora 3 N/m, en reposo. En un
momento dado, se estira el muelle 4 cm respecto de la posición de equilibrio, se sujeta en esa posición
durante un instante y se suelta. ¿Cuál es la energía total del movimiento? ¿Qué velocidad llevará cuando
pase por su posición de equilibrio.

SOLUCIÓN

Llamemos x = 0 a la posición de equilibrio del muelle.
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a) Según el enunciado en la posición inicial será x = 4 cm y justo antes de soltarlo, la velocidad es nula
v = 0. La energía total es

Etotal = Ep + Ec =
1
2

kx2 +
1
2

mv2 =
1
2
(3 N/m)(4× 10−2 m)2 + 0 = 0,0024 J (5.13)

b) Conocida la energía total, que es constante, podemos deducir la velocidad en cualquier otro punto:

Etotal =
1
2

kx2 +
1
2

mv2 ⇒ v =
√
(2Etotal − kx2)/m (5.14)

y para la posición de equilibrio x = 0:

v =
√
(2Etotal − kx2)/m =

√
2Etotal/m ≃ 0,15 m/s = 15 cm/s (5.15)

5.3 Movimiento ondulatorio. Descripción

Una onda es una perturbación de alguna propiedad que se propa-
ga de forma periódica en el espacio. La onda conlleva un transporte
de energía, no de materia. Ejemplos de perturbaciones que se pro-
pagan de forma ondulatoria son las variaciones de presión (ondas
sonoras, ondas de un terremoto), el campo eléctrico y magnético
(ondas de radio, luz), la altura de la superficie de un líquido (ondas
en un estanque, las olas del mar), una perturbación del potencial de
membrana en la transmisión del impulso nervioso, aunque en este
último caso es más apropiado hablar de pulsos separados que de
ondas.

Cuando la perturbación en el origen sigue un movimiento armóni-
co simple, lo habitual es encontrar ondas armónicas propagándose.

Descripción de las ondas. Propiedades importantes

Una onda armónica propagándose tiene un aspecto sinusoidal
(función seno o coseno) en el espacio. El ejemplo más sencillo es la
propagación de una onda en una cuerda (o una manguera) cuando
en uno de sus extremos producimos una oscilación armónica. La
figura 5.2 representa la forma de la onda en un instante dado. Si no
hubiera rozamiento, o si es pequeño, la onda en un instante posterior
se desplazará en su dirección de movimiento manteniendo la misma
forma. Si nos fijamos en un pequeño segmento de la cuerda en una
posición determinada, este seguirá un movimiento similar al de la
perturbación del extremo, con su misma frecuencia.

En la figura 5.2 podemos identificar algunas propiedades de las
ondas:
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Amplitud A. La amplitud de la onda es la amplitud del movi-
miento armónico simple que sigue cualquiera de sus puntos, por
ejemplo el marcado por el círculo azul en la figura, en el caso de
la onda en una cuerda. En el caso de otra propiedad, es el valor
máximo que alcanza la perturbación respecto del valor medio, o la
mitad del rango completo de oscilación. Sus unidades son las mis-
mas de la propiedad que se propaga (distancia, campo eléctrico,
presión, etc. . . ).

Longitud de onda λ. Es la distancia que separa dos puntos en
igual estado de oscilación, por ejemplo la distancia entre dos
crestas.

Periodo T, es el tiempo que dura una oscilación completa en
un punto dado (por ejemplo en el círculo azul), o igualmente la
separación temporal entre el paso de una cresta y la siguiente por
un punto en una posición fija. Es el inverso de la frecuencia de
oscilación f = 1/T.

Velocidad de propagación v es la velocidad a la que viaja la onda y
que podemos ver como el espacio recorrido por una determinada
cresta (la marcada con un círculo verde) en el tiempo de una
oscilación completa (como indica por ejemplo el círculo azul). Así:

v =
λ

T
o bien v = λ f (5.16)

Figura 5.2: Propiedades y propagación
de ondas. El círculo azul marca el
estado de la oscilación en un punto fijo.
El círculo verde marca la posición de la
misma cresta en distintos instantes de
tiempo.

Estas características son comunes a todas las ondas. Por otro lado,
podemos distinguir distintos tipos de ondas en base a cuestiones
geométricas. En cuanto a la relación entre dirección de propagación y
el movimiento local que producen las ondas pueden ser:

Transversales. La perturbación se produce en una dirección per-
pendicular a la dirección de propagación. El ejemplo más claro es
una onda en una cuerda. Si está horizontal, la onda se propaga en
dirección horizontal, pero cada pequeño segmento de cuerda se
desplaza verticalmente. Otro ejemplo es las ondas electromagnéti-
cas o las ondas en un estanque.

Longitudinales. La perturbación provoca desplazamiento en la
misma dirección de propagación. Por ejemplo, una perturbación
de compresión y distensión en un muelle. También el sonido es
una onda longitudinal.

Según la geometría podemos tener ondas unidimensionales (en
una cuerda, en un instrumento de viento), ondas en dos dimensiones
(ondas en una membrana tensa, como en un tambor) u ondas en 3

dimensiones, como el sonido en el agua. En 3D podemos tener ondas
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planas u esféricas (u otras) según la forma de los frentes de onda. Un
frente de onda es el lugar geométrico de los puntos en igual estado
de oscilación.

Si la onda se propaga a la misma velocidad en todas direcciones,
cerca de la fuente los frentes de onda son esféricos3. Lejos de la 3 A veces se considera que se propagan

principalmente en un sentido y no
en el contrario y se consideran solo
semiesféricas

fuente, como las esferas se van haciendo de mayor radio, tienen
aspecto de planos si nos fijamos en una pequeña parte del frente y se
suelen considerar ondas planas (figura 5.3).

Figura 5.3: Arriba. Frentes de ondas
esféricos (solo se representa una parte
del frente). Las líneas negras repre-
sentan direcciones de propagación (o
rayos) y son perpendiculares al frente
de ondas. Abajo. Lejos de la fuente, los
frentes esféricos tienen tanto radio que
se suelen considerar planos. El rayo
indica la dirección de propagación y es
perpendicular a los frentes de onda.

5.4 Energía, potencia e intensidad de una onda

Energía

Una onda transmite una oscilación que lleva asociada una energía.
Pensemos en un pequeño trozo de materia de masa m que se pone
en movimiento al pasar una onda armónica y realiza un movimiento
armónico simple. Su energía será

E =
1
2

kA2 (5.17)

donde A es la amplitud de movimiento. Podemos expresar la cons-
tante k utilizando las ecuaciones (5.3) y (5.6) como

k = 4π2m f 2 (5.18)

de donde
E = 2π2m f 2 A2 ∝ A2. (5.19)

La energía transmitida es proporcional a la amplitud de la onda al
cuadrado. Para dos ondas de la misma frecuencia f , o para la misma
onda en dos puntos del espacio donde tenga diferente amplitud,
podemos escribir

E1

E2
=

A2
1

A2
2

(5.20)

Potencia

La potencia transportada por la onda es igualmente proporcional a
la amplitud al cuadrado

P =
E
t

∝ A2 (5.21)

Intensidad

En muchas situaciones interesa conocer la energía que atraviesa
una superficie dada (por ejemplo, la superficie de un detector u
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órgano sensorial) por unidad de tiempo y superficie. Se denomina
intensidad de la onda

I =
E
tS

=
P
S

∝ A2 (5.22)

Las unidades de la intensidad son

[I] =
[P]
S

= 1 W/m2 (5.23)

Veamos algunas consecuencias de estas relaciones. En la transmisión
de una onda, esperamos que la energía se conserve aproximada-
mente4 de modo que la potencia es constante en la propagación. 4 En general una parte de la energía

de la onda puede disiparse en forma
de calor en el medio por fenómenos
disipativos

Pensemos en una fuente de onda (un altavoz, una bombilla...) que
emite con una potencia dada P y en todas direcciones por igual. La
onda será aproximadamente esférica. A una distancia r de la fuente,
la energía (y la potencia) debe repartirse en una superficie esférica de
área S = 4πr2. La intensidad valdrá a distancia r

I =
P
S
=

P
4πr2 (5.24)

La intensidad de la onda decrece a medida que nos alejamos de la
fuente (con el cuadrado de la distancia). La onda se atenúa. Por ejem-
plo, para una onda esférica, conocida la intensidad en un punto I1

que dista de la fuente r1 podemos calcular la intensidad en cualquier
otro punto a distancia r2:

I2

I1
=

P
4πr2

2

4πr2
1

P
=

r2
1

r2
2
⇒ I2 =

r2
1

r2
2

I1 (5.25)

La intensidad decrece a medida que nos alejamos de la fuente5 5 Veremos en la siguiente sección la
relación entre intensidad y volumen en
las ondas de sonido

Otra forma de verlo es en relación con la amplitud de la onda. Da-
do que para una onda de una determinada frecuencia la intensidad
es proporcional a la amplitud al cuadrado, tenemos que

I2

I1
=

r2
1

r2
2
⇒

A2
1

A2 =
r2

1
r2

2
⇒ A2 =

r1

r2
A1 (5.26)

donde vemos que si r2 > r1 entonces A2 < A1, decrece la amplitud a
medida que nos alejamos de la fuente.

5.5 Volumen e intensidad en ondas sonoras

El volumen con el que percibimos una onda sonora está relaciona-
do con la amplitud o la intensidad de la onda. A mayor intensidad,
mayor volumen. No obstante, la relación no es lineal si no más bien
logarítmica, por razones relacionadas con la fisiología del oído6. Se 6 Parece ser que en efecto en la mayo-

ría de los sentidos la relación entre
estímulo y sensación percibida es lo-
garítmica. Esto se denomina la ley de
Weber-Fechner. La razón última no está
clara, pero permite tener un “sensor”
que detecta fiablemente señales en un
rango de 12 órdenes de magnitud de
intensidad, en el caso del oído, por
ejemplo.

define el volumen o nivel de intensidad β como

β = 10 log10
I
I0

(5.27)
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donde I0 es una intensidad que representa el umbral de percepción,
la menor intensidad de onda que es posible detectar. En el aire, para
el oído humano se establece7 en I0 = 10−12W/m2 . Veamos con un 7 Si utilizamos la definición de β, ¿a qué

volumen corresponde una intensidad
I = I0?

ejemplo las consecuencias de que el volumen sea logarítmico.

Ejemplo 5.5.1 Doblamos la intensidad

Un determinado sonido se recibe inicialmente una intensidad de I1 = 10−6W/m2. En un determinado
momento se duplica la intensidad. Compare el volumen inicial y final.

SOLUCIÓN

El nivel de intensidad o volumen inicial será

β1 = 10 log10
I1

I0
= 10 log10

10−6

10−12 = 60 dB (5.5.1.1)

Al doblarse la intensidad, tenemos I2 = 2× 10−6 W/m2

β2 = 10 log10
I2

I0
= 10 log10

2× 10−6

10−12 ≃ 63 dB (5.5.1.2)

es decir, tres decibelios más.

Veamos ahora cómo se atenúa el volumen en una onda esférica.

Ejemplo 5.5.2 Atenuación de una onda esférica

¿A qué distancia dejará de oírse una conversación que a 50 cm de distancia tiene un volumen de 60 dB?
Suponga que la conversación se propaga en todas direcciones por igual formando una onda esférica.

SOLUCIÓN

El límite de audición humana está aproximadamente en I0 = 1× 10−12 W/m2. Tenemos que calcular
a qué distancia la intensidad de la onda ha disminuido hasta ese nivel. Calculamos primero cuál es la
intensidad inicial.

β1 = 10 log10
I1

I0
⇒ I1 = I0 × 10β1/10 = (1× 10−12 W/m2)(106) = 1× 10−6 W/m2 (5.5.2.1)

De esta intensidad, podemos deducir la potencia de la fuente sonora suponiendo que se reparte en una
superficie esférica

I1 =
P

4πr2
1
⇒ P = 4πr2

1 I1 (5.5.2.2)

donde r1 = 1 m. Si la energía se conserva, la potencia total de la onda es constante pero se reparte en una
superficie esférica más grande cuanto más lejos estamos de la fuente. La intensidad I2 de la onda a otra
distancia r2 se obtiene de la igualdad de la potencia

P = 4πr2
1 I1 = 4πr2

2 I2 (5.5.2.3)
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o si nos interesa la distancia

4πr2
1 I1 = 4πr2

2 I2 ⇒ r2
2 = r2

1
I1

I2
⇒ r2 = r1

√
I1

I2
(5.5.2.4)

Si tomamos para la segunda intensidad la potencia más pequeña que podemos detectar con el oído
I2 = 1× 10−12 W/m2, la distancia correspondiente es

r2 = (0,5 m)

√
(1× 10−6 W/m2)

(1× 10−12 W/m2)
≃ 500 m (5.5.2.5)

La distancia es muy grande para ser realista, aunque hay que considerar que en el mundo real hay otros
muchos ruidos que taparían la conversación, obstáculos y probablemente pérdidas de energía en la propa-
gación del sonido.

5.6 Intensidad de la onda y la superficie de detección

Es interesante explorar el concepto de intensidad de la onda en
relación con la detección. Tanto las ondas sonoras como lumínicas
pueden ser detectadas por órganos especializados en los animales, o
por aparatos diseñados por el hombre a tal efecto, aportando gran
cantidad de información. El órgano (o aparato) detector presenta
una cierta área donde se recoge la onda y se produce directamente la
conversión en una señal transmisible al cerebro (como en la retina) o
bien se canaliza hacia el órgano que hará la conversión (como en el
pabellón auricular). Si la onda llega al órgano detector con una cierta
intensidad, la energía total por unidad de tiempo (potencia) recogida
será mayor según el área de detección:

Precogida = IAdetector (5.28)

Utilizando las unidades, esto se ve claramente

[I][A] = 1 W/m2 ×m2 = 1 W (5.29)

Cuanto mayor sea la potencia recogida, más fácil será la detección
de la señal. Por esta razón, una manera de aumentar la sensibilidad
del detector es aumentar la superficie de detección, lo cual se aplica
desde el diseño de telescopios a los ojos u orejas de los animales. Si
la intensidad lumínica en el entorno es muy baja, como ocurre con
los animales de hábitos nocturnos, una posible solución es desarrollar
unos ojos grandes (figura 5.4).
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Figura 5.4: El tarsero filipino (Carlito sy-
richta) y el feneco (Vulpes zerda) poseen
órganos detectores de ondas con gran
superficie de captación. Dibujo de L.D.

5.7 Fenómenos ondulatorios típicos

En esta sección estudiaremos los fenómenos de reflexión, refrac-
ción y difracción, aplicables a las ondas en general. Para la reflexión
y la refracción es conveniente definir el concepto de rayo. Un rayo
es una línea perpendicular al frente de onda en todo punto e indica
la dirección de propagación. Por ejemplo, en la propagación en 2D
de una onda en todas direcciones desde una fuente puntual (ondas
en la superficie de un lago), los frentes de onda son circulares y los
rayos radiales, como en la figura 5.5. En una onda plana, los rayos
son perpendiculares a los planos (3D) o líneas (2D) de los frentes de
onda (figura 5.6).

rayo 1

fuente de ondas

rayo 2

Figura 5.5: Dos rayos indicados en
una onda circular. Los círculos azules
representan los frentes de onda.

Figura 5.6: Lejos de la fuente las ondas
son aproximadamente planas. El rayo es
siempre perpendicular a los frentes de
onda.

Reflexión

rayo reflejado

frentes de onda
incidentes

frentes de onda
reflejados

rayo incidente

normal a la superficie

Figura 5.7: Reflexión. Tanto los frentes
de onda como los rayos ven la compo-
nente perpendicular a la superficie de
su velocidad cambiada de signo (en
este caso la componente vertical). El
resultado es que el ángulo de incidencia
es igual al ángulo de reflexión (θr = θi).
El rayo sigue una trayectoria similar a la
que seguiría una partícula que rebotara
elásticamente contra la superficie, como
una bola de billar contra la banda, por
ejemplo.

Cuando una onda se encuentra con un obstáculo (o medio) en
el que no se puede propagar, se refleja, volviendo a propagarse por
el medio. En una reflexión perfecta sobre una superficie plana bien
pulida, la componente de la velocidad propagación de la onda en
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la dirección perpendicular a la superficie cambia de signo. Esto
ocurre tanto para los frentes de onda como con los rayos. El resultado
es que el ángulo de incidencia del rayo respecto de la normal θi a
la superficie es igual que el ángulo del rayo reflejado θr (también
respecto de la normal):

θr = θi (5.30)

En una situación general es posible que una parte de la onda sea
reflejada y otra transferida a través del medio, como sucede cuando
una onda lumínica atraviesa un vidrio.

Refracción

Figura 5.8: Refracción. Rayos incidente
y refractado y frentes de onda en la
refracción. En el ejemplo concreto la
onda se propaga a menor velocidad en
el medio azul.

Cuando una onda cambia de medio a uno en el que la velocidad
de propagación es diferente, la dirección de propagación se modifica.
Este fenómeno se conoce como refracción. Si la onda entra en un
medio en el que la velocidad es menor, como sucede en la figura
5.8 (los frentes de ondas aparecen más juntos), el rayo se acerca a la
normal. El ángulo de refracción θ2 es menor que el de incidencia θ1

ambos medidos respecto a la normal. Si la onda pasa a un medio
de mayor velocidad de propagación, sucede lo contrario. Podemos
encontrar una relación entre los ángulos de incidencia y refracción.
Si nos fijamos en detalle en un frente de onda que avanza durante
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un tiempo t determinado, como en la figura 5.9, vemos que hay 2

triángulos rectángulos que nos permiten escribir

Figura 5.9: Detalle de los triángulos que
aparecen en la refracción y permiten
deducir la ley de Snell.

sin θ1 = l1
a (5.31)

sin θ2 = l2
a (5.32)

donde l1 y l2 son las distancias recorridas por el frente en el tiempo
t en el medio de incidencia y refracción respectivamente. a es la
hipotenusa en ambos triángulos. En el medio incidente la onda se
desplaza a velocidad v1 y tras refractarse se desplaza a v2, de modo
que

l1 = v1t (5.33)

l2 = v2t (5.34)

Sustituyendo en (5.31) y (5.32), despejando a e igualando, se llega a la
Ley de Snell de la refracción:

sin θ1

sin θ2
=

v1

v2
(5.35)

La ley de Snell corrobora que efectivamente

Si v2 < v1 ⇒ sin θ1 > sin θ2 ⇒ θ1 > θ2, esto es si la velocidad es
menor en el segundo medio, el rayo se acerca a la normal, y

si v2 > v1 ⇒ sin θ1 < sin θ2 ⇒ θ1 < θ2, esto es si la velocidad
es mayor en el segundo medio, el rayo se aleja de la normal al
refractarse.

Refracción de las ondas de luz. Índice de refracción

Para las ondas lumínicas se define el índice de refracción de un
determinado medio (aire, agua, vidrio. . . ) como la relación entre la
velocidad de la luz en el vacío c y la velocidad de propagación de la
luz en el medio v:

n =
c
v

(5.36)

con c = 299 792 458 m/s ≃ 3,0× 108 m/s. El índice de refracción de
un medio no tiene unidades (es una relación) y es siempre mayor que
1. Podemos reescribir la ley de Snell (5.35) en función del índice de
refracción

sin θ1

sin θ2
=

cv1

cv2
⇒ sin θ1

sin θ2
=

n2

n1
(5.37)

donde n1 y n2 son los índices de refracción en el medio incidente y
de refracción respectivamente. Reorganizando términos queda

n1 sin θ1 = n2 sin θ2 (5.38)

que es fácil de recordar y es la forma habitual de la ley de Snell.
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Lentes y ojos

La refracción es un fenómeno crucial en las lentes, que permiten
la formación de imágenes al enfocar los rayos de luz hacia el plano
en el que se acumulan las células fotorreceptoras. Aunque existe
gran variedad de ojos en el mundo animal, con y sin lentes, en los
vertebrados (y algunos invertebrados) la morfología habitual es la
de una cavidad con células fotorreceptoras en uno de sus extremos
y una lente que forma la imagen sobre ellas. Para ello, las lentes han
de estar compuestas de un material transparente con un índice de
refracción lo suficientemente alto como para producir una modifi-
cación apreciable de la trayectoria de los rayos. En qué posición se
forma la imagen depende de la distancia focal de la lente. La distan-
cia focal (o su inverso, la potencia en dioptrías) está determinada por
la curvatura de la lente y por su índice de refracción. En la figura
5.10 se representa un diagrama de la óptica geométrica básica en la
formación de imagen en un ojo. Aunque es habitual estudiar el

objeto
imagen

retina

cristalino
(lente)

rayo

foco

foco

Figura 5.10: Esquema de ojo y forma-
ción de imagen. Se representa la retina,
donde están las células receptoras de
luz y el cristalino que actúa como lente.
Los rayos que parten del objeto son
refractados por la lente y convergen
sobre la retina donde se forma una
imagen nítida del objeto. A modo de
ejemplo, se representan dos rayos de
luz que parten de la parte superior del
objeto y otro que se emite desde una
parte intermedia.

cristalino como una lente delgada, en realidad el humor vítreo que re-
llena el ojo entre el cristalino y la retina tiene un índice de refracción
muy parecido al del cristalino, por lo que en la segunda superficie
del cristalino hay poca refracción (los rayos se desvían poco); casi
toda la refracción se produce en el lado externo del ojo. Por otro lado,
el índice de refracción similar entre cristalino y humor vítreo hace
que la transmisión de la onda entre ambos se produzca con poca
reflexión y una fracción muy alta de la intensidad (mayor del 99 %)
sea transmitida hacia la retina.

Difracción

La difracción de las ondas ocurre en general cuando un frente
de ondas encuentra un obstáculo parcial en su camino. Cuando se
produce difracción, las ondas parecen rodear en cierta manera los
obstáculos y pueden llegar a zonas en principio en la sombra geomé-
trica del obstáculo (zonas sin línea de visión directa a la fuente de las
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ondas). En la figura 5.11 se ve cómo una zona que en principio no re-
cibiría luz (por ejemplo) puede aparecer algo iluminada por efecto de
la difracción. La difracción está íntimamente ligada a la interferencia,
y en la zona iluminada en la zona de sombra geométrica es posible
observar un patrón de interferencia.

pantalla

onda

zona iluminada zona de
sombra

zona ilum.
por difracción

obstáculo

Figura 5.11: Un frente de ondas plano
encuentra un obstáculo. La onda parece
rodear el obstáculo.

oscilación

puntual 
fuente 

Figura 5.12: Un frente de ondas plano
encuentra un obstáculo con un agujero
del tamaño aproximado de la longitud
de onda. El medio que ocupa la posi-
ción del agujero oscila cuando llega el
frente plano de la onda. Esta pequeña
región se comporta por tanto como
un emisor y si es pequeño, como una
fuente puntual de ondas generando
una onda circular o esférica (según la
dimensión).

Para entender el origen de la difracción, pensemos en una onda
plana que encuentra un obstáculo con un pequeño agujero, del ta-
maño aproximado de la longitud de onda, como en la figura 5.12.
Al llegar la onda, tal y como vimos en la sección 5.3, el medio en la
región del agujero seguirá un movimiento oscilatorio de la misma fre-
cuencia que la onda. Este pequeño elemento vibrante se convierte a
su vez en una fuente de ondas, y si es pequeño, será aproximadamen-
te puntual, dando lugar a una onda semiesférica (o semicircular) a
su vez. En el caso de que el agujero tenga un tamaño mayor, actuará
en general como varias fuentes diferentes y el resultado de la onda
“aguas abajo” será más complicado, pero el principio que produce la
difracción es similar.

Aunque para la luz visible el fenómeno de difracción no es sencillo
de observar con el ojo desnudo, con el sonido no es extraño que
tengamos situaciones como la descrita en la figura 5.11. Por ejemplo,
es fácil escuchar a una persona que no podemos ver detrás de un
obstáculo como un muro (incluso prescindiendo de rebotes). La
razón es la muy diferente longitud de onda de la luz y el sonido8. 8 Por supuesto, esta no es la única dife-

rencia entre luz y sonido. El sonido es
una onda de presión en un medio mate-
rial y la luz una onda electromagnética.

La longitud de onda de la luz visible es del orden de 1 × 10−7 m,
mientras que para el sonido es de aproximadamente 1 m. Los efectos
de la difracción son grandes para obstáculos o apertura comparables
con la longitud de onda9. Resumiendo para un objeto o apertura de 9 J.W. Kane and M.M. Sternheim. Physics.

Wiley, 1988tamaño L y una onda de longitud de onda λ:

Si L ≫ λ ⇒ no se percibe difracción, no se rodea el obstáculo y la
zona de sombra corresponde con la sombra geométrica.

Si L ≪ λ ⇒ la onda no “ve” el obstáculo, prácticamente pasa sin
verse perturbada, como por ejemplo un pequeño corcho en un
estanque que no perturba apenas las ondas superficiales que pasan
a su través.

Si L ∼ λ⇒ la difracción es importante.

De esta manera, los efectos de difracción marcan el límite (por aba-
jo) de tamaño de objeto que se puede detectar con una onda. Por
ejemplo, la luz del espectro visible tiene una longitud de onda en
torno a 0,5 µm (depende del color) y eso hace que este sea el límite
aproximado de lo que podemos ver con un microscopio óptico. Esta
idea se explora en el siguiente ejemplo.
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Ejemplo 5.7.1 Ecolocalización

Algunas especies de murciélagos utilizan para la ecolocalización ondas sonoras de frecuencia 80 kHz,
correspondientes a ultrasonidos. Las ballenas por el contrario utilizan infrasonidos, de longitud de on-
da aproximada de 10 Hz. ¿Cuál es el límite aproximado de tamaño de los objetos que pueden localizar
mediante el sonido?

SOLUCIÓN

El límite viene dado aproximadamente por la longitud de onda. Podemos calcular la longitud de onda a
partir de la velocidad del sonido y la frecuencia:

L ≈ λ =
v
f

(5.7.1.1)

Para el murciélago, tomando la velocidad del sonido en el aire como v = 340 m/s,

L ≈ λ =
v
f
=

340 m/s
80× 103 Hz

= 4,25× 10−3 m ≈ 4 mm. (5.7.1.2)

Es interesante notar que ese es el tamaño aproximado de un insecto, presa habitual de un murciélago.
Mientras que para la ballena, con una velocidad del sonido en el agua de v = 1500 m/s

L ≈ v
f
=

1500 m/s
10 Hz

= 150 m (5.7.1.3)

que puede corresponder aproximadamente con el tamaño de los bancos de krill.

Microscopía óptica de superresolución

Como hemos dicho, cuando la separación entre dos puntos de
nuestra muestra en el microscopio es comparable a la longitud de
onda λ de la luz visible, resulta difícil discernirlos, debido a los
efectos de difracción. En concreto, se suele utilizar el llamado criterio
de Rayleigh que establece que la mínima separación d que puede
distinguirse, esto es, la resolución del microscopio es

d =
λ

2n sin θ
(5.39)

donde n es el índice de refracción del medio y θ el ángulo que sub-
tiende la muestra con el objetivo. En condiciones favorables n sin θ

(llamado apertura numérica del microscopio) será del orden de 1, de
modo que

d ≈ λ

2
(5.40)

sin tener en cuenta otros problemas como aberraciones de las lentes,
razón por la que en la sección anterior hemos sido conservadores
y tomado d ∼ λ como orden de magnitud. Para luz visible (por
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ejemplo, tomando la zona intermedia del espectro verde λ ≃ 500 nm)
tenemos aproximadamente

dóptico ≈ 250 nm (5.41)

Durante mucho tiempo se pensó que este límite no se podría superar
utilizando microscopía óptica. Sin embargo, en años recientes, gracias
a la microscopía de fluorescencia y a técnicas como PALM o STORM
se han conseguido resolver estructuras de tamaños aún menores y
obtener imágenes de microscopio óptico de objetos de estructuras
biológicas, sobre todo proteínas, de tamaño de algunas decenas de
nanometros!! La resolución de la técnica STORM está generalmente
en el rango de los 20− 30 nm. En la figura 5.13 adaptada de 10 se 10 Johnny Tam, Guillaume Alan Cordier,

Joseph Steven Borbely, Ángel Sando-
val Álvarez, and Melike Lakadamyali.
Cross-talk-free multi-color storm ima-
ging using a single fluorophore. PLOS
ONE, 9(7):e101772, 2014

observa localización de las proteínas Tom20 y ATP-sintasa de la
membrana de la mitocondria y los autores aseguran que obtienen un
tamaño de pixel de 10 nm.

Figura 5.13: Imagen de microscopía
STORM (stochastic optical reconstruc-
tion microscopy) de la proteína Tom20

(aprox. 15 nm) de la membrana externa
de la mitocondria (magenta) y de la
proteína de la membrana interna ATP-
sintasa (aprox. 10 nm)(en verde). La
barra de escala mide 1 µm. Adaptada
de la Figura 2 de Tam J, Cordier GA, Bor-
bely JS, Sandoval Álvarez A, Lakadamyali
M (2014), “Cross-Talk-Free Multi-
Color STORM Imaging Using a Single
Fluorophore”, PLoS ONE 9(7): e101772,
https://doi.org/10.1371/journal.pone.0101772,
bajo licencia de dominio público.
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