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PRrREFACIO Y LICENCIA

Este libro se basa en mis apuntes de clase del curso de Fisica
Aplicada a la Biologia de la Universidad Complutense de Madrid,
de la que soy profesor titular. Son apuntes elaborados a partir de
multitud de fuentes (que cito cuando es posible) y con la inestimable
guia para la eleccion de algunos temas y ejemplos del profesor ].M.R.
Parrondo que me paso sus apuntes hace ya algtn tiempo y al que
estoy muy agradecido por su generosidad. También quiero agradecer
a los profesores Juan José Mazo y Elsa Mohino su lectura atenta,
sus comentarios y la correccién de algunos errores. Los que quedan
todavia son de mi entera responsabilidad.

La intencién de este documento no es otra que tener los apuntes
en formato electrénico, de forma que se puedan ir mejorando o
cambiando evitando tachones y modificaciones que finalmente
plagan los apuntes reciclados de afio en afio. Por esta razén son
eminentemente gréficos, con multitud de esquemas. El texto es
intencionadamente telegrafico en ocasiones, aunque al escribir es
dificil evitar la tentacion de volverse formal con el lenguaje y dar
muchos detalles para el lector. Han resultado un recurso inestimable
como material de apoyo en la docencia online.

Esta es la (segunda) primera versién completa (version 1.1), con los
5 temas del curso: Dindmica, Fluidos, Termodindmica, Electricidad y
Ondas. La diferencia con la 1.0 es que ha sido revisada para corregir
errores, afiadir detalles, referencias, resultados experimentales, pun-
tualizaciones y algunas figuras como en la ley de Kirchhoff, la éptica
del 0jo, la energia de enlace de A-T y G-C, el impulso nervioso o la
microscopia de superresolucién. En algunos temas, hay algo mds de
contenido de lo que en un curso normal da tiempo a explicar, para
poder elegir qué dejar fuera en funcién de las necesidades. Otros,
como ondas, cubren sélo lo esencial y es posible que los amplie en un
futuro.
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1
RErAsO DE DINAMICA

1.1 ;Qué trata este capitulo?

EN ESTE PRIMER CAPITULO repasaremos conceptos fundamentales
para el resto del curso relativos al movimiento, las fuerzas, la energia
y el torque. El concepto de energia se utiliza en todos los demaés temas.
Es de importancia central en fisica, probablemente por el principio
de conservacién de la energia. Nos permite, en ocasiones, decir algo
de un proceso sin tener mucha mas informacién de los detalles, por
lo que puede ser interesante en multitud de situaciones. La energia
desempefia un papel fundamental por ejemplo en el metabolismo,
en el control de temperatura o en el movimiento de los animales.
Las plantas transforman la energia del Sol en energia quimica en

los enlaces de los azticares. Los animales y las plantas utilizamos
esa energfa para multitud de procesos en todas las escalas, desde
caminar, volar, las funciones fisiolégicas, el transporte en las células,
la duplicacién del ADN, etc...La generaciéon y consumo de energia
en distintas formas por parte de los humanos tiene efectos globales
en el planeta y en los ecosistemas.

La palabra energia se usa muy frecuentemente, a menudo con sig-
nificado ambiguo. Pero exactamente, ;qué es la energia? La ruta hacia
la comprensién de este concepto abstracto es el trabajo mecanico y la
empezaremos a recorrer en este capitulo.

1.2 Dindmica

De las 3 leyes de Newton, usaremos 2 esencialmente:

= 2% ley de Newton: F = ma o en forma vectorial F = mid.la
fuerza aplicada sobre un objeto de masa m le proporciona una
aceleraciéon a = F/m. La fuerza aqui representa la fuerza neta o
suma (vectorial) de todas las fuerzas que acttian sobre el objeto.

L

[
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= 3% ley de Newton: Si un cuerpo A ejerce una fuerza sobre otro
B, entonces B ejercerd sobre A una fuerza de igual magnitud y
direccién, pero de sentido contrario.

Es importante que la segunda ley relaciona la fuerza con la ace-
leracién, no con la velocidad. Aceleracién (o fuerza) y velocidad no
siempre apuntan en la misma direccién. Por ejemplo, cuando tiramos
una piedra al aire, la aceleraciéon siempre es hacia abajo (la acelera-
cién de la gravedad), mientras que durante la subida la velocidad
apunta hacia arriba, como en la figura 1.1. Otro ejemplo es durante
un movimiento circular.

La segunda ley es fundamental porque a partir de las fuerzas
que se aplican a un objeto permite deducir la aceleracién en cada
momento, y de la aceleracién uno podria obtener en principio la
velocidad y la posicién, esto es la trayectoria del objeto®. El ejemplo
mas sencillo, que usaremos, se da cuando la suma de todas las
fuerzas sobre el objeto es nula. De este modo, la aceleracion es nula.
Aceleracién nula significa velocidad constante, (no necesariamente
cero):

Cuando Fipia = 0= 0 = Fipta) = ma = a = 0 = v = cte. (1.1)

Lo siguiente mds sencillo es el movimiento uniformemente acelera-
do, esto es, sometido a una fuerza constante en magnitud, direccién y
sentido.

F L
F:cte.:>a:a:cte.:>v:vo+at:>x:x0+vot+§at (1.2)

El ejemplo mads claro quizas de la tercera ley de Newton es la
fuerza gravitatoria entre el Sol y la Tierra. El Sol atrae a la Tierra con
una fuerza, segtn la ley de la gravitacién universal que en médulo
vale

MgMrt
FST = GT (13)
donde Mg y Mt son las masas de Sol y Tierra, r la distancia que
las separa y G una constante. A su vez la fuerza que ejerce la Tierra
sobre el Sol es
MsMr
FTS = GT (14)
exactamente la misma. La fuerza del Sol sobre la Tierra apunta de la
Tierra al Sol y la que ejerce la Tierra sobre el Sol apunta del Sol a la
Tierra, en la misma direccion y sentido contrario.

Igual, la Tierra ejerce una fuerza sobre tu cuerpo, pero tu cuerpo
ejerce sobre la Tierra una atraccién exactamente igual de intensa
hacia arriba.

Fap = —Fpa

Q)
1

ST

Figura 1.1: Si lanzamos una pelota al
aire, la aceleracion que sufre es siempre
la de la gravedad (hacia abajo). La
velocidad va apuntando en distintas
direcciones a lo largo de la trayectoria.

* En general esto no es trivial, pero en
principio se puede hacer, aunque sea
numéricamente con un ordenador

Ojo, en general, cuando haya mu-
chas fuerzas y sean complicadas, jlas
ecuaciones 1.2 no seran validas!

9

Frs

Figura 1.2: La fuerza que ejerce la Tierra
sobre el Sol es igual en magnitud y
direccion, pero de sentido contrario
que la fuerza que ejerce el Sol sobre la
Tierra. f’]‘s = 71_::5'[‘
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1.3 Trabajo

El trabajo es una cantidad que se define para una fuerza que acttia
sobre un cuerpo que se desplaza una distancia®. Distinguiremos dos
casos, fuerza constante (no cambia ni médulo ni direccién ni sentido)
o fuerza variable.

Trabajo realizado por una fuerza constante

F

S
SN

El trabajo para una fuerza F constante, cuando se desplaza de un
punto inicial A a otro final B, en una linea recta se define asi

Wypg = Fdcos 0 (1.5)
donde
» [ es el médulo de la fuerza,
= d es la distancia recorrida por el objeto entre los puntos Ay B,

= 0 es el dngulo que forman la direccién de desplazamiento del
objeto y la fuerza.

También puede definirse igualmente como el producto escalar de los
vectores F y d, donde d es un vector que empieza en A y acaba en B:

Wyp = E-d = Fdcosf (1.6)

Es importante darse cuenta de que con cualquiera de las definiciones,
el trabajo:

= Tiene signo (por ejemplo, el coseno es negativo para dngulos entre
90° y 270°, esto es, la F tiene componente negativa en la direccién
de desplazamiento).

» Si el angulo entre F y la direccion de desplazamiento son perpen-
diculares = W4 =0

= Solo la componente de la fuerza en la direccién de desplazamiento
hace W

Las unidades del trabajo son

W) = [F][d] = 1N-m = 1] (17)

2 El movimiento del cuerpo no ne-
cesariamente tiene que ser el que se
produciria bajo la accién de esa fuerza.

Figura 1.3: Trabajo de una fuerza cons-
tante. El vector d es el desplazamiento,
va del punto inicial al final. En una
trayectoria recta, |1ﬂ = d sumdédulo es
la distancia recorrida.

F
0 =

s
2

d

Figura 1.4: SiFLd=W=0

—

i
Figura 1.5: W = Fdcosf = Fd porque
F| = Fcos®
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Trabajo realizado por una fuerza variable en cualquier trayectoria

El trabajo para una fuerza variable, que va de un punto A a otro B
matemdticamente es

B, B _
WAB:/ F~dr:/ |F| cos 6dr (1.8)
A A

esto es, hablando llanamente, dividir la trayectoria en pequefios
desplazamientos rectos de pequefia distancia dr, utilizar la definicién
(1.5) en cada uno y sumarlos todos. Matemaéticamente puede resultar
un poco mas dificil de calcular, pero fisicamente es la misma idea.

Trabajode Aa Byde Ba A

Consideremos el trabajo de una fuerza Falirde AaB, Wyg =
Fd cos 6. Si ahora calculamos para la misma fuerza el trabajo para ir
desde B a A de vuelta Wp4, vemos en la figura que el desplazamien-
to tiene el sentido contrario. Partiendo de la definiciéon

Wpa = Fdcosua (1.9)

donde «a es el angulo entre la fuerza F y el nuevo desplazamiento
desde B hasta A. Segtn la figura 1.6, la relacién entre los dos dngulos
es a = 7T — 6 de modo que cosa = — cos @ asi que

Wga = Fdcosa = —Fdcosf = —Wyp (1.10)

Trabajo de la fuerza contraria —F

Si una fuerza F realiza un trabajo WE » entre los puntos A y B,
entonces la fuerza contraria —F realiza el mismo trabajo pero con el
signo contrario. Del dibujo (figura 1.7) se ve que al cambiar F por —F
el angulo nuevo & sigue la misma relacién que en la seccién anterior
&« = 11 — 6 de modo que cosa = —cosfy

WXBF = Fdcosa = —Fdcosf = —Wi, (1.11)

donde 6 es el dngulo entre F y el desplazamiento de A a B mientras
que « es el dngulo entre —F y el mismo desplazamiento.

El circulo unidad

El circulo unidad es una herramienta 1til para relacionar senos y
cosenos de dngulos complementarios, suplementarios, negativos unos
de otros o con otras relaciones simples. El circulo tiene radio 1, de
modo que para un cierto d&ngulo «, teniendo en cuenta el tridngulo
de la figura 1.8, el lado sobre el eje horizontal (en rojo) coincide con

F 7
0 d
A -
F
A d

Figura 1.6: Relacion entre el trabajo
de una fuerza para ir de A a B con el
trabajo al invertir la trayectoria

F

D4

«

—-F
Figura 1.7: Relacién entre el trabajo
de una fuerza para ir de A a B con el
trabajo de la fuerza contraria —F en la
misma trayectoria

<0 >0

>0 .
S v

sin 3

<0

A

Figura 1.8: Circulo unidad. Es un
circulo de radio unidad dtil para rela-
ciones trigonométricas. Las cantidades
horizontales son positivas hacia la
derecha del eje vertical, las cantidades
verticales son positivas hacia arriba del
eje horizontal. En este caso, cosa > 0
pero cos 3 < 0 por ejemplo.
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el cosa y el lado vertical (en azul) con el sina. Las cantidades a la
derecha del eje vertical son positivas, las cantidades a la izquierda
negativas. En el vertical, las cantidades por encima del eje vertical
son positivas, las que estdn por debajo son negativas. Los dngulos
se cuentan positivos en el sentido contrario a las agujas del reloj,
y negativos en sentido contrario. Veamos un ejemplo que permite
relacionar el coseno de dos dngulos que suman 7 (180°).

SEIRICAN Cosenode f =T —«

¢Qué relacion existe entre el cos By cosa cuando f+a = 7?

SOLUCION

Como se ve en la figura 1.9, si  +a = 7 entonces el dngulo

que falta desde  hasta completar el dngulo 7 es también « (en la

parte izquierda de la figura). Entonces, los dos tramos marcados en
rojo son iguales en tamafo. Asi, el coseno de ambos dngulos vale lo
mismo, salvo por el signo, ya que el cos 8 < 0 en este caso. Por tanto:

cos B = —cosw (1.12)

Por ejemplo si @« = 30° = 71/6 entonces como cos 30° = ? entonces
cos 150° = —?

Veamos otro ejemplo.

SEhJCRKFM Cosenode f = /2 +«

¢Qué relacion existe entre el cos § y alguna funcién trigonométrica
de « cuando = 1/2 +a?

SOLUCION

Como se ve en la figura 1.10, como el dngulo en exceso de f sobre

el angulo recto es exactamente «, los tramos azules son de igual
longitud. El tramo azul sobre el eje horizontal es precisamente el
cos B. cos B < 0 mientras que sin« es positivo, asi que:

cos B =cos(m/2+a) = —sina (1.13)

Trabajo de varias fuerzas

Si hay varias fuerzas actuando sobre un objeto el trabajo total es la
suma con su signo de los trabajos de cada fuerza. Por ejemplo, si hay

f=7—«
1
. s
L a
cos = —cosq cosa

Figura 1.9

sin

Figura 1.10: ;Cudnto vale el
cos (/2 +a)?

i

A - B
d
o

F3
Figura 1.11: El trabajo de varias fuerzas
que actiian sobre el mismo cuerpo es la
suma de los trabajos individuales o el
trabajo de la fuerza neta.
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N fuerzas
N
Wiotal = Z Wi=Wi+Wo +Ws...Wy (1.14)
i=1
Igualmente, como el desplazamiento es el mismo en todos los tra-
bajos también se puede calcular sumando vectorialmente todas las
fuerzas y calculando el trabajo de la fuerza neta o total

Wtotal = (ﬁl +?1+F1+---+ﬁN) ’(I: ﬁtotal'j: Ftotaldcosg (1~15)

donde 6 es el dngulo entre la fuerza total y el desplazamiento.

Potencia

La potencia se define como la cantidad de trabajo realizada dividi-
do por el tiempo que se tarda en realizar ese trabajo:

W

P=—
At

(1.16)

Sus unidades son
[P]:[[v;]f]zl]/s:1W (1.17)

En el caso particular de F = cte. en la direccién de un movimiento
con v = cte. entonces:
W  Fd
= —=—=Fv 1.18
At At ( )

1.4 Energia

La energfa es la capacidad que tiene un cuerpo para realizar un
trabajo. Por ejemplo, cuando una fuerza hace un trabajo positivo
sobre un cuerpo, este puede guardar ese trabajo en forma de energia,
y luego devolverlo, esto es, realizar trabajo sobre otros cuerpos. Hay
muchos tipos de energia, por ejemplo la energifa cinética, asociada a
la velocidad del cuerpo.

Energia cinética

Vo Uf
— —_

Figura 1.12: Una fuerza constante
actta en la direccion del movimiento,
aumentando la velocidad.



FISICA APLICADA A LA BIOLOGIA 15

Un ejemplo de energia es la energia cinética. Supongamos la si-
guiente situacién: una Fneta constante acttia sobre un cuerpo ini-
cialmente a velocidad v y le imprime una aceleracién constante
llegando a una velocidad vy. El trabajo es

Freta = ma (1.19)
Wheto = Fhetad = mad (1.20)

donde hemos utilizado la segunda ley de Newton. Ademads, en un
movimiento uniformemente acelerado sabemos que

_ T o, _YT%
t a
2
vi J—
(vf Uo)+1¢(0f vp)
2 at

siendo vy y v f las velocidades inicial y final, 4 la distancia recorrida, ¢

a (1.21)

1
d = vt + Eatz = d=1 (1.22)

el tiempo y a la aceleraciéon. Despejando la aceleracion a en la dltima
expresiéon y simplificando:
1 1 (0% —v9)

a=- Uovf—v(z)—l—i(z)}—i—vg—%ovf) ===

7 (1.23)

Sustituyendo esta dltima expresion en la del trabajo (1.20) tenemos

(v -9 1 1
Wheto = mad = med = Emvjz( — Emv% (1.24)

Resumiendo, el trabajo de la fuerza neta que acttia sobre una masa
m es igual al cambio o variacién de la cantidad }mv? entre el valor
inicial y final, cantidad que se conoce como energia cinética pues estd
asociada a la velocidad

1 1 1
E. = imvz = Wheto = Emv}% — Emv% = ch — E = AE, (1.25)

Aunque lo hemos deducido para un caso sencillo, rectilineo y de
aceleracion constante, es totalmente general:

El trabajo neto efectuado sobre un objeto es igual a la variacién o
cambio de su energfa cinética

Ademas

Wheto >0 = AEc > 0= Ec; > Ecg (1.26)
Wheto <0 = AEc < 0= Ec; < Ecg (1.27)

Tiene sentido pues W < 0 significa que la fuerza tiene una componen-
te en contra del desplazamiento y tiende a frenarlo.
Como la energfa es igual al trabajo, sus unidades son las mismas

[E] = [W]=1] (1.28)

Siel W>0laE; aumentaysi W <0la
E. disminuye
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Energia cinética como capacidad para hacer trabajo

Acabamos de ver cémo se puede acumular energia cinética ha-
ciendo trabajo sobre el cuerpo. Veamos ahora que la energia cinética
acumulada se puede emplear para realizar trabajo sobre otro cuerpo
con el siguiente ejemplo.

Supongamos un gran bloque de masa m; esta sujeto a una de-
terminada altura sobre un pequeiio clavo de masa mucho menor,
parcialmente clavado sobre el suelo (figura 1.13). Si soltamos el blo-
que este adquirirad una cierta velocidad vy al llegar al clavo, impactara
contra el clavo desplazdndolo un distancia y haciendo trabajo sobre
el clavo. Suponiendo que en la colisién con el clavo el bloque no dis-
minuye su velocidad, lo que es una buena aproximacién si es mucho
mads masivo que el clavo, podemos calcular el trabajo que es capaz de
hacer. La energfa cinética que lleva el bloque es

Eqo = %mbvg (1.29)
La energia cinética final del bloque es nula (E;y = 0) pues acaba
en reposo El bloque pierde energia cinética. ;Dénde va esa energia?
Suponiendo que golpea exclusivamente sobre el clavo y no hay
deformaciones3, se ha empleado en hacer trabajo contra el clavo.
En principio es la fuerza que ejerce el bloque contra el clavo por
la distancia recorrida (suponiendo una fuerza constante), pero esa
fuerza es dificil de calcular. Por un lado tenemos la 3° ley de Newton,
la fuerza del bloque sobre el clavo es la misma, con sentido contrario,
que la del clavo sobre el bloque, y entonces usando el resultado de
(1.11)

Wbc = — Vb (1-30)

el trabajo del bloque sobre el clavo W, es el opuesto del trabajo del
clavo sobre el bloque W,;. El trabajo hecho sobre el bloque es igual a
la variacién de energia cinética asi que el trabajo hecho sobre el clavo
es igual a la variaciéon de energia cinética, y entonces

1
Wpe = =Wy = —AE. = Eo — ch = Embvg (1.31)

Vemos que el trabajo que el bloque puede efectuar coincide con la
energia (cinética) que tenfa inicialmente. En general, debido a fené-
menos disipativos el trabajo realmente efectuado en otras situaciones
puede ser menor, bien en la colisién misma (ineldstica) o en otros
fenémenos, una parte se puede transmitir al medio en forma de calor,
pero nunca sera mayor.

I

1 |v
!

Figura 1.13: Un bloque choca con un
pequefio clavo a velocidad v y lo
desplaza, haciendo trabajo sobre él.

3 Estamos suponiendo que el bloque
se frena del todo al clavar el clavo
completamente y cuando impacta en
el suelo ya estad parado. Si no, parte de
la energfa cinética se absorberia por el
suelo
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Trabajo de la fuerza de la gravedad.

Para entender el segundo tipo de energia, la energia potencial
gravitatoria, necesitamos 3 ideas.

1. Trabajo de la fuerza de la gravedad en un movimiento vertical.
Un objeto de masa m en la superficie de la Tierra sufre una fuerza
hacia abajo que es su peso F = mg. ;Qué trabajo realiza la fuerza
de la gravedad (o peso) cuando un objeto se desplaza una cierta
distancia vertical? Segun la definicién, el trabajo de la gravedad
para llevar un objeto de masa m desde un punto A a uno B en una
trayectoria vertical es

WS, = Fdcos® = —mg(hg —hy) = —mgAh (1.32)

donde hemos llamado Ah = hg — h4 a la diferencia de alturas. Si

Ah > 0 (sube) entonces WiB < 0y si Ak < 0 (baja) entonces WﬁB > 0.
2. El trabajo de la fuerza gravitatoria depende solo de la diferen-

cia de alturas, no de la trayectoria concreta. Por ejemplo, el trabajo

de g al subir un objeto en un plano inclinado un dngulo & sobre la

horizontal (figura 1.14) es segtn la definicién

Wff‘B = Fdcosf = —mgd sina (1.33)

donde hemos usado el resultado del ejemplo 1.3.2 porque § = « + 7,
como se ve en el detalle en la figura 1.15. Ahora, la cantidad dsina es
la altura del plano, o bien, dsina = (hg — hs) = Ah (ver figura 1.16) y
entonces

WS, = Fdcos = —mgdsina = —mgAh (1.34)

esto es, no depende del angulo concreto, solo de la diferencia de
alturas. Como no depende del dngulo de subida, en una trayecto-
ria general como las de la figura 1.17 tenemos el mismo resultado
—mgAh. Ademds eso hace que el trabajo coincida para para cualquier
trayectoria que empiece en A y termine en B, como las trayectorias 1
y 2 de la figura 1.17

Wiy = Wig = —mgAh (1.35)

3. El trabajo realizado en contra de la gravedad. El trabajo que
tenemos que realizar si queremos subir un objeto en contra de la
fuerza de la gravedad, esto es, haciendo nosotros exactamente una
fuerza mg pero hacia arriba (figura 1.18) es el mismo pero de signo
contrario al de la gravedad. En efecto, aplicando el resultado (1.11)

Wcontrag _ _WI%B _ _(_mgAh) = mgAh = mg(hB — hA)

AB (1.36)

Ah=hg —ha

Figura 1.14: Un objeto sube por un
plano inclinado. El trabajo de la grave-
dad solo depende de la diferencia de
altura final e inicial y no del dngulo «

<&

87

Figura 1.15: Detalle del pico del plano
inclinado donde se ve que 6 = /2 4«

Ah =hp —ha

«

Figura 1.16: Segun la definicién de seno
sina = 2 y despejando Ah = d sina

B

Figura 1.17: El trabajo de la fuerza de
la gravedad es independiente de la
trayectoria concreta y solo depende de
la diferencia de alturas entre el punto
final y el inicial Ah = hg — h4.

FY° = mg
B
mg

hp

FY° =mg

ha A

mg

Figura 1.18: Trabajo en contra de la fuer-
za de la gravedad. Subimos el cuerpo
con una fuerza hacia arriba exactamente
igual al peso.
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1.5 Energia potencial gravitatoria

Hemos visto que un cuerpo tiene energfa si lleva una cierta veloci-
dad. También puede tener capacidad de hacer trabajo por estar a una
determinada altura / sobre el suelo. Supongamos un cuerpo de masa
m inicialmente en el suelo /iy = 0 en reposo. Lo subimos haciendo
una fuerza mg hacia arriba sobre €l hasta una altura final iy = h
(como en la figura 1.18), realizando un trabajo segin 1.36

wentrag — W8 = —(—mgAh) = mgAh = mg(h —0) = mgh (1.37)

Este trabajo queda almacenado como energia potencial gravitatoria.
(Cuanto trabajo puede hacer esta masa por estar a altura h? Si lo
dejamos caer sobre un clavo en el suelo, adquirird una velocidad v
al llegar al suelo. Cuando golpee hara fuerza sobre el clavo y éste

se desplazara asi que el cuerpo hara trabajo. Al igual que en la
discusién anterior acerca del bloque que impacta con el clavo, cuando
la masa m llega al suelo con velocidad v puede hacer un trabajo igual
a su energia cinética

1
W= Emvz (1.38)

pero en una caida libre sabemos que la velocidad final cumple v> =
2¢h (por ejemplo, de la ecuacién (1.23) tomando velocidad inicial
nulaya = g). Asi que

W= 1mvz = %mZgh = mgh (1.39)

2
Exactamente el mismo trabajo que habiamos hecho para subirlo ahi y
que se almacend como energia potencial.

Formalmente, definimos la energia potencial gravitatoria como
E, = mgh (1.40)

donde & es una altura sobre un determinado nivel de referencia.

Trabajo de la fuerza de la gravedad y energia potencial

El trabajo que hace la gravedad al llevar una masa m de un punto
a altura h 4 a otra hg es

WEXB = —mg(hp —hp) = mghp —mghg = Eyp — Epp = —AEp (1.41)

y como hemos visto en la seccién 1.4 esto es siempre asi independien-
temente del camino que sigamos desde A a B. Esto nos permite decir
que un cuerpo tiene energia potencial por estar a altura i simplemen-
te. Si el trabajo dependiera del camino, habria que especificar cémo
ha llegado hasta alli y la energia potencial no tendria mucho sentido*

mg

v

e
Figura 1.19: Un objeto de masa m a
altura h tiene energifa potencial mgh
y puede hacer un trabajo mgh por
ejemplo contra el clavo contra el que
golpea.

B

mg

hp

Figura 1.20: Trayectoria. El objeto se
mueve de una altura h4 hasta una hg
bajo la accién del peso

+La gravedad es una fuerza que se
denomina conservativa, porque da
lugar a una energfa potencial asociada.
Otras fuerzas conservativas son la
fuerza eldstica o eléctrica. No todas las
fuerzas son asi: el trabajo de la fuerza
de rozamiento depende del recorrido,
es una fuerza disipativa.
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1.6 Conservacion de la energia mecdnica

La conservacién de la energia establece que la energia se puede
transformar de unas formas a otras (energifa cinética a potencial,
potencial a trabajo, etc) de forma que la cantidad total de energia se
mantiene constante en el tiempo.

Veamos una situacién general en la que un objeto en posicién
inicial 1 pasa a una posicién final 2, modificando altura y velocidad,
bajo la accién de la fuerza de la gravedad y otra posible fuerza
externa F5. Segin hemos visto, el trabajo neto (de todas las fuerzas
que acttian sobre el cuerpo) es

Wheto = AE. (1.42)

Si actta la gravedad mg y otra fuerza F y cada una hace un trabajo
tenemos

Wheto = Wp + W = Wr — AE, (1.43)

pues el trabajo de la gravedad es -AE, segtn (1.41). Por tanto
Wneto = AEC = WF - AEp = WF = AEC + AEp (144)

El trabajo de las fuerzas externas F que no son la gravedad, pro-
duce una variacién en la energia, o bien potencial, o bien cinética, o
ambas. Esto es la conservacion de la energia. La energia se transfor-
ma en otras formas de energia o en trabajo y viceversa.

En el caso particular de que W = 0, entonces tenemos

AE, +AE. =0 (1.45)

La combinaciéon E, + E,L7 se denomina energia mecéanica E;; , asi que
otra manera de decir lo mismo es

AEyn = AE, +AE. =0 (1.46)
o bien
Eaq + Ep = Ex + Epp = cte. (1.47)

la energia mecdnica es la misma en dos puntos 1 y 2 cualesquiera de
la trayectoria cuando no hay trabajo de otras fuerzas externas que no
sean la gravedad. Sustituyendo las expresiones de la energia cinética
y potencial, tenemos

1 1
Emv% +mghy = Emv% + mghy (1.48)

SRR Conservacion de la energia mecanica

5La fuerza F puede ser la fuerza neta
de todas las fuerzas que acttian sobre el
cuerpo que no sean la gravedad, asi que
la situacién es muy general

Figura 1.21: Trayectoria general de
un objeto de masa m. Entre dos
puntos cualesquiera se cumple que
W = AEc + AE,
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Un objeto de masa m parte del reposo en un punto inicial a una
altura sobre el suelo de y; = 10m y sigue una trayectoria bajo la
tnica accién de la gravedad. ;Con qué velocidad llega al suelo?

SOLUCION

Como no hay otras fuerzas externas, se conserva la energia mecanica, asi que la energia mecanica tiene el
mismo valor en el punto inicial y el final y podemos igualarlas

L L
Emec = cte. = 5 M1 +mgy = 5 M0y + mgy» (1.49)

Como parte del reposo v; = 0 y puesto que llega al suelo tomamos y, = 0. Queda

mgy; = %mv% = vy = /291 = \/2(9,8m/52)(10m) =14m/s (1.50)

Ademéds de energia potencial gravitatoria y cinética, existen otras
formas de energia (calor, energia quimica, eléctrica, etc...) algunas de
las cuales veremos durante el curso. El principio general de conser-
vacion de la energia nos dice que la energfa se conserva si afiadimos
también esos tipos de energia a la ecuacién. Veamos un ejemplo
sencillo.

SECRN-E Kinesina

La kinesina es una proteina que funciona como un motor molecu- s
Figura 1.22: La kinesina es un motor

. ’ j . molecular que se desplaza sobre los mi-
cada vez que se hidroliza una molécula de ATP. En la hidrélisis del crottibulos. Realiza un movimiento de

ATP se libera una energia (quimica) de unos Ezrp = 7 x 1072°]. “hand over hand” en el que cada una de
las “cabezas” alternativamente avanza

por delante de la otra en pasos de 8nm
jo al desplazar el motor y su carga, jcudl sera la fuerza promedio por cada hidrélisis de 1 molécula de
ATP.

lar que transporta cargas en la célula, avanzando en pasos de 8nm

Si suponemos que toda la energia liberada se transforma en traba-

aproximada que genera una kinesina?

SOLUCION

Si suponemos que toda la energia liberada se transforma en trabajo y que la kinesina aplica la fuerza en la
direccién del movimiento (cos 8 ~ 1) tenemos

Earp

EATp:W:Fde: P

~ 88 x 10 12N = 8,8pN (1.51)

El signo de aproximado viene porque primero, es un valor promedio, la kinesina podria ejercer picos de
fuerza mds altos en momentos puntuales, y segundo, desconocemos el valor exacto del angulo. Ademas,
veremos que en general una parte de la energia liberada puede perderse hacia el medio en forma de calor.
No obstante con esta cuenta sencilla vemos que las fuerzas generadas son del orden de piconewtons. Hoy
"

en dia, jesas fuerzas tan pequeias se pueden medir con precisién con las “pinzas épticas
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Figura 1.23: Un pulga durante el salto.

. G "?, TN (Qué fuerza, en relacién a su peso, son
J ! f‘ { "‘\\ capaces de ejercer?
= s )
& 4
T o
Lo x‘iw
r 7 #
v 7
2/ 75
£J5

Las pulgas de perro (Ctenocephalides canis) de tamafio milimétrico
llegan a saltar a una asombrosa altura de unos 50 cm. Con tan solo
esta informacion y el principio de conservacién de la energfa pode-
mos estimar las fuerzas que son capaces de ejercer en el salto, jsin
necesidad de dinamémetro tamafio pulga! Lo vemos en el ejemplo
siguiente.

SRR Pulgas saltarinas

Una pulga que mide unos 4 mm alcanza una altura de 50 cm. ;Cudl es la fuerza promedio aproximada que

ejerce durante el salto? Calcule la fuerza en relacién al peso de la pulga.

SOLUCION

Para saltar, la pulga toma impulso, flexionando sus “rodillas” y bajando su centro de gravedad una
pequena distancia d. En un momento dado, realiza el salto ejerciendo una fuerza mientras recorre de nuevo
esa pequefia distancia hacia arriba hasta que despega con una cierta velocidad inicial vg. A partir de ahi, la
Unica fuerza que acttia es la gravedad.

La conservacion de la energia nos dice que el trabajo de la fuerza de impulso se convierte en energia
cinética inicialmente. Después, esa energia cinética se transforma toda en potencial en el vuelo libre

1
Wp = Fd = Emv% = mgh ( .1)
No sabemos la distancia d exacta que la pulga se agacha, pero no puede superar el tamafio del animal,
asi que podemos tomar d ~ 4mm. En la férmula anterior hemos despreciado la pequefia energia potencial
que tiene en el punto de despegue mgd ya que d < h de modo que es despreciable. Despejando la fuerza
tenemos:

h
F= mg 4 ( .2)
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Como el peso es P = mg la fuerza que ejerce la pulga en relacién a su peso es

F_h _(50cm)

P d~ (4mm) =15

(1.6.3.3)

La pulga ejerce unas asombrosas 125 veces su propio peso. ;Eres ti capaz de levantar 125 veces tu masa?

El trabajo Fd es una simplificacién. Las pulgas tienen una proteina Resilina que funciona como un

muelle y acumula tensién antes de saltar. Un modelo més adecuado seria modelar la fuerza como la de

un muelle elastico. No obstante, el ntimero es aproximadamente correcto. Por ejemplo, mediciones de

la aceleracién del movimiento de la pulga dan un valor para la relacién F/P muy parecido de unas 135

VECeS6.

Hasta ahora hemos visto solo dindmica en movimiento rectilineo.
En la dltima seccidn del tema, introducimos brevemente nociones
basicas de fuerzas que tienden a producir giros.

1.7 Torque o momento de una fuerza.

Imaginemos una puerta inicialmente en reposo. Para hacerla girar
sobre sus ejes es necesario aplicar una fuerza en algtn punto que no
sea del eje de giro, como en la figura 1.24. De hecho, para la misma
fuerza, serd més facil mover la puerta cuanto més lejos del eje se
aplique. Al igual que las fuerzas producen aceleracion (F = ma) en
movimientos rotatorios tenemos que el momento de una fuerza o
torque, produce una aceleracién angular, esto es una variacién de la
velocidad de giro. El momento de una fuerza respecto de un punto O
se define como?

T = Frsina (1.52)

con

= F, médulo de la fuerza

= 7, distancia entre el punto de aplicacién de la fuerza y el eje de
giro

= o, dngulo entre el vector que une el eje y el punto de aplicacién
(en un plano perpendicular al eje) y el vector fuerza como en la
figura 1.25. Como el torque depende del seno, utilizar el dngulo
suplementario (8 = 180 — «) da el mismo resultado.

De la definicién, las unidades de torque8 son
[t] = [F][r] =1N-m (1.53)

Cuando actian més de una fuerza, el torque total es la suma de los
torques individuales. Hay que considerar que fuerzas que hagan
momento en sentidos de giro contrarios tenderdn a compensarse.
Para esto vamos a asignar un signo al torque:

¢H C Bennet-Clark and E C A Lucey.
The jump of the flea: a study of the
energetics and a model of the mecha-
nism. Journal of Experimental Biology,

47:18, 1967
eje de giro

! -
F —
1 Fy
Figura 1.24: Resulta mds fécil hacer
girar una puerta aplicando una fuerza

més lejos del eje como F, que en una
posicion més cercana como la de F;.

7 En realidad, el torque tiene caracter
vectorial y se define como T = 7 A E,
donde 7 es el vector que une el eje de
giro y el punto de aplicacién de la
fuerza F

eje de giro

Figura 1.25: Vector 7 y angulo a que
entran en la definicién del momento de
la fuerza. Igualmente se puede usar el
angulo interno p = 180 — «.

8 Formalmente 1N - m = 1]J, sin
embargo para torque es estandar usar la
primera forma, para distinguirlo.
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= Tomamos signo + para los torques que hacen girar contra las
agujas del reloj

= Tomamos signo — para los torques que hacen girar a favor de las
agujas del reloj

Con este criterio, el torque total sobre un cuerpo es la suma de
todos los torques aplicados cada uno con su signo.

Un cuerpo en equilibrio

Un cuerpo estd en equilibrio cuando no se mueve (no se traslada)
ni gira. En tal caso, la suma de las fuerzas que acttian sobre el cuerpo
es nula. Esto hace que la aceleracion sea nula y si su velocidad era 0
continuard asi. Igualmente, para que permanezca con velocidad de
rotaciéon nula, la suma de momentos o momento total tiene que ser
igualmente nula.

f1+ﬁ2+?3+...=0

Equilibrio =
n+n+wn+..=0

(1.54)

Ambas ecuaciones han de cumplirse simultdneamente?. Veamos un
ejemplo.

SENCRWAN Objeto en equilibrio

Una barra de masa m = 0,5kg y longitud 40 cm dispuesta horizon-

talmente puede girar en torno a un eje fijo que pasa por su extremo
izquierdo. El peso de la barra esta aplicado en su centro. Una per-
sona ejerce una fuerza F vertical hacia arriba en el extremo derecho
de la barra. ;Qué fuerza tiene que ejercer para mantener la barra
horizontal?

SOLUCION

Intuitivamente uno podria pensar que la fuerza que tiene que
hacer la persona es igual al peso de la barra F = mg. Pero esto no
es asi, porque en tal caso, si bien las fuerzas estan equilibradas, el
torque total serfa™

l I
T=1Img— FMmg = 5mg #0 (1.55)

y la barra giraria.

La solucién correcta es que el eje efecttia también una fuerza
sobre la barra (es la reaccién a la fuerza que ejerce la barra sobre el
eje). Entonces, tomando las fuerzas hacia arriba como positivas y
hacia abajo como negativas y con el criterio de signos para el torque,

Figura 1.26: Los torques tienen signo.

F, y F3 dan lugar a un torque positivo,
mientras que F; ejerce un torque negati-
vo.

9 La ecuacién en vectores para las
fuerzas se traduce en una ecuacién para
las componentes para cada eje

M,

mg

Figura 1.27: Uno esperaria que la fuerza
en el extremo necesaria para mantener
la barra horizontal es igual al peso. Esto
es INCORRECTO!!

' IMPORTANTE: El peso de un objeto
siempre se aplica en un punto que se
llama centro de gravedad. Si el objeto
es de densidad uniforme, el centro

de gravedad coincide con el centro
geométrico, en este caso el punto medio
de la barra, como en la figuras 1.27 y
1.28
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escribimos las 2 ecuaciones del equilibrio, una para fuerzas y otra
para torques:

Feje + F —mg = 0 (fuerzas, eje y) ( 1)
Fl — mg% = 0 (torques)

Dese cuenta de que la fuerza sobre el eje es desconocida en prin-
cipio. La hemos tomado como positiva (hacia arriba) en principio.
Si al resolver las ecuaciones resultara negativa, es que es una fuerza
hacia abajo (de acuerdo con los signos que hemos tomado). Por otro
lado, la fuerza del eje no hace momento, pues su distancia al eje es
o. Finalmente, en este caso particular todos los dngulos que forman
las fuerzas con la linea que une el eje con el punto de aplicacién de la
fuerza son rectos y el seno es 1.

De la segunda de las ecuaciones despejamos el valor de la fuerza

2
Fl—mgh o po 8l _ms  (05kg)O8m/s) _, 45y
2 2f T 2 2
(1.7.1.2)
Con este valor podemos también encontrar la fuerza del eje
Feje+F—mg:0éFeje:mg—F:mg—% = % = 245N

(1.7.1.3)
Como vemos, el eje soporta la mitad del peso y la persona la otra
mitad, independientemente de la longitud total de la barra en este
caso, por resultar totalmente simétrico. En general necesitamos las
distancias concretas a las que se aplican las fuerzas.

S

€)

A

l

mg

Figura 1.28: Diagrama de fuerzas
correcto.

gl
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FrLuipos

2.1 ;Qué son los fluidos y para qué los estudiamos?

Los FLUIDOS, gases y liquidos, se comportan de forma similar bajo
la accion de fuerzas, aunque con algunas diferencias. Los fluidos
son fundamentales para la vida, en particular el agua, y en este
capitulo aprenderemos cémo es el movimiento del agua en diferentes
condiciones, pero también cémo es el movimiento de objetos en
el seno de los fluidos. Algunos ejemplos que discutiremos son las
diferencias de presion en la sangre, la sedimentacién o centrifugacién
de proteinas, o el vuelo de las aves.

Estudiaremos primero las propiedades de los fluidos en reposo
o hidrostatica y a continuacion las caracteristicas de los fluidos en
movimiento o hidrodindmica. Finalizaremos el tema con la tensién
superficial.

2.2 Propiedades de los fluidos

Densidad

La densidad se define como la relacién entre la masa de un objeto
y el volumen que ocupa:

m
=7 (2.1)
y es valida para sélidos, liquidos y gases. La densidad de sélidos y
liquidos hechos de una sola sustancia varfa un poco con las condi-
ciones de temperatura y presion, mientras que en los gases es muy
variable. La densidad de los gases, en condiciones habituales es

menor que la de los liquidos. Sus unidades son

o] = ﬁ = —3 (2.2)

En este tema:
= hidrostética
= hidrodindmica

= tension superficial

En general: pjiq >> pgas- Las moléculas
en un liquido suelen presentar fuerzas
atractivas entre ellas, al contrario que
los gases en las que se mueven maés
libremente.
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2.3 Ligquidos y gases

Liquidos y gases son fluidos y tienen muchas propiedades y
comportamientos parecidos. No obstante, se diferencian en algunos
aspectos:

1. La densidad de los liquidos suele ser mayor, por las fuerzas atracti-
vas entre sus moléculas

2. Los liquidos son aproximadamente incompresibles. Hay que usar
fuerzas muy elevadas para que su volumen disminuya. Por tanto,
su densidad no cambia facilmente. En los gases esto no es asi en
general y pueden comprimirse més facilmente’. Para el resto del
curso, cuando haya que distinguir, utilizaremos “liquido=fluido
incompresible” y “gas=fluido compresible” o “fluido” cuando lo
que digamos se aplique indistintamente a ambos.

2.4 Presion en fluidos

La presién se define como una fuerza ejercida sobre una determi-
nada superficie dividido por el 4rea de dicha superficie (ver figura
2.1):

p=1 (23)

Los fluidos ejercen presién sobre objetos sumergidos en su seno,
sobre las paredes del contenedor o sobre cualquier parte del flui-
do mismo. La presién en un fluido en reposo tiene 2 importantes

propiedades:

1. En un fluido en reposo, la presién en un determinado punto del
fluido es la misma en todas direcciones.

Para demostrar esta afirmacién imaginemos un pequefio cubo
del propio fluido como en la figura 2.2. Si la presién por un lado del
cubo fuera diferente a la presién por el lado contrario, la fuerza total
sobre el cubo de fluido no serfa nula, el cubo comenzaria a moverse y
eso estd descartado porque el fluido estd en reposo.

2. La fuerza debida a la presién ejercida por un fluido sobre un
objeto en su seno o sobre la pared del recipiente que lo contiene
es siempre perpendicular a la superficie.

Si la fuerza que ejerce un fluido sobre su recipiente por ejemplo
tuviera una componente tangencial a la superficie como en la figura
2.3, el fluido no estaria en reposo. La tercera de ley de Newton
implica que la superficie haria fuerza sobre el fluido en direcciéon
tangencial también, lo que haria que el fluido se desplazara®.

*jHaz la prueba ttt mismo comparando
agua o aire dentro de una jeringuilla,
tapando el orificio con un dedo y
apretando el émbolo!

presic’V

A —

/

Figura 2.1: Definicién de presién como
fuerza por unidad de superficie.

Figura 2.2: Fuerzas debidas a la presiéon
en el seno de un fluido en reposo. Las
fuerzas son iguales en todas direcciones
(por ejemplo F; = F). Sino fuera asf
habria fuerza neta en un sentido y no se
mantendria el reposo.

> Nota muy técnica: La propiedad
fundamental que distingue a los fluidos
de los sélidos es que los fluidos no

son rigidos y no resisten esfuerzos
tangenciales y cualquier esfuerzo
tangencial los pone en movimiento.
Solo resisten esfuerzos de compresién
mientras que los s6lidos resisten ambos.
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De (2.3), las unidades de presién son:

[p] = ﬁ = %j =1Pa (2.4)

2.5 Variacién de la presion con la profundidad

En un fluido en reposo sometido a la accién de la gravedad, la
presién aumenta con la profundidad. Podemos calcular la variacién
de presién con profundidad facilmente en un liquido que tiene una
densidad fija py (fluido incompresible).3

Consideremos un cilindro de fluido de altura / y “tapas” hori-
zontales de superficie S como en la figura 2.4. La tapa superior se
encuentra en la superficie libre del fluido y la inferior a una profundi-
dad k. La presion se debe al peso de la columna de fluido situada
por encima. Asf:

_F_mg
P=57 75
con m la masa del cilindro de fluido. Como el fluido tiene densidad

(2.5)

1Y fr entonces su masa es
m=pgV = pgSh (2.6)

donde hemos usado el volumen de un cilindro V = hS. Retomando la
presion, sera:
= % = pf;h = psgh (2.7)
De ahi se ve que la p no depende del tamafio de la superficie S,
ni de la forma. Podemos pensar en un cilindro muy estrechito de
altura h y hablar de la presion en un punto dentro de un fluido. Es
importante recordar:

1. La presién en un fluido aumenta con la profundidad

2. La presién en un fluido en reposo solo depende de la profundidad.
A profundidades iguales, presiones iguales.

La ecuacién (2.7) permite calcular diferencias de presién entre
puntos a distintas alturas, o calcular la presién en otro punto a
distinta profundidad:

p2 —p1 = prglha —h1) = p2 = p1+ prg(ha — h1) (2.8)

Si queremos expresar la presién en funcién de alturas desde un
nivel de referencia (el fondo por ejemplo), basta con darse cuenta
de que L = h +y, donde L es la profundidad total del fluido, / la

En reposo: Fj =0

Ey,
F

Figura 2.3: En un fluido en reposo las
fuerzas de presion son perpendiculares
a las superficies.

3 En un gas es algo mas complicado ya
que el aumento de presién lo comprime
y aumenta su densidad. Lo aplazamos
hasta el tema de termodindmica.

......

......

.....3... .,
Q

| R —
|

Figura 2.4: Variacion de la presion con
la profundidad.
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profundidad del punto que nos interesa e y la altura de dicho punto
sobre el fondo, de modo que (2.8) se convierte en:

p2=p1+0or8g(L—ya—L+y1)=p1—pr8y2 —y1) (2.9)

Finalmente, la expresion (2.7) solo tiene en cuenta el peso de
la columna de fluido situada encima, no obstante, en la situacion
habitual en la que el recipiente se encuentra abierto a la atmosfera,
hay que afiadir la presion que ejerce la atmésfera Py quedando

p="Po+prgh (2.10)

donde Py=1,013 x 10° Pa4. La presién atmosférica, como se suma en
todos los puntos, no afecta a las diferencias de presion.

2.6  Presion absoluta y presion manométrica

Muchas veces lo que interesa no es la presion total en un fluido si
no cuanta presién hay por encima de la atmosférica. Un ejemplo es la
presién en un neumatico o un globo. Cuando estd “vacio”, tiene en
realidad aire por dentro a presién atmosférica. Lo notamos blando
porque la presién es la misma por los dos lados de la goma y por lo
tanto la fuerza neta es cero. Cuando lo hinchamos, aumenta la pre-
sién por dentro, manteniéndolo tenso. La presién de un neumatico
o cualquier otra cosa por encima de la atmosférica se llama presién
manomeétrica:

Pmano = P — Do (2.11)

donde p es la presién total o absoluta. Otro ejemplo es la “tensién”>
arterial, que siempre se da como presién manométrica.

2.7 Medida de la presién manométrica. Mandémetro de tubo en U

Existen muchos medidores de presién. Con la ecuacién (2.8) pode-
mos medir presiones en un manémetro con forma de U parcialmente
lleno de fluido (normalmente mercurio) y abierto por un extremo a
la atmésfera y por otro al recipiente a presion que queremos medir,
como en la figura 2.6.

La presion que queremos medir P es la misma que en la superficie
del mercurio por el lado del globo P4. Por otro lado, al estar el mer-
curio en equilibrio (si no lo estd, esperamos un momento), la presién
a alturas iguales es la misma y por tanto P = P4. La presién en la
superficie libre del mercurio es la atmosférica Pc = Py. Finalmente,
utilizando (2.8) relacionamos las dos presiones:

P =Py = Pp=Pc+puggh ="+ puegh (2.12)

Figura 2.5: Podemos expresar las di-
ferencias de presién en funcién de
diferencias de alturas o de profundida-
des. El resultado es un signo cambiado
en la expresién ya que la presién crece
con la profundidad y disminuye con la
altura.

4En la seccién 2.8 veremos cémo se
puede medir la presién atmosférica

5 Aunque se conoce como tensién, es la
presién (manométrica) de la sangre

globo con aire

Py a presion alta
L
] P
Bl
iB A

Figura 2.6: Man6émetro en U, relleno
de mercurio, para medida de presiones
manométricas.
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La presién manométrica del globo es por tanto
Pmano =P PO = PHggh (2-13)

de modo que si graduamos el brazo izquierdo para poder medir
alturas, podremos calcular la presién manométrica. Por ejemplo, si
h = 10cm y el liquido es mercurio de densidad py, = 13600kg/ m?
la presién manométrica del globo sera:

Pmano = pHggh = (13600kg/m>)(9,8m/s?)(0,1m) = 1,33 x 10* Pa
(2.14)

El milimetro o centimetro de mercurio

Medir presiones midiendo diferencias de altura en una columna
de mercurio ha llegado a ser tan habitual que ha dado origen a la
unidad de presién del mmHg (milimetro de mercurio)®. Corresponde ® A veces se utiliza indistintamente
con torr (simbolo Torr), en honor

a Torricelli, ver seccién siguiente,
aunque son ligeramente diferentes por

P(1mmHg) = pHggh = (13600 kg/ms) (9.8 m/SZ) (0,001m) =133Pa su definicion. Ninguno es parte del

(2.15) sistema internacional.

a la presion ejercida por una columna de mercurio de 1 mm de altura:

Para pasar cualquier cantidad de milimetros de mercurio a pascales
basta utilizar P = pyegh y expresar h correctamente en metros (o
usar el factor de conversién dado por (2.15)). Aunque menos comun,
también se usa el centimetro de mercurio. Cuando te dicen que tu
tension arterial es 12-6, significa en realidad que tu presién diastélica
corresponde a 6 cmHg y la sist6lica a 12cmHg, ambos de presion
manométrica.

SEJ AN Presion arterial en la jirafa.

El cerebro de la jirafa se encuentra unos 2m por encima del corazén. Calcule aproximadamente cudl es

la presién minima con la que debe bombear el corazén. Calcule también la presion arterial en las patas,
que se encuentran unos 3m por debajo del corazoén.
Datos: Densidad de la sangre ps = 1050 kg/m?

SOLUCION

Segtin (2.9) tenemos
Pcer = Pcor — Psg(ycer - ycor) ( .1)
Despejando
Peor = Peer + 58 (Yeer — Yeor) (2.7.1.2)
La presién manométrica minima de la sangre en el cerebro serd 0, que corresponde a presién absoluta
igual a la atmosférica Py. En realidad serd algo mayor, pero calculemos el minimo. Tomando pues pcer = 0

obtenemos
Peor = 058 (Veer — Yeor) = (1050kg/m®) (9,8 m/s?)(2m) ~ 2,1 x 10* Pa (2.7.1.3)
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Podemos comparar esta presién minima, con la minima habitual en un humano. La presién diastélica

normal en un adulto es de 80 mmHg. La presién de la jirafa corresponde a una columna de Hg de altura h:

Peor = Prggh = h = L — 0,155 m = 155 mm (27.1.4)

PHg8

esto es, 155 mmHg, casi el doble de la presién minima en un adulto humano. Por otro lado, podemos

calcular la presion de la sangre en los pies de la jirafa de igual modo:

Ppies = Peor + Ps§(Yeor — Ypies) = 2,1 x 10* Pa + (1050 kg/m?)(9,8m/s*)(3m) ~ 5,15 x 10* Pa = 387 mmHg.

(2.7.1.5)

Para aguantar una presién tan alta, la piel de las patas de la jirafa es extraordinariamente firme.

2.8 Medida de la presion atmosférica. Experimento de Torricelli

El aire de la atmdsfera, como cualquier fluido ejerce presién sobre
los objetos sumergidos en é17. La presién atmosférica corresponde
al peso de la columna de aire que tenemos por encima. ;Cémo me-
dimos la presiéon que ejerce la atmoésfera? Torricelli midié la presion
de la atmoésfera en el siglo XVII con el siguiente experimento®. Tomé
un tubo de vidrio abierto por un extremo lleno de mercurio y lo
puso invertido sobre una cubeta llena de mercurio. El mercurio del
tubo descendi6 hasta marcar un nivel unos 760 mm por encima de la
superficie de la cubeta. La presién de la atmésfera sobre la superficie
libre de la cubeta equilibra la presién de la columna de mercurio. De
la figura 2.7 tenemos que

Py = Phueco +PHg8h (2-16)

siendo P yeco la presion en el hueco superior que ha quedado
en el tubo. En el hueco queda aproximadamente vacio y por tanto
la presién ahi es Pyeco =~ 0. Conocida la densidad del mercurio
podemos calcular Py:

Py = prggh = (13600kg/m?)(9,8m/s?)(0,760m) ~ 101 x 10° Pa
(2.17)
Aunque la presién atmosférica varia con la meteorologia, se toma
como valor de la presion atmosférica a nivel del mar el valor 1atm =
101 325 Pa.

2.9 Principio de Arquimedes.

Al sumergir un cuerpo en un fluido, experimenta una fuerza
vertical y hacia arriba (llamada empuje), pudiendo incluso flotar,
dependiendo del cuerpo y el fluido. ;De dénde proviene esa fuerza?

7Como lo expres6 Torricelli, “vivimos
bajo un océano de aire”

8 Al parecer estaba en realidad tratando
de entender por qué las bombas de
agua de succién no podian elevar agua
por encima de unos 10m, un problema
que le propuso su mentor Galileo
Galilei

Unidad de presiéon SI
latm 1,01325 x 10° Pa
1bar 1,00 x 10° Pa

Tabla 2.1: Algunas unidades de presién
utiles para medir la presién atmosférica
y su equivalencia en el SI.

//’//,'/
=
Phyeco =0 é’: ‘

Figura 2.7: Experimento de Torricelli.



FISICA APLICADA A LA BIOLOGIA 31

Es una consecuencia de que la presién aumente con la profundidad
en el fluido. El fluido hace mds fuerza sobre la parte inferior que

la superior y la resultante es una fuerza hacia arriba. Lo podemos
ver facilmente en un cilindro de altura i y base A sumergido en un
fluido en equilibrio de densidad p;.

Como vemos en la figura 2.8, el fluido ejerce una fuerza F; hacia
abajo en la cara superior y una fuerza F, hacia arriba en la cara
inferior. Estas fuerzas provienen de la presién del fluido y sabemos
que se dirigen de forma perpendicular a la superficie del objeto. De
la definicién de presién tenemos que:

F

p1 221 =F =pA (2.18)
F

p2 :ZZ = Fh =pA (2.19)

Como la presién aumenta con la profundidad segtin p = pgh, tene-
mos para cada profundidad h; (tapa superior) y hy (tapa inferior):

F =p1A=prghhA (2.20)
F = prA =prghhA (2.21)

Como hy > hy, abajo hay mayor presion y el resultado neto es una
fuerza neta hacia arriba, que es el empuje E

E=prghaA —prghiA=psg(hy —h1)A =prglA=ppgV  (2.22)

donde hemos usado que la altura / del cilindro es I = hy — hy y el
volumen del cilindro es V = A x l. Esta expresién es interesante por 2
razones:

= Nos da la expresién del empuje sobre un cuerpo con un volumen
V sumergido en un fluido de densidad py:

E=ppgV (2.23)

» La cantidad p;V corresponde a una masa de fluido m; . Es la masa
de fluido desalojado por el cuerpo al sumergirse. Asi, el empuje
es E = myg, esto es, el peso del fluido desalojado. Esta es la forma
habitual de enunciar el principio de Arquimedes:

“Todo cuerpo sumergido en un fluido experimenta un empuje vertical
y hacia arriba equivalente al peso del fluido desalojado”.

Aunque lo hemos calculado para un cilindro, el principio de Arqui-
medes es valido para cualquier cuerpo sumergido en un fluido en
equilibrio, independiente de su forma. Se puede entender haciendo el
siguiente experimento mental representado en la figura 2.9.

'l ——

-

Figura 2.8: El empuje que experimentan
los cuerpos sumergidos en fluidos

es una consecuencia directa de que

la presién del fluido aumenta con la
profundidad.
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En la situacién A, el cuerpo sumergido sufrird un empuje E como
resultado de las fuerzas de presién que ejerce el agua a su alrededor
como acabamos de ver. Tomemos mentalmente el cuerpo y sustitu-
yamoslo por un volumen equivalente de agua, como en la situacién
B. El empuje que ejerce el agua exterior al volumen marcado en la

figura es igual que antes E, pues no hemos cambiado el agua externa.

El agua que estd dentro de la linea punteada tendrd un peso, corres-
pondiente a su volumen, mgg = p;gV. Ahora bien, la situacién B

es un fluido en equilibrio, de modo que el empuje sobre la parcela
imaginaria de fluido tiene que equilibrarse con su peso y entonces:

E=ppgV (224)

como queriamos demostrar.

Empuje y peso. Flotacion

El empuje E ejercido sobre un cuerpo y su peso P, apuntan en la
misma direccién y sentidos contrarios, siendo la fuerza resultante
hacia arriba o hacia abajo segtin cuél sea mayor. Hay 3 situaciones
posibles:

1. E < P. El cuerpo se hundira.

2. E = P. El cuerpo estd en equilibrio hidrostatico. Esta es la situa-
cién aproximada de muchos organismos acudticos de forma que
pueden desplazarse en el agua sin tener que compensar ninguna
fuerza ascendente ni descendente?.

3. E > P. El cuerpo ascenderd. Puede quedar en equilibrio en la

superficie con tan solo una fraccién del volumen sumergido.

Podemos ver que en realidad esto tiene que ver con la relacién
entre las densidades del objeto o cuerpo sumergido p. y la densidad

Figura 2.9: Principio de Arquimedes
para un cuerpo de forma arbitraria. Si-
tuacion A, cuerpo sumergido. Situacién
B, sustituimos el cuerpo por una canti-
dad de agua de volumen equivalente al
cuerpo.

9 Los peces con vejiga natatoria pueden
controlar en cierta medida el empuje
que sienten aumentando o disminuyen-
do el volumen de la vejiga
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del fluido py. Por ejemplo, un cuerpo de volumen V totalmente
sumergido estard en equilibrio si

E=P=pgV=meg = psV =mc (2.25)

Si el cuerpo tiene densidad p, = % tenemos
neta

pfV =me= 0V =pV = pr = pc (2.26)

El cuerpo estara en equilibrio si tiene igual densidad que el fluido.

. F
Igualmente se analizan los otros dos casos, dando lugar a neta

1. E<P < ps < pc(se hunde)
2. E=P < ps = pc (equilibrio)
3. E> P < pf > pc (flota)

En el caso de la flotacién E > P, podemos ver en qué situacion Frotand
queda el cuerpo en la superficie. En la superficie, una parte del v, orando
volumen del cuerpo queda sumergido y otra emergido V = V; +V,. La

parte sumergida es la tinica que desaloja fluido y por tanto el empuje

en esta nueva situacion es menor Efjorando = 0f8Vs < pfgV = E, V. meg
donde E es el empuje que sufre cuando estd totalmente sumergido.

En la situacién de equilibrio, flotando en la superficie, el empuje

iguala al peso

Efiotando = P = pfgVs = meg = pfVs = pcV (2.27) Efiotando = Mcg
) . ) ) Figura 2.10: Cuerpo flotando en un flui-
De esta tltima expresion se puede ver por ejemplo que la fraccion do con parte del volumen sumergido

de cuerpo sumergida es igual a la relacion entre las densidades del Vs y parte del volumen emergido V.. Si
estd flotando en equilibrio (ni se hunde

v mads, ni emerge mas) el empuje iguala al
s _ Pe (2.28) peso

SR La punta del iceberg

La densidad del hielo es aproximadamente 900 kg/m?3y la del agua liquida unos 1000 kg /m?3. Calcule

cuerpo y el fluido

qué fraccién del volumen total representa la parte del iceberg que vemos flotar por encima del agua.

SOLUCION

El iceberg esta flotando en equilibrio en el agua. De modo que su peso y su empuje estan equilibrados.
Suponiendo un volumen total V = V; 4+ V,, segtn (2.28)

Vs _ pn _ 900kg/m’
V = p;  1000kg/m’ (2:29)

El resto hasta 1 es la fraccién de volumen emergido (V,/V + Vs/V = 1):

Vo /V=1-V,/V=0,1 (2.30)
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Esto es el volumen emergido es 1/10 del volumen total y el volumen sumergido 9/10 del volumen total.

2.10 Dindmica de fluidos

La dindmica de fluidos estudia los fluidos en movimiento. Es un
tema complejo, en especial la turbulencia. En general se pueden dar
dos tipos de movimiento de los fluidos:

= Flujo laminar. Las capas vecinas de fluido se deslizan entre si sua-
vemente, las pequenas porciones de fluido siguen una trayectoria
lisa, suave, no hay cruces en las lineas de flujo o de corriente que
indican cémo se mueven.

= Flujo turbulento. Las trayectorias se vuelven mas complejas y
enrevesadas, con la aparicién de remolinos, vértices, cambios
bruscos en el tiempo, etc...

Estudiaremos el flujo laminar.

2.11  Flujo de masa y caudal

Dos cantidades importantes en fluidos en movimiento son el flujo

de masa y el caudal:
= Flujo de masa AA—T es la masa de fluido que atraviesa una superficie

por unidad de tiempo. Sus unidades son

Am
{At} =1kg/s

= Caudal o gasto Q es el volumen de fluido que atraviesa una super-

(2.31)

ficie por unidad de tiempo

[Q] = 1m¥/s (232)
La superficie que consideramos para ambos es una superficie per-
pendicular a la direccién de flujo, normalmente la seccién del tubo o
tuberia por el que fluye el fluido. Ambos estdn también relacionados
con la velocidad de flujo. Si tenemos una tuberia de seccién transver-
sal de superficie A, y el fluido circula a velocidad v, en un intervalo
At, el volumen de fluido que atravesara una seccién transversal es
aquel que se encuentra contenido en un cilindro de altura vAt, como
en la figura 2.13. El volumen del cilindro es V = AvAt y por tanto el
volumen que fluye por unidad de tiempo es

V. Auif

Q:EZYZAviQ:AU

(2.33)

\\\\\%\%_’%q
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Figura 2.11: Flujo laminar. Las trayec-
torias de las particulas de fluido son
suaves.

J/{?
==

Figura 2.12: Flujo turbulento. Las trayec-
torias son irregulares, pueden aparecer
remolinos.

A
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vAt
Figura 2.13: Caudal o flujo de masa.
La cantidad de fluido que atraviesa la
seccién perpendicular de tuberia en
un intervalo de tiempo At es la que se
encuentra a una distancia vAf o menor
en la direccién del movimiento.
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Para el flujo de masa basta con recordad la relacién entre masa y
volumen m = pV (con p la densidad del fluido) de modo que

Am
Af PR =pdo (234)

2.12 Conservacion de la masa o el caudal

Veamos una situacién como la de la figura 2.14 en la que cambie
la seccién de la tuberfa, por ejemplo. No se pierde masa de fluido a
través de las paredes, ni se crea ni se destruye masa. Entonces, el flujo
de masa serd el mismo en el punto 1 que en el 2, y asf:

Am

AL p1A101 = p2A202 (2.35)

Ademds, en fluidos incompresibles (liquidos sobre todo) la densi-
dad es practicamente constante independiente de las condiciones (de
presién) y podemos tomar p; = p,. En ese caso:

A]Ul = A2Z]2 (236)
que es la conservacién del caudal.
Una consecuencia de esta conservacion del caudal es

4

Uy =
Ap

v = Si A > Ay = vy >y (237)

que explica que los fluidos aumenten su velocidad cuando fluyen por
sitios mds estrechos.

2.13 Ecuacion de Bernoulli

En un movimiento general de un fluido podemos establecer una
relacién entre la velocidad a la que fluye, la altura respecto de un
nivel dado (el suelo por ejemplo) y la presién en el seno del fluido.

Esta relacion se debe a Bernoulli y dice que para dos puntos
cualesquiera de la trayectoria del fluido

Py + %pv% togy1 =P+ %PU% +08Y2 (238)
o bien que
P+ %pvz + pgy = cte (2.39)
en cualquier punto de la trayectoria, con
= p, densidad del fluido

= 7, velocidad del fluido en un punto

Figura 2.14: Conservacion del caudal en
una tuberfa que se estrecha.

U1

Figura 2.15: Ojo, la relacién (2.36) solo
es cierta si se conserva la masa entre
las secciones consideradas, por ejemplo
en esta otra situacion, tendriamos

Aqyvy = Apvp + A3vs.
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As
Pole5
Ay
Py
"_’bl
Y2
Y1

= y, altura sobre un nivel de referencia de ese mismo punto

= P, presién (hidrostatica) del fluido en ese punto.

El origen de esta ecuacién es la conservacién de la energia. Si consi-
deramos un pequeio volumen V de fluido que pase por el punto 1
y 2 en su trayectoria, multiplicando por V la ecuacién (2.38), reorga-
nizando términos, y siendo m = pV la masa asociada a ese pequefio
volumen, tenemos:

(P Po)V = Jm(03 — o) + mg(y> — 1) (240)

Los términos de la derecha corresponden al cambio de energia
cinética y potencial de la pequefia porcién de fluido al pasar del
punto 1 al 2. El término de la izquierda tiene unidades de energia
también y corresponde al trabajo realizado por las fuerzas de presiéon
sobre el volumen de fluido. De modo que podemos ver la ecuacién
de Bernoulli como la conservacién de la energia, esto es, el trabajo
de fuerzas externas (que no son la gravedad) es igual al cambio de
energia mecdnica (cinética+potencial).

La ecuacion es valida cuando:

= El fluido es incompresible™®

= No hay viscosidad (ya que viscosidad=- rozamiento y pérdida de
energia por tanto)

= Flujo laminar (trayectorias suaves). Ver secciéon sobre ntimero de
Reynolds.

» Estado estacionario®!

Figura 2.16: La ecuacién de Bernoulli se
puede aplicar a dos puntos cualesquiera
del tubo de flujo, en determinadas
condiciones.

‘[—AEC

v

1
(B - Po)|F 3003 = v pg(y2 —y1)

Vl/ét

AE,
Figura 2.17: La ecuacién de Bernoulli

se corresponde con la conservaciéon de
energia. El trabajo de las fuerzas de pre-
sién es igual a la variacién de energia
cinética mds potencial, calculadas las
tres por unidad de volumen.

* En liquidos sobre todo, pero a veces
también en gases si no hay diferencias
de presién muy grandes

" Estado estacionario significa que
ninguna propiedad cambia en el
tiempo, aunque pueden cambiar de un
punto a otro del espacio
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2.14 Aplicaciones de la ecuacién de Bernoulli

Veamos algunos casos particulares y posibles aplicaciones de la
ecuacion.

Presion hidrostitica

Supongamos un fluido en reposo (v; = vp = 0). Si tomamos el
punto 1 en la superficie libre abierta a la atmésfera P; = Patm, y el
punto 2 a una profundidad /# > 0 (1m, 2m,...) respecto de la superficie
(y2 = y1 — h), la ecuacién de Bernoulli nos dice

1
Pr— Py = Sp(03 —07) +p8(y2 —y1) = Py = Pam +pgh  (2.47)

Como se ve, Bernoulli contiene la ecuacion de la hidrostatica como
caso particular cuando las velocidades son nulas.

Teorema de Torricelli

Supongamos un depédsito grande que se vacia por un agujero
pequeiio a una profundidad h respecto de su superficie. Podemos
aplicar la ecuacién de Bernoulli a un punto 1 en la superficie libre del
fluido y un punto 2 a la salida del orificio:

1
PL— Py = 5p(03 — 07) + pg(y2 — y1) (242)

Ahora usamos que

» Tanto el punto 1 como el 2 estdn abiertos a la atmdsfera, asi que la
presién es la atmosférica Py = P> = Pamm
= El depésito es grande y el agujero pequefio, asi que v1 ~ 0
= La diferencia de alturas es la profundidad a la que esta el agujero
V2—y1=h
y queda
1
0=2p(03) +pgh = v2 = \/2gh (243)

El resultado coincide con la velocidad adquirida por una particula en
caida libre lanzada desde reposo desde una altura i que se obtiene
por conservacion de la energia.

Efecto Venturi

Si las diferencias de altura son despreciables y; ~ y, entonces
queda

1 1
Py + QPU% =P+ EPU% (2.44)

-Il
Y1 h

h

Y2

Figura 2.18: La presién a profundidad
h en un liquido en reposo se puede
calcular con la ecuacién de la hidrosté-
tica o con la de Bernoulli sustituyendo
V1 =0 = 0.

Aunque se puede deducir facilmente de
la ecuacién de Bernoulli, fue enunciado
previamente por Torricelli
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esto es, en los puntos donde fluye a mayor velocidad, la presion

es mds baja. Esto se puede utilizar para explicar (parcialmente) el
vuelo de las aves, aviones, y otros efectos como la posibilidad de los
barcos veleros de navegar en contra del viento, el gol olimpico y otros
fenémenos.

Aunque en la seccién siguiente utilizaremos solo el efecto Venturi
para analizar el vuelo, la realidad es mas complicada y otros efectos
y consideraciones desemperian un papel igual o méds importante
en ocasiones, como el efecto Coanda o la desviacion del viento
provocada en la parte inferior del ala por un dngulo de ataque no
nulo.

Vuelo de las aves

Supongamos un ave en vuelo horizontal, a velocidad vaye respecto
del aire que la rodea.

Yvy

\ 4
y

Debido al perfil curvo del ala, el aire pasa a mayor velocidad por
la parte superior del ala, digamos a una velocidad vsuyp > Vave. Por
la parte inferior, como el aire se desvia poco, podemos suponer una
velocidad vy = vayve. Despreciando diferencias de altura, tenemos
que

2

1 1
Pint + Epvgve = PSUP + Epvsup (2.45)

Como vsyp > Vave entonces Psyp < Pips. Al haber menos presion por
arriba que por abajo del ala, el efecto neto es una fuerza vertical hacia
arriba, llamada fuerza de sustentacion. Recordando la relacién entre
presién y la fuerza total ejercida en una superficie, suponiendo un
ala de superficie S, P = F/S = F = PS se calcula la fuerza neta que
acttia sobre el ala:

1 2 Z)S

Freta = Finf — Fsup = (Pinf - Psup)s = Ep(vsup ~ Vave (2.46)

donde hemos utilizado la expresion (2.45). Para que (2.46) resulte ttil,
necesitamos una relacién entre vsyp Y Uave- Por ejemplo, supongamos
que la vgyp €s un pequefio porcentaje superior a vaye, por ejemplo,

Figura 2.19: El aire circula més répida-
mente por encima del ala, debido al
perfil curvo. Esto se puede apreciar en
un tanel de viento (con ala de avién
normalmente) en que las lineas de
corriente estin mds apretadas por la
parte superior.

Figura 2.20: Diferencias en la velocidad
superior e inferior se traducen en
diferentes presiones y fuerzas ejercidas
sobre el ala. Al haber mayor presién
por el lado inferior que por el superior,
resulta una fuerza total hacia arriba que
sujeta el objeto en el vuelo.
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Usup = AVave CON 4 Una constante (1.1, 1.2 0 asi...). Entonces:

1
Freta = Ep(az - 1)v§ves‘ (2.47)

Aunque no es fundamental, normalmente se agrupa ese coeficiente
asi Cp = (a® — 1) y se escribe

1
Freta = EPCngveS' (248)

Cy, recibe el nombre de coeficiente de sustentacién y se suele obtener
experimentalmente.

Una consecuencia directa de la expresion (2.48) es que la fuerza
de sustentacién es mayor cuanto mayor sea la velocidad del aire por
debajo del ala. Por ejemplo, la fuerza de sustentacién es mayor si se
despega de cara al viento y de hecho las aves de gran tamafio (y los
aviones comerciales) suelen despegar de ese modo. La relacion entre
la fuerza de sustentacién y la masa del ave en vuelo horizontal o la
velocidad de despegue se exploran en el siguiente ejemplo y en el
cuadro opcional Velocidad de despegue.

SEJCPAERI Vuelo de un aguila

La velocidad del viento debajo del ala de un 4guila real volando horizontalmente es de 70km/h. Por la

39

Figura 2.21: Cigtiefia blanca despegan-
do desde el nido en contra del viento.
La fuerza de sustentacién aumenta con
la velocidad del aire por debajo del ala.
El viento de cara por tanto contribuye
a aumentar la fuerza de sustentacién.
Dibujo de L.D.

parte superior del ala el aire circula a una velocidad de 77 km/h. El ala mide aproximadamente 190 cm x

20 cm. El ave estd volando horizontalmente en equilibrio. Calcule:
a) La diferencia de presiones entre el lado inferior y superior del ala

b) La fuerza neta vertical sobre 1 ala
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¢) La masa del dguila

Datos: Densidad del aire p = 1,2kg/m?

SOLUCION

a) Utilizando la ecuacién de Bernoulli, despreciando diferencias de altura:
1 1
P+ Epv% =P+ Epv% ( .1)

con Py y vg presién y velocidad del aire debajo del ala y P; y v presiéon y velocidad en la parte superior.
La diferencia de presién sera:

1 1 77 > (70 2
Py— P = Ep(v% —0v3) = 5(1,2kg/m3) [<36m/s) - <36m/s) ] ~ 47,6 Pa ( .2)

b) La relacién entre fuerza, superficie y presién nos permite calcular la fuerza neta:

Fneta = (Py — P1)S = (47,6 Pa)(190 x 107 2m)(20 x 10 2m) ~ 18 N ( 3)

¢) Volando horizontalmente, sin propulsarse con las alas, el peso del ave se tiene que compensar con la
fuerza de sustentacion sobre las 2 alas:

2F
mg = 2Fneta = M = ? ~ 3,7kg ( 4)
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Opcional.
Velocidad de despegue. Ley de escala. El avestruz y el gorrion

Piensa en la diferencia en el modo de despegue de las pequenas aves como un gorrién y el flamenco. Un
flamenco necesita adquirir cierta velocidad corriendo antes de despegar, mientras que un pajarillo puede
comenzar a volar practicamente desde parado. ;Podemos explicar el fendmeno con lo que conocemos de
la fisica del vuelo?

En el ejemplo anterior hemos visto que, si no tenemos en cuenta el efecto de batir las alas, en vuelo esta-
ble horizontal la fuerza de sustentacion tiene que equilibrar el peso. Vamos a suponer que la velocidad
de despegue es esa velocidad necesaria para mantenerse en el aire en equilibrio. A mayor peso del ave,
mayor fuerza neta necesaria y, teniendo en cuenta la expresion (2.48), también significa mayor velocidad.
Partiendo de (2.48), suponiendo 2 alas y equilibrando con el peso del ave tenemos:

L
CLPS

mg = 2Fneta = pCngveS = O = (2.49)
Claramente, se aprecia que a mayor masa del ave, mayor serd la velocidad necesaria para el despegue.
Aunque queda una duda, normalmente un ave de mayor masa tiene mayor superficie alar S y como esta
en el denominador, tiende a hacer menor la velocidad necesaria para el despegue. ;Qué efecto es mayor?
Para analizar esto, veamos cémo varian masa m y superficie alar S con el tamafio o envergadura del ave.
Supongamos una longitud determinada para el ave L, por ejemplo, de pico a cola, o la envergadura de ala
a ala o cualquier otra longitud caracteristica. Una ave de mayor L tendrd mayor S. De hecho, al ser una
superficie, podemos pensar que la superficie del ala serd proporcional a la longitud al cuadrado:

S o L%, obien S = alL? (2.50)

donde a es un cierto factor numérico o constante que supondremos igual para todas las aves.
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Por otro lado, a mayor longitud, mayor volumen y por tanto mayor masa y peso del animal:
V L%, obien V = bL® = m = pyjidoV = PrejidobL’ (2.51)

donde de nuevo b es un valor que tomaremos igual para toda ave, sea cual sea su valor. Llevando todo
esto a la expresion de la velocidad de despegue (2.49):

_ |8PwjidobL®  [8Pwejidol ~
vave—\/ Cppal? = CLpa VL =cVL (2.52)

gptejidob

donde ¢ = i

es la misma constante para todos los animales al ser combinacién de otras constan-

tes.

De modo que vemos que efectivamente, a mayor envergadura o tamario de ave, mayor es la velocidad de
despegue, como parece razonable.

De hecho, podemos relacionar las velocidades de despegue de dos aves cualesquiera:

Davestruz . ﬂ( V Lavestruz -
Z)gorrion ﬂ( vV Lgorrion

Finalmente, conocidos los tamarfios y la velocidad de despegue de uno, podemos estimar la veloci-

Lavestruz

(2.53)

L gorrion

dad del otro. Si para el gorrion tenemos vgorrion = 21km/h y el avestruz es unas 25 veces mayor
(Lavestruz = 25Lgorrion)/ obtenemos:

Lavestruz = (21 km/h)\/2>5 ~ 105km/h (2.54)

Uavestruz = Ugorrion L
gorrion

iNo sorprende que un avestruz no pueda volar!

2.15 Fluidos reales

En esta seccién vamos a tratar casos de fluidos reales, donde
los efectos de rozamiento son importantes y la conservacién de la
energia no se da.

Viscosidad

La viscosidad es una propiedad de los fluidos que mide la resis-
tencia a fluir cuando se les aplica una diferencia de presién, o una
fuerza por unidad de superficie. Algunos fluidos como el aceite,
la miel o la sangre son mds viscosos que el agua y hay que aplicar

mayor fuerza que para hacer fluir agua’. Los gases son en general 2 Una manera facil de comprobar la
mayor o menor viscosidad es poner

. . . . .. . el fluido en una jeringa y hacerlo fluir
Viscosidad y densidad son magnitudes distintas y no tienen apretando el émbolo. ;Cuando cuesta

menos viscosos que los fluidos.

relacién en general. Por ejemplo, el aceite es mas viscoso que el agua, mds, con agua o con miel?
pero menos denso.
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Definicion

La viscosidad se puede definir (y se podria medir) con el siguiente
experimento. Se coloca una delgada capa de fluido entre dos placas
planas. La placa inferior esta fija. La placa de arriba se puede mover,
como en la figura 2.22.

Debido a las fuerzas de rozamiento entre capas de fluido y de
las capas de fluido con las placas, para mover la placa de arriba a
velocidad constante hace falta tirar de la placa con una determinada
fuerza F. Debido al rozamiento también, la velocidad de diferentes
capas de fluido es distinta, siendo nula al lado de la placa en reposo
e igual a la velocidad de la placa superior justo debajo. La fuerza
necesaria es proporcional al gradiente de velocidad (v/[) y al drea de
las placas™:

F « A? (2.55)

La constante de proporcionalidad es la viscosidad y depende de qué
fluido tengamos:

(2.56)

Con este experimento podriamos obtener la viscosidad del fluido

F:nA%

Fl
=71 (257)
y también podemos ver que sus unidades en el SI son
_ A _ 1Nm _
= [Al] ~ mim/s 1Pa-s. (2.58)

Sin embargo, esta situacién de fluido entre dos placas es poco
comun, por lo que la ecuacién (2.56) no resulta muy ttil. La situacién
de la siguiente seccion resulta mucho maés frecuente.

Flujo viscoso en tubos. Ley de Poiseuille

Cuando hay viscosidad, para hacer fluir un fluido en un tubo hay
que aplicarle una presién mayor por un lado que por el otro, esto es,
una diferencia de presiéon AP = P; — P,, siendo P; y P; las presiones a
uno y otro lado del tubo. 4

Existe una relacién entre la velocidad de flujo, o el caudal, y la
diferencia de presién aplicada:

Py —P,=QR (2:59)

con Q el caudal. R se conoce con el nombre de resistencia hidrodindmi-
ca porque mide la oposiciéon del tubo y el fluido a fluir. A mayor R,
menor es el caudal para una diferencia de presién dada.

/
placa en movimiento . F
v — >
|

—_—
_—

— l
—
—

[ploco estacionaria

fluido

Figura 2.22: Definicién de viscosidad.
Vista lateral del experimento. La placa
inferior estd fija. Para mover la placa
superior con velocidad constante v, es
necesario aplicar una fuerza constante
F. Las placas, aunque no se aprecia,
tienen una superficie A.

13 Esta fuerza F es una fuerza de cizalla,
y en general no tiene que ver con la
presién P hidrostatica que hemos visto
hasta ahora, si no que es de origen
viscoso

P1 > P2 P2

4 Las fuerzas viscosas son como la
fuerza de rozamiento: Si no hubiera
rozamiento, los objetos deslizarian
indefinidamente sobre una superficie
sin necesidad de aplicarles fuerza. El
rozamiento frena el movimiento y en
general para que continue moviéndose
hay que aplicar una fuerza.
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La resistencia hidrodindmica R tiene que aumentar con la viscosi-
dad del fluido 7. Ademds dependera del tubo en cuestién, su forma,
su tamafio. Para el caso de un tubo de seccién circular, de radio r y
longitud I, la resistencia es

8yl
R = ﬁ (2.60)
de modo que el caudal y la presion se relacionan asi:
nrt (P — Py)
Q = WT (2.61)

que se denomina ley de Poiseuille. Las consecuencias mds importantes
de la ley de Poiseuille son

= El caudal es proporcional al gradiente de presion aplicado

= El caudal cambia enormemente con pequefias variaciones del radio
4

del tubo, debido a la dependencia
= A mayor viscosidad, menos flujo, para el mismo gradiente de
presién aplicado

Potencia desarrollada en el flujo viscoso

Otra consecuencia de la viscosidad es que para mantener el flujo
hay que gastar energia constantemente’>. Se puede calcular la po-
tencia necesaria para mantener un caudal Q a través de un tubo de
seccién S como en la figura 2.23, entre cuyos extremos hay una dife-
rencia de presién P; — P». En esa figura, el fluido entre los dos circulos
azules sufre una fuerza neta F; — F, y si se desplaza una distancia Ax
el trabajo realizado es:

W = (F, — F)Ax = (P; — P,)AAx = APAAx (2.62)

donde hemos utilizado que P = F/A, con A el drea de la seccién
transversal de la tuberia. La potencia es el trabajo por unidad de
tiempo At, y si el fluido se mueve a velocidad v = Ax /At

W Ax

=~V APARY — APAD = AP
P=a At v Q=

P = APQ (2.63)

donde hemos usado que el caudal Q = Av. Es un buen ejercicio
comprobar que el producto de presién por caudal tiene unidades de
W.

Figura 2.23: Fluido viscoso fluyendo
como resultado de una diferencia de

presiones en sus extremos P; — P,.Se
desplaza una distancia Ax en un tiempo
At, a velocidad v = Ax/At.

> Las fuerzas viscosas son como un
rozamiento, si se deja de impulsar, el
fluido se para
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SRR La potencia del corazéon

Un corazén humano bombea unos 4.5 litros de sangre cada minuto. Si la presién arterial se considera en
promedio 100 mmHg y la venosa despreciable (0 mmHg), calcule

a) La potencia desarrollada por el corazén para mover la sangre
b) El gasto de energia del corazén durante un dia completo.

Datos: Densidad del mercurio pye = 13600kg/ m3

SOLUCION

a)

(4,5 x 1073 m?3)

P = APQ = (100mmHg — 0)(4,5L/min) = (0,100m)(13600kg/m>)(9,8 m/s?) s

=10W
.1)

b) Si suponemos constante esa potencia durante t = 1d , la energfa total sera:
E="Pt=(1,0W)(1 x 3600 x 24s) = 86400] ( .2)

Como veremos al estudiar el metabolismo humano, una persona consume una potencia de aproximada-
mente 100 W en promedio, por lo que el consumo del corazén supone en torno al 1 %

Niimero de Reynolds

Cuando la velocidad del flujo aumenta, el flujo puede dejar de ser
laminar y volverse turbulento (con remolinos y gran variabilidad).
La transicién entre flujo laminar y turbulento estd marcada por el
niimero de Reynolds. Para una tuberia de seccién circular, el nimero de
Reynolds es:

2
Re = 2YF (2.64)
U
con
= v velocidad (media) del fluido
= rradio de la tuberia
= p densidad del fluido
= 7 viscosidad del fluido
El nimero de Reynolds no tiene dimensiones'®, las unidades son 1 Bs una magnitud adimensional

mismas en el numerador y en el denominador. De hecho mide la
importancia de las fuerzas de tipo inercial, asociadas a la masa, en
el numerador y el de las fuerzas de viscosidad en el denominador.
Experimentalmente se ve que aproximadamente si

Re <2000 = flujo laminar
Re > 2000 = flujo turbulento (2.65)
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La ley de Poiseuille que hemos visto en la seccién anterior solo es
vélida en situaciones en las que el flujo es laminar (Re < 2000).
Movimiento de un objeto en un fluido

Cuando un objeto se mueve en un fluido, aparece una fuerza,
denominada fuerza de arrastre, que se opone al movimiento. En este
sentido es similar a la fuerza de rozamiento con una superficie. A
baja velocidad tiene origen viscoso y es proporcional a la velocidad

Baja v = debida a § = Fay = bv (2.66)

A alta velocidad, se debe a efectos inerciales y es proporcional a v?:

Alta v = debida a inercia = Fayy = kov? (2.67)

b y k son coeficientes de proporcionalidad que dependen de la forma
del objeto y las propiedades del fluido. ;Cémo distinguimos estos
casos? Se utiliza otro nimero de Reynolds definido asi

(2.68)

con
= v velocidad del objeto dentro del fluido
» [ tamafio del objeto (lado, didmetro,etc...)
» p densidad del fluido
= 7 viscosidad del fluido
Si

R <1= flujo laminar alrededor del objeto = Fary = bv
Re’ > 1= flujo turbulento alrededor del objeto = Far = kv* (2.69)

Ley de Stokes

En situaciones en las que Re’ < 1y ademas el objeto es una esfera
de radio r entonces b toma el valor b = 67tryy y la fuerza de arrastre:

Farr = 67tryyv (Para la esfera) (2.70)

Sedimentacion

La sedimentacién se puede utilizar para separar particulas sélidas
en el seno de un fluido. Consiste en dejar actuar la gravedad, o una
fuerza centrifuga, de modo que las particulas més densas que el

Figura 2.24: Fuerza de arrastre. Un
objeto se mueve a velocidad v en el
seno de un fluido. Aparece una fuerza
que se opone al movimiento y cuyo
valor aumenta con la velocidad.

E FI'OZ
v
a#0
P
FI'OZ
v
a=0
P

Figura 2.25: Fuerzas que actdan sobre
un objeto sedimentando. Izquierda:
La velocidad inicialmente es baja, lo
que implica una fuerza de rozamiento
pequeria, de modo que la fuerza total
es hacia abajo, el cuerpo acelera por
tanto hacia abajo y se hunde cada vez
mas deprisa. Derecha: Equilibrio. La
velocidad es mayor, la fuerza de roza-
miento también por tanto. La fuerza
de rozamiento y el empuje equilibran
el peso. La fuerza neta y la aceleraciéon
son nulas y por tanto la velocidad
constante.
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fluido tienden a depositarse en el fondo del recipiente. Ademads
permite separar particulas segtin su tamafio o densidad, segtin
veremos.

Consideremos una particula de densidad p, en un fluido (o, > py).
En reposo inicialmente, las fuerzas que acttian son el peso y el em-
puje. El peso es mayor que el empuje debido a la diferencia de densi-
dad, y el sélido comienza a moverse hacia el fondo. En movimiento
aparece una fuerza de arrastre, que va aumentando a medida que
aumenta la velocidad (F,;y = bv). En determinado momento, la
velocidad alcanza un valor tal que las fuerzas se equilibran:

mg—E—bv=0 (2.71)

Segun la segunda ley de Newton (}_ F = ma) esto implica que a partir
de ese momento la aceleracién es nula y la velocidad es constante

(a = 0 = v = cte.) y no aumenta mds. Esta velocidad maxima se
denomina velocidad limite o terminal y su valor se deduce de (2.71):

mg—E—bv:0¢v:mgb_E (2.72)

Para el caso de una esfera de radio r podemos expresar todo en
funcién solo de densidades, viscosidad y el radio.

4
E=psgV = ppgzmr’ (2.73)
4
mg = ppVg = ppgz7r’ (2.74)
b= é6nyr (2.75)
y entonces
mg —E 2 (pp — pr)gr*
= =>0v= 5 (Vel. terminal de una esfera)
(2.76)
Consecuencias:

= Para particulas de igual densidad p, (0 muy similar), la velocidad
limite es mayor para las particulas mas grandes. Las particulas
mas grandes acabardn més cerca del fondo tras un tiempo de
sedimentacién.

= Para particulas de tamafio similar, acabaran separadas segiin
densidades.

= En general, quedan ordenadas segtn el valor de la combinacién
(op — pf)1* (g serd la misma para todas).

Si el proceso es demasiado lento, se puede incrementar el valor
de la velocidad de sedimenacién mediante centrifugacién. En una

47
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centrifugadora, la aceleracion centrifuga a. desempena el papel de
la gravedad, de modo que la expresién es la misma simplemente
sustituyendo g por a.:

2 (pp — py)acr?

U:9 1

(2.77)

W Figura 2.26: Centrifugadora. La muestra
C gira en una trayectoria circular de radio
R a una velocidad angular de w en
eje de gadia}nes por segundo. Desde el .pu.nto
. e vista de la muestra, este movimiento
QlIro provoca una aceleracién centrifuga a.
que desempefia el mismo papel que la
aceleracion de la gravedad en el caso
de sedimentacion vertical. Asi, el “pe-
B I -~ so” de la muestra es ma,. en direccién
perpendicular a la trayectoria hacia
fuera y aparece un empuje E = pracV

’ ) . o .
\ en la misma direcciéon y hacia el centro.
N Como 4, es normalmente muy superior

~ - a g podemos despreciar el efecto de la

R == . aceleracién de la gravedad en sentido
t royecto ria vertical.

La aceleracion de la centrifugadora a. se puede dar en referencia
a g, comoa, = 2¢g oa. = 3g, etc... También se puede obtener a
partir de la velocidad angular de giro w (en radianes por segundo):
ac = w?R, con R el radio de giro de la muestra en la centrifugadora.
Es frecuente expresar la velocidad de giro de la centrifugadora en
r.p.m (revoluciones por minuto). Los detalles se pueden ver en el
siguiente ejemplo.

SRl Centrifugadora

Una centrifugadora gira a 60oo rpm. Las muestras giran en un trayectoria circular de 10 cm de radio.

Se coloca una muestra con dos proteinas globulares de radios r; = 2nm and 7, = 5nm. La densidad
de las proteinas es la misma p, = 1,35g/cm?. Suponiendo que las protefnas comenzaran en la misma
posicién, calcule la diferencia en la distancia recorrida por cada una de los tipos de proteinas tras 10h
de centrifugacién. Suponga que las proteinas alcanzan la velocidad terminal instantdineamente y que la
centrifugacion se realiza en agua, de densidad p, = 1000 kg/m? y viscosidad 77, = 0,001 Pa - s.

SOLUCION
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Las proteinas alcanzan inmediatamente la velocidad terminal, que es constante. Por tanto, el espacio

recorrido por la proteina de radio 1 en un tiempo ¢ es

di =t ==
1 1 9 e 9 e

2 (pp — pa)acr%t _2(pp - Pa)szr%t

( 1)

donde hemos utilizado la expresiéon de la velocidad terminal (2.77) y sustituido el valor de la aceleracion

angular a. = w?R. Andlogamente, para la proteina de radio r, tenemos

_ ZR 2
iy = ogt = 20p ~Pa)W RIS
9 Na

La diferencia de espacio recorrido es:

2 (Pp - Pa)szt

A=dy—dy ==L PUF 22

9 a

La velocidad angular se tiene que expresar en el SI utilizando 1 vuelta= 27 radianes:

6000 x 271

w = 6000rpm = 0s

Sustituyendo los valores en el SI tenemos:

~ 628/s

~2((1,35—1,00) x 10°kg/m?)(628/5)(10 x 10~2m)(10 x 36005)((5 x 10~" m)? — (2 x 10~ m)?)

Ad =
a 9 (1x10-3Pa-s)

~23%x103m =23mm

2.16 Propiedades de la superficie. Tension superficial y capilari-
dad

Tension superficial

Hay varias observaciones que indican que la superficie de un liqui-
do se comporta como una especie de membrana elastica estirada bajo
tensién. Por un lado, las gotas de agua son esféricas aproximadamen-
te (en ausencia de gravedad) al igual que las pompas de jabén, como
sucede con un fluido dentro de una membrana eldstica, como puede
ser agua o aire dentro de un globo. Otra evidencia la proporcionan
objetos mds densos que el agua que flotan en su superficie (una aguja,
una cuchilla de afeitar, insectos que caminan sobre el agua) pues el
agua ha de ejercer alguna fuerza extra que compense el peso, ya que
el empuje no es suficiente..

El siguiente experimento (figura 2.27 ) muestra la tensién super-
ficial y permite medirla. Un alambre que tiene forma de U se cierra
completando un rectangulo con otro alambre que puede deslizar. En

( -5)
]

liquido F
v l

P1rree

Figura 2.27: Experimento para medir la
tensién superficial. Cuando la fuerza

F equilibra a la fuerza de la tensién
superficial entonces el alambre no se
desplaza y la pelicula de agua ni crece
ni decrece. Este valor es F = 2] donde
7 es el coeficiente de tensién superficial,
el factor 2 se debe a que la pelicula de
agua tiene 2 superficies de contacto con
el aire y [ es la longitud del alambre
mévil donde acttian las fuerzas.
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el interior del alambre se coloca el liquido formando una pelicula
(por ejemplo, agua con jabén). Si no se aplica ninguna fuerza externa
sobre el alambre, la pelicula de liquido tiende a decrecer y arrastra el
alambre, disminuyendo la superficie de contacto con el aire. Se puede
parar el movimiento del alambre si ejercemos una fuerza F en sentido
contrario a la de la tensién superficial tal que

_F
T2l

7 es el coeficiente de tensién superficial del liquido en cuestién, que

Y (2.78)

tiene dimensiones de fuerza por unidad de longitud y [ es la longitud
de contacto del objeto con la superficie del liquido, en este caso, la
longitud del alambre. El factor 2 se debe a que en realidad en este
experimento con pelicula delgada hay 2 superficies de liquido, la
inferior y la superior, como se aprecia en la figura 2.28.

Las unidades del coeficiente de tensién superficial son, de 2.78

[v] =1N/m (2.79)

La tension superficial tiene su origen microscépico en una descom-
pensacion de las fuerzas atractivas que sufren las moléculas de un
liquido cuando estan cercanas a la superficie.

Angulo de contacto y capilaridad

Un efecto de la tensién superficial es la capilaridad, que consiste
en el ascenso o descenso del liquido dentro de un tubo de didmetro
pequeio. Si el liquido asciende o desciende por un capilar, respecto
del nivel del liquido fuera del capilar, estd controlado por el dngulo
de contacto. El dngulo de contacto es el d&ngulo que forma la superfi-
cie del liquido con la pared sélida, en la regién en la que coinciden
el liquido, el gas y el sélido. El d&ngulo se mide por convencién desde
el sélido atravesando por el liquido, no por el gas, como en la figura
2.29. El dngulo viene determinado por el balance entre las fuerzas de
atraccion molecular liquido-liquido o liquido-sélido:

= Atraccion s6l-liq > atraccién lig-liq < 0 < 90° (Fig. 2.29 izquierda)
= Atraccion s6l-liq < atraccién lig-liq <> 0 > 90° (Fig. 2.29 derecha)

Como se ve en la figura 2.29 (izquierda) un dngulo de contacto
menor al dngulo recto produce que una pequeiia porcién de fluido
ascienda ligeramente en contacto con el sélido. En el caso de un
pequeiio tubo, esto resulta en un pequefio menisco que asciende por
el tubo capilar, como en la figura 2.30.

Es posible calcular cuanto asciende la columna de liquido por el
tubo capilar. La columna sube por efecto de la componente vertical

pelicula SYP- ™ are V1 F
— liquido

sup. 2 J} aire 71
Figura 2.28: El mismo experimento
que en la figura 2.2y visto de perfil.
Se observa que la pelicula delgada de
liquido tiene 2 superficies de contacto
con el aire, por lo que la fuerza sobre el
alambre debida a la tensién superficial
es doble.

delgada

vidrio

i

mercurio

aire

agua

Figura 2.29: El angulo de contacto es
el dngulo que forma la superficie del
liquido con la del sélido en la zona
de contacto, en la interfase liquido-
gas-solido. Se mide “por dentro” del
liquido.
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de la fuerza de tensién superficial. La columna subird hasta que su
peso se equilibre con la fuerza vertical.

Por simplificar la discusién, supongamos que se trata de agua en
contacto con vidrio. Pensemos, como en la seccién anterior, que la
pared de vidrio es un objeto en la superficie del agua. El agua hace
una fuerza sobre el objeto que vale'”

F=9l="2nr (2.80)

ya que la longitud total de la linea de contacto de la superficie del
agua y el vidrio es 27tr. Al igual que antes, la direccién de la fuerza
es tangente a la superficie y sentido hacia el liquido. Por la tercera ley
de Newton, igualmente el vidrio hace una fuerza y27tr sobre el agua,
pero en sentido contrario (ascendente, la fuerza pintada en azul en la
figura 2.30). Esta fuerza del vidrio sobre el agua hace subir el agua.

Mads concretamente, es la componente vertical de la fuerza®

F, = Fcos® = y2mtrcos6 (2.81)

donde 0 es precisamente el dangulo de contacto.

El agua dejara de ascender, como dijimos, cuando el peso de la
columna equilibra dicha fuerza. El peso de una columna de agua de
radio r (el mismo del tubo) y de altura / es

P =mg = pVg = prir’hg (2.82)

con p la densidad del liquido y ¢ la aceleracién de la gravedad. En
equilibrio
P = F, = prir*hg = y27r cos 6 (2.83)

de donde podriamos por ejemplo despejar la altura de la columna

_ 27ycost
P8

Esta expresion es interesante por al menos un par de cosas

h (2.84)

= Se entiende por qué solo se observa el fenémeno bien en tubos
de radio muy pequeftio (capilares), ya que la altura alcanzada es
inversamente proporcional al radio del tubo.

= La expresion es valida también para el descenso por capilaridad si
se utiliza el criterio de dngulo de contacto establecido més arriba.
Angulos superiores a 9o° dan alturas negativas. Este es el caso del
mercurio, aire y vidrio por ejemplo.

Insectos que caminan sobre el agua

Algunos insectos son capaces de mantenerse e incluso desplazarse
por la superficie del agua, mantenidos por la tensién superficial. Los

vidgrio v ="2mrcosf
\ ______ @”F = ~y27r
aire 7\’
A
0 h
agua o

Figura 2.30: Ascenso capilar del agua
en un tubo de pequefio radio. El agua
sube por la fuerza de tensién superficial
hasta que la componente vertical de
dicha fuerza se equilibra con el peso de
la pequefa columna de agua.

7 En este caso no aparece el factor 2 en
la fuerza de tensién superficial pues no
se trata de una pelicula y solo hay una
superficie liquido-aire

8 La componente horizontal se compen-
sa con la reaccién perpendicular de la
pared.

aire

Hg _/ 6 >[90°

Figura 2.31: Para dngulos de contacto
mayores de 9o° se produce descenso
capilar. Se puede utilizar la misma
férmula del ascenso capilar ya que el
coseno de un dngulo mayor a 9o° es
negativo.

F, = ~2nrcosf

Figura 2.32: Pata de insecto que de-
forma la superficie del agua, la fuerza
debida a la tension superficial que
aparece en consecuencia (en azul) y la
componente vertical (en naranja).
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insectos, apoyados por ejemplo en las patas, deforman la superficie
del agua haciendo una especie de hoyo o hueco. La superficie del
agua, al ser deformada y comportarse eldsticamente ejerce una
fuerza sobre la pata del insecto. Como hemos visto, esta fuerza

es proporcional al coeficiente de tensién superficial. Al igual que
en capilaridad, nos interesa la componente vertical, que es la que
compensa el peso del insecto, por lo que hay que tener en cuenta el
angulo que forma la superficie del agua con la vertical (ver figura
2.32). Veamos un ejemplo.

SRR Masa de un insecto

Un insecto, del género Mesovelia, se encuentra en equilibrio en la superficie del agua. El didmetro de

cada una de sus patas es de 60 um. Suponga que la deformacién de la superficie del agua bajo cada pata es
aproximadamente de casquete esférico de radio igual al radio de la pata. El dngulo que forma la depresién
con la vertical es 60°, como se representa en la figura 2.32. ;Cuél es la masa mds grande que podria tener
el insecto? Diga si el resultado es compatible con la masa de uno de estos insectos, del orden de 0,2mg.
Nota: los datos del radio de la pata y la masa de Mesovelia se han obtenido de *9, donde ademads se pueden
encontrar asombrosos hechos de este y otros insectos “escaladores de meniscos”.

Datos: Aceleracién de la gravedad g = 9,8 m/s?; Coeficiente de tensién superficial del agua y = 0,072N/m.

SOLUCION

En equilibrio el peso del insecto y la componente vertical de la fuerza de tensién superficial son iguales.
Teniendo en cuenta que hay 6 patas:

127tr cos 60y 1271(30 X 10~°m)(0,5)(0,072N/m)
g - (9,8m/s?)

~42x 10 %kg = 42mg
( 1)

Esto es, la fuerza de tensién superficial asociada a las deformaciones del agua provocadas por las patas

mg = 6 x 27try cos 60 = m =

podria sujetar hasta 4,2 mg. Como el insecto tiene una masa de menos de 1 mg es perfectamente posible
que se sujete por la tensién superficial.

9 David L. Hu and John W. M. Bush.
Meniscus-climbing insects. Nature,

437(7059):733—736, September 2005
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Figura 2.33: Mesovelia escalando un
menisco de agua. Dibujo de L.D. ins-
pirado en la figura 1 del articulo de
David L. Hu and John W. M. Bush.
Meniscus-climbing insects. Nature,
437(7059):733-736, September 2005.







3
TERMODINAMICA

3.1 ;Para qué la termodindmica?

LA TERMODINAMICA estudia principalmente los flujos de distintas
formas de energia (calor, trabajo, energfa quimica,...) en procesos o
transformaciones. Ejemplos de relevancia biolégica que la termodi-
ndmica puede ayudarnos a comprender mejor son el metabolismo
(respiracioén, fotosintesis,. .. ), el mantenimiento de la temperatura

del cuerpo (procesos de transmisién de calor), la difusién de molécu-

las a través de biomembranas o la espontaneidad de las reacciones
quimicas.

3.2 Temperatura. Equilibrio térmico.

Todos tenemos una nocién intuitiva de la temperatura. Si algo esta
caliente decimos que tiene una temperatura alta y si esta frio, que su
temperatura es baja."

Para una definicién més rigurosa de la temperatura T se utiliza el
concepto de equilibrio térmico. Si ponemos en contacto dos cuerpos
de forma que puedan intercambiar calor como en la figura 3.1, tras
un tiempo llegardn a un equilibrio y el calor dejara de pasar de uno
a otro. En ese momento han alcanzado el equilibrio térmico y sus
temperaturas serdn iguales.

¢Como se mide la temperatura?

Con un Termémetro. Un termémetro es basicamente un objeto
con alguna propiedad que varfa con la temperatura. Este se pone
en contacto con el sistema cuya T queremos medir, de forma que se
equilibren sus temperaturas. Midiendo la mencionada propiedad
tenemos una medida de la T del sistema. Las propiedades mds
comunes utilizadas para fabricar termémetros son:

* Nocién intuitiva: Caliente = T alta,
Frio = T baja

Th=Tg

TA >TB

A B

Figura 3.1: Ilustracién del equilibrio
térmico. Los cuerpos A y B estan en
contacto a través de una pared que deja
pasar el calor.

La Temperatura T mide si los cuerpos
estdn en equilibrio térmico
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= Tamario. Casi todos los materiales se expanden al aumentar su T.

= Resistencia eléctrica. La resistencia de metales y semiconducto-
res varfa considerablemente con la temperatura. Se usa en los
termoémetros digitales.

= Color. El color y la cantidad de energia radiada dependen de la
temperatura.

Para hacer fisica necesitamos asignar un niimero y unas unida-
des a la magnitud T. Para ello usamos las escalas de temperatura.
Usaremos solo dos:

1. Escala Celsius: Fija la temperatura de dos puntos, como en el
termoémetro de la figura 3.2:

= 0°C para la temperatura de fusién del agua a presiéon de 1
atmoésfera.”

= 100 °C para la temperatura de ebullicién del agua a presion de 1
atmosfera.

2. Escala absoluta o Kelvin. Se relaciona con la Celsius asi: T(K) =
T(°C) + 273,15. El “tamafio” del grado es igual en ambas escalas,
se diferencian solo en la posicién del cero. Esto significa que las
diferencias entre 2 temperaturas valen lo mismo en las dos escalas:
AT(K) = AT(°C). El cero de la escala Kelvin se denomina cero
absoluto y es el limite inferior de temperaturas.

3.3 Gas ideal. Temperatura absoluta.

Los experimentos de Boyle, Charles, Gay-Lussac con gases a baja
presion se pueden resumir utilizando la ecuacién de estado de los
gases ideales

PV = nRT (3.1)

que describe la relacién entre la presion (absoluta) P, temperatura
T (en K, nunca en °C) y volumen V de un gas en equilibrio. Ademads
n es el nimero de moles de gas3 y R la llamada constante de los gases
ideales (tabla 3.1).

El comportamiento de cualquier gas a baja presién es mds o menos
ideal. Por ejemplo, si a P = cte. miramos coémo cambia el volumen
con la temperatura observamos un comportamiento lineal de acuerdo
con la ecuacién (3.1) y como se muestra en la figura 3.3.

Extrapolando el comportamiento de los gases en la zona donde
se transforman en liquido (baja temperatura), se observa que el
volumen se hace cero a una determinada temperatura, lo que define

100 °C Ebullicion

H-O
P =1 atm

0°C Fusién

Figura 3.2: Escala Celsius de temperatu-
ra. Fija la temperatura de Ebullicién y
de Fusioén del agua a presién atmosféri-
ca en 100 °C y 0°C respectivamente.

2 Una definicién mds correcta y mo-
derna fija el punto triple del agua y el
cero absoluto. Son definiciones practi-
camente equivalentes a temperaturas
moderadas y para nosotros lo seran.

Valor Unidades

8.315 J/(mol - K)
0.0821 atm-L/(mol-K)

Tabla 3.1: La constante R en las uni-
dades mds comunes. En negrita en
SIL.

3n= NAA' N es el numero de moléculas

y N =602x102 obienn = 12—
. . molecular

con m la cantidad de sustancia en

gramos y M yoleculqr 1a masa molecular

en gramos también.

V=0aT~ —-273°C = 0 absoluto de
temperaturas
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P = cte. n = 1 distintos gases
V n=2
n=1
L',:':/’ licuefaccion licuefaccion
T(°C) \ T(°0)
T~ —-273°C T ~ -273°C

la temperatura mas baja que podria tener un gas. A esta temperatura
le asignamos por tanto el valor de T = 0K en la escala absoluta.

De la figura también se deduce que la constante de proporciona-
lidad es la misma para todos los gases una vez fijado el ntimero de
moles: R. A veces, en lugar de esta constante, se utiliza la constante de
Boltzmann k. La relacién entre ambas es:

k= R 1,38 x 10722J/K (3.2)
Ny

En funcién de k, la ecuacién de los gases ideales se escribe:

PV =nRT = PV = NERT = NkT = PV = NkT (3-3)
A

donde N es el niimero de moléculas en el gas y Ny el ndmero de
Avogadro.

SEICEERM Volumen de 1 mol de gas ideal.

Figura 3.3: Comportamiento del volu-
men de los gases con la temperatura a
presion constante y baja. A la izquierda,
1 mol o 2 moles del mismo gas. A la
derecha, 1 mol de dos gases diferentes.

(Cudanto ocupa 1 mol de cualquier gas ideal en condiciones estandar de presién y temperatura? Datos:

R =0,0821atm-L/(K-mol)

SOLUCION

Las condiciones estandar se definen como

T=0°C=273K
P =1atm

Utilizando la ley de los gases ideales tenemos:

nRT  1mol x 0,821 atm - L/(mol - K) x 273K

V= —
P 1atm

En la ecuacion de los gases ideales la temperatura siempre va en K.

=0,821 x 273L ~ 22 4L (5.3.1.2)
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3.4 Teoria cinética de los gases. Interpretacion microscopica de la
T

Llegaremos a la interpretacién microscépica de la T estudiando
la presiéon P que ejerce un gas ideal sobre la pared de su recipiente,
desde un punto de vista microscépico.

Cdlculo de la presion de un gas sobre la pared de su recipiente

Un gas desde el punto de vista microscépico estd compuesto de N
moléculas de masa m que se mueven de forma aleatoria con diversas
velocidades. Hacemos dos suposiciones adicionales:

= Las moléculas son pequefias comparadas con la distancia que las
separa unas de otras=- no interaccionan salvo cuando chocan.

= Los choques entre moléculas y con la pared siguen las leyes de la
mecénica y son eldsticos.

Calculemos 4 la fuerza que ejerce una molécula de masa m al colisio- +D.C. Giancoli. Fisica: Principios con apli-
p p
caciones. Prentice Hall Hispanoamérica,

nar con la pared del recipiente con una velocidad v. Por fijar ideas, o
Meéxico, 1997; and J.W. Kane and M.M.

tomemos la pared de la izquierda marcada en la figura 3.4. Segtin la Sternheim. Physics. Wiley, 1988
segunda ley de Newton: colisién
Av | PT
F=ma=m— (3-4) \ m
. At 2\ -
Si miramos solo el eje x perpendicular a la pared, en una colisién ~
. . fhe . I
elastica la velocidad pasa de —vy a vy (positivo hacia dentro del - _\_ -
”~
recipiente), asi: et
[
mAvy = m(vy — (—vy)) = 2moy (3-5) V=AxI
Figura 3.4: Las moléculas golpean
Si la molécula estuviera sola en la caja, el tiempo entre 2 colisiones sobre las paredes del recipiente, ejer-
ciendo una fuerza y por tanto una

sucesivas con la pared de la izquierda seria el tiempo necesario para P
. . ] presion.
recorrer 2 veces la longitud [ (ida y vuelta) a velocidad v,:>

5 Este resultado da el tiempo medio

2l correcto entre colisiones aunque las
At = — (3.6) particulas sufran colisiones entre si
Ux siempre que éstas sean eldsticas.

que sustituido en la ecuacién (3.4), junto con (3.5), da:

F= ] (3-7)

Este es el resultado si s6lo hubiera una particula en la caja. Para un
gas formado por N particulas moviéndose a velocidad vy, tenemos:

2
mo
Ftotal =N I = (38)
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Obviamente, no todas las particulas se mueven a la misma velocidad
vy. Las velocidades serdn diferentes en general. Como las colisiones
son muy frecuentes y rdpidas, en nuestro mundo macroscépico, la
fuerza que se nota sobre la superficie serd el promedio a todas las
particulas. Promediando® se obtiene:
2
Ftotal - levx (3.9

Finalmente, la presién sobre la pared de la caja sera:

_ ftotal _ mN@
P=—0 =0 (3-10)

Este resultado depende de la componente x de la velocidad y por tan-
to pareceria que variard segtiin cémo coloquemos los ejes. Podemos
buscar un resultado independiente de componentes:

vzzv§+v§+v§:>02:v§+v§+v§ (3.11)

donde v es el médulo del vector velocidad de las particulas. Como
las velocidades son aleatorias y no hay preferencia por ninguna
direccién?: o
- - = = 2
v§:v§:v§:>02:3v§:>v§:?

De modo que podemos escribir la presién (ecuaciéon (3.10)) como:

(3.12)

P_mNg_mN?
Al 3Al

que reordenando y teniendo en cuenta que el volumen de la caja es

(3-13)

V = Al (ver figura 3.4) da lugar a:

PV = gN(lmﬁ)

3N (3.14)

El término entre paréntesis es la Energia Cinética media E, de las

particulas del gas. Comparando la ecuacién (3.14) con la expresiéon
macroscépica de la ley del gas ideal® (3.3) PV = NkT obtenemos el
resultado fundamental:

2.1 — 1 =
fNimvz = NkT = E. = Emvz = %kT

3 (3-15)

La energia cinética media de las particulas es proporcional a la
temperatura absoluta T. O bien, la temperatura absoluta es una
medida de la energfa cinética media de las particulas en el gas. A
mayor temperatura, mayor movimiento molecular y viceversa:

= Mayor T < mayor movimiento (mds energifa cinética)

¢ El promedio de cualquier magnitud se
obtiene sumando a todos los posibles
valores y dividiendo por el ntimero de
valores. En el caso de N particulas ha-

bra N posibles valores de la velocidad

2

22— 1LyN
vx de modo que v = § ¥l vy ;

7Si no fuera asi, jel gas se moveria
como un todo!

8 Puede parecer extrafio comparar la
presién del gas de la férmula del gas
ideal con la presion que ejerce sobre
una sola de las caras. Sin embargo, en
un gas en equilibrio, la presién sobre
cualquier cara serd la misma y serd

la presién en cualquier punto del gas
(despreciando efectos de la gravedad)
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= kT nos da el orden de magnitud de la energia asociada al mo-
vimiento aleatorio de las particulas de una sustancia a T y esté
disponible para realizar algtn proceso (reaccién quimica, transi-
cion. .. )

Por ultimo, la energfa cinética total (suma de todas la E; de todas las
particulas) serd N veces la media

E.=NE, = gNkT o bien E, = gnRT (3.16)

resultado 9 que utilizaremos mas adelante al tratar el primer princi-
pio.
3.5 Distribucién de velocidades de Maxwell

En un gas no todas las particulas tienen la misma velocidad. Las

particulas se distribuyen en velocidades segtn la Distribucién de
Maxwell que tiene el aspecto representado en la figura 3.5

(2]
% T = 273K #demol.con v >wvga T > 273K
9 IS ! # de mol./con v > vpa T = 273K
o 1
ES ; I > 273K
©3 b :
2 2 E i
c 1
S8 = i
N )
[
[ i
-, ——
v v T
T vo (V)

\/1?2 \/z'3

3.6 Vision microscépica de algunos fendmenos de relevancia bio-
légica

La teorfa cinética y la distribucién de velocidades de Maxwell nos
permiten explicar al menos cualitativamente varios fenémenos como
la difusién, la presién osmoética, la evaporacién y su dependencia con
la temperatura. Para ello basta con tener presente la idea de que las
particulas en una sustancia se mueven mas o menos aleatoriamente y
con mayor energia cuanto mayor es la temperatura.

9 Para la forma %nRT véanse las ecua-
ciones (3.2) y (3.3)

Figura 3.5: Distribucién de velocidades
en un gas en equilibrio a una tempe-
raturade T = 273Kenazulyauna
temperatura mayor en naranja. Las
lineas discontinuas marcan la velocidad
media 7 y las punteadas la velocidad

“cuadratica media” V/22. El drea de las
regiones sombreadas es proporcional

al nimero de particulas que encontra-
riamos en el gas cuya velocidad v es
mayor que una cierta velocidad vy dada.
De la figura es claro que este ntiimero es
mayor en el gas a mayor temperatura.
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Difusién

Las particulas en disolucién en un fluido tienden a difundirse

hacia zonas de menor concentracién. Consideremos el tubo de la Q L /.)
figura 3.6 en la que hemos sombreado un édrea correspondiente a la \’ /
— 00
—

seccion transversal. La concentracion es mayor en el lado izquierdo

de la seccién. Si las particulas se mueven mdas o menos aleatoriamen-

te, por puro azar cruzardn mds particulas de izquierda a derecha que Flujo neto
Figura 3.6: Las particulas a una cierta

al revés, por lo que habra un flujo neto de particulas de la zona més T se mueven al azar y tienden espon-

concentrada a la de menor concentracion. taneamente a difundirse de las zonas
mads concentradas a las de menor
concentracién.

Opcional.

En la difusion el flujo de particulas es proporcional al gradiente de

concentracién, segtn la ley de Fick: Magnitud lieadles

G-—©% keg/s o mol/s
J=DA— (3-17) I g/3 / X
1y kg/m? o mol/m

donde ] es el flujo de masa, c; y cp son las concentraciones diferen- A m?

tes que generan el flujo, L es la separacién entre las dos zonas de L m

diferente concentracion, A el drea de la seccion transversal a través D m?/s

de la cuadl circulan las particulas, y D el coeficiente de difusién.

Evaporacion

Para que algunas particulas cercanas a la superficie escapen de
un liquido y pasen a fase vapor necesitan tener la suficiente energia
cinética como para vencer la atraccién del resto de moléculas del
liquido. Imaginemos que solo las particulas con velocidad mayor
que una cierta velocidad vy pueden escapar y permanecer en la fase
vapor. Si miramos a la figura de la distribucién de Maxwell 3.5 es
claro que la evaporacién:

= Aumenta con la T. A mayor T mads particulas tienen la velocidad

(energia) suficiente para escapar.

Figura 3.7: Sélo las particulas con

» Produce enfriamiento. Escapan las moléculas mds veloces y se suficiente velocidad escapan de la fase
. . o liqui la £ .
llevan la E; con ellas = desciende el promedio v2 y por tanto la iquida y pasan a la fase vapor

temperatura. Es un mecanismo de enfriamiento habitual.

Presion osmotica

La ésmosis aparece en presencia de membranas semipermeables.
Las membranas semipermeables dejan pasar tipicamente el solvente
y no el soluto. Por claridad tomemos el ejemplo de agua y sal: supon-
gamos dos partes de un recipiente a la misma presién y temperatura
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separadas por una membrana permeable al agua pero no a la sal,
como en la figura 3.8.

Disolvemos sal en una de las dos cdmaras. En la cdmara con agua
y sal (que llamaremos interior), por la presencia de las moléculas
de sal, el agua se encuentra en menor concentracién respecto de la
camara donde estad pura (que llamaremos exterior). Por difusion, el
agua tenderd a fluir hacia la zona donde se ha disuelto la sal. Este
flujo osmético puede detenerse por ejemplo debido a un aumento de
presion en la cdmara donde estd la disoluciéon'™ como en la figura 3.9:
la presién adicional necesaria para detener el flujo de solvente por
6smosis se denomina presién osmética 7.

Se puede calcular la presién osmética suponiendo que

= De la definicién, en el equilibrio, para detener el flujo, en el inte-
rior la presién es superior en 7, la presién osmética, a la presion
exterior: Pyt = Pext + 7T.

= La presién en la cdmara con disolucién es la suma de la presién
que harfa el agua pura y la responsable del soluto: Pt = Pagua +
P, soluto = 7T + Pext = P, agua + P, soluto

= La presién que tendria el agua pura, es igual a la presion de la
camara donde efectivamente estd pura, pues inicialmente estaban
a misma presion y temperatura, Pagua = Pext = 7T = Pyoluto

Por otro lado,

= sila disolucién es poco concentrada, las particulas del soluto se
comportan como particulas de un gas ideal y entonces

n
7T = Psoluto = VRT (3.18)

donde 7 es el numero de moles de soluto, V el volumen de la disolu-
cidén, R la constante de los gases ideales y T la temperatura en Kelvin.
Como la concentracién de la disolucién es ¢ = %, entonces

= cRT (3.19)

Esta férmula nos permite calcular presiones, como en el ejemplo™*
siguiente.

e |29ud
sa.l ‘.>
.o

1nt ext

Figura 3.8: Inicialmente las dos cdma-
ras estan a igual presién y temperatura.
La membrana semipermeable deja
pasar el agua (solvente) pero no la sal
(soluto). Por difusién del agua, esta
comienza a pasar hacia la zona de alta
concentracion de sal.

* El aumento de presién puede tener
diferentes origenes, por ejemplo, por
resistencia de las paredes a la expansiéon
producida por el flujo de agua, como
en un eritrocito. El flujo de agua podria
provocar una diferencia de alturas que
conlleva un aumento de presién de
valor pgh. También puede deberse a un
agente externo que aplica una presion,
como en un recipiente con un pistén

™ = pgh
Ih
¢ +<—1— agua
C
o o
. .
nt ext

Figura 3.9: Situacién de equilibrio. La
presién adicional provoca un flujo de
agua (flecha ) que compensa
exactamente el flujo por ésmosis (flecha
negra) de modo que el flujo neto es
nulo.

" Adaptado de

J.W. Kane and M.M. Sternheim. Physics.
Wiley, 1988

SEJORICRE Ascenso por 6smosis. Disolucion de sacarosa en agua.

Consideremos un tubo con una disolucién de sacarosa (C;,H,,O4;) en agua al 1 % en masa en contacto

con un depésito de agua pura a través de una membrana semipermeable. La temperatura es de 27°C y

la densidad del agua pagua = 1000kg/m?. ;Cudnto ascendera la columna de agua debido al efecto de la

6smosis?
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SOLUCION

La columna subira hasta una altura / tal que la presién adicional equilibre la presién osmética:
cRT
Pagua8

donde ademads hemos supuesto que la densidad de la disolucién p no cambia mucho respecto de la del

m=cRT =pgh=h= ( .1)

agua p =~ Pagua- Necesitamos por tanto calcular la concentraciéon en un volumen mol/ m? de la disolucién.
Primero calculamos la masa de agua en un volumen V = 1m3. Usando la densidad

m = pV = pagua X 1 m> = 1000kg (3.6.1.2)
La masa de sacarosa por cada m?, correspondiente al 1% serd entonces de
Msacarosa = 0,01 x m = 10kg = 10*g = ¢ = 10*g/m?> (3.6.1.3)

Para pasar a mol/ m?3 necesitamos calcular la masa de 1 mol de sacarosa:

Msacarosa = 12 X 12.g/mol + 22 x 1g/mol + 11 x 16 g/mol = 342 g/mol ( 4)
La concentracién sera . 5
Msacarosa 10*g/m 3
c= = ~ 29,2mol/m .

V Msacarosa 342 g/ mol / ( 5)

Finalmente, tomando T = 27 °C + 273 = 300K, sustituyendo la concentracién en ( 1)

3 .
b cRT _ 29,2mol/m”> x 8,3;/(m01 K)2>< 300K ~74m ( )
Pagual 1000kg/m?> x 9,8m/s
]
4 AT =T; — T,
3.7 Calor, ;qué es? : — fFooe
Ti ﬂTf
Cuando ponemos en contacto dos cuerpos a distinta temperatura,

el cuerpo a mayor temperatura cede calor al més frio, de forma que
en general este dltimo aumenta su temperatura (ver figura 3.10). El cuerpo caliente
mismo incremento de temperatura AT se puede conseguir a partir de

diferentes tipos de energia, como energia mecdnica en el experimento

original de Joule, o energia eléctrica. Estos experimentos llevaron a AT =T; —T;
concluir que el calor es una forma de energia. )
Por ejemplo, la energia (en ]) cedida por una resistencia eléctrica T; —>1'f
de valor R (en ) cuando circula una intensidad de I (en A) durante —WWIW—
un tiempo ¢ (en s) es: i
E = I’Rt (3.20) 14 v

Si se cede a 1g de agua un calor de 1 cal se consigue aumentar su Figura 3.10: Dos formas de calentar

temperatura en 1°C*2, Ese mismo aumento de 1°C se consigue agua: acercando un cuerpo maés caliente
como una llama (arriba) o cediendo

. L. energia eléctrica a través de una resis-
el equivalente mecdnico del calor en: tencia (abajo).

transfiriendo 4,18 ] de energia eléctrica (o mecénica). Asi, se establece

2 La definicién de caloria se establece

1cal =4,18] (3-21) para el aumento de 1°C desde 14,5°C
a 15,5°C a presion de 1atm. Sin em-
bargo, nosotros supondremos que es
equivalente a cualquier temperatura
inicial.
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Explicacion segiin la teoria cinética

Ponemos en contacto dos gases a distinta T. Las particulas se
mueven al azar y comienzan a chocar. Cuando una particula veloz
choca con una particula lenta le cede parte de su energfa cinética.
Asi se va transmitiendo en general energia cinética de las particulas
veloces (del gas caliente) a las inicialmente lentas del gas frio. El gas
caliente pierde energfa cinética en promedio (se enfria) y el frio la
gana (se calienta). Esa transferencia de energia es lo que conocemos
como calor transferido.

3.8 Transmision de Calor

Vamos a ver 4 mecanismos para la pérdida de energia en forma
de calor. En un proceso de pérdida de calor, por ejemplo un animal
en un ambiente més frio que su temperatura, se pueden dar los 4
en mayor o menor medida. Tradicionalmente los mecanismos de
transmisién de calor son 3: conduccién, conveccién y radiacién.
Consideraremos aqui el efecto de la evaporacién por separado®.

Conduccion

Es la transmision del calor (energia cinética de las particulas) a
través de un medio material. Un ejemplo comtn es el representado
en la figura 3.11. Microscépicamente, el calor se conduce debido a las
colisiones o transmisién de la vibracién de unos dtomos a otros:

= En fluidos: colisiones entre 4tomos o moléculas

= En metales: principalmente por los e~ libres colisionando con los
atomos en la red cristalina

= En otros materiales: vibraciones de la red que se propagan, como
en la figura 3.12.

y s6lo si hay diferencia de T. De hecho, el flujo de calor'# a través
de un material es proporcional al gradiente de T. De esta forma,
el ritmo al que se transmite el calor en una situacién como la de la
figura 3.13 es:

iy — 1

Q=kA l

(3.22)
con

. Q rritmo de transmisién de calor, potencia, o cantidad de energia
por unidad de tiempo transmitidos, en W

sopa caliente

sopa caliente

Figura 3.11: Se ha transferido E de la
parte en contacto con la sopa hasta la
parte lejana de la cuchara, a través del
material de la cuchara.

3 Normalmente se considera un
mecanismo de transferencia de calor (y
masa) por conveccion.

sopa caliente

sopa caliente

Figura 3.12: Visién microscépica de la
transmision del calor: la energia cinética
de vibracién (proporcional a la T) se
transmite a través de la red cristalina de
los atomos del material.

4 El flujo de calor 4 es el ritmo al que
se transfiere calor a través de una
superficie por unidad de 4rea de esa

superficie § = %

T, > T2

Figura 3.13: Transmisién de calor a
través de un cilindro con los extremos a
diferente temperatura
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= A :drea de la seccién transversal a través de la que se transmite el
calor

= T — T; : diferencia de temperaturas entre los puntos o zonas entre
los que se transmite el calor

= | : Separacion entre los puntos a temperatura T; y T,
= k: conductividad térmica del material.

La k mide cémo de rdpida es la transmisién de calor a través de un
material por unidad de longitud y grado. Sus unidades son:

J-m W

_ _ _
F=amom W=k T mx (3-23)

Es por ejemplo responsable de la sensacién térmica distinta al
tocar dos materiales diferentes (metal y madera) aunque estén a la
misma T (figura3.14). Si

= k 71= buen conductor térmico (metales en general)

= k ||/= mal conductor térmico o aislante: (aire, poliespan, made-
ra,...)

SENJGRERE Ritmo metabdlico

T — 20°C () metal

. \S\
kt= Q1T @ 378
\‘ .

T — 90°C () madera

-
ku:Qu.xékg
N\

Figura 3.14: Al tocar un material con
conductividad alta (como metal), la
mano se enfria rdpidamente, provocan-
do mayor sensacién de frio que cuando
se toca uno bastante aislante (como
madera).

> Ejemplo adaptado de

D. Jou, J.E. Llebot, and C. Pérez
Garcia. Fisica para ciencias de la vida. Mc
Graw-Hill interamericana de Espafia,
Madrid, 1994

Para mantener constante una temperatura de 30 °C en una colonia de bacterias debemos suministrar’>

30 W de potencia calefactora con una ldmpara. La temperatura ambiente es de 15 °C. Las bacterias estdn
en un recipiente de vidrio de conductividad k = 0,2cal/(s - m - °C), 4rea 20 cm?. El grosor del vidrio es
de 0,5mm. ;Cuadl es el ritmo metabdlico de la colonia (energia producida por las bacterias por unidad de

tiempo)?

SOLUCION

La cantidad de calor que pierde la colonia por conduccién a través del vidrio es

T — Tamb _ 0,2 X 4,18 x (30 — 15)] - n? - K

Q = kA

I 05 %103 s- K
k = 02cal/(s-m-K)=0,2%x4,18]/(s- m-K)

~502W (3.24)

(3-25)

Para que se mantenga constante la temperatura de la colonia, la potencia que se pierde ha de igualar a la

que se suministra con la ldmpara mds la que generan las propias bacterias. La lampara proporciona sélo
30 W de modo que el resto ha de ser lo que generan las bacterias con su metabolismo:

RM = (50,2 — 30)W = 20,2 W.

(3.26)
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Conveccion

Los fluidos suelen tener bajas k, conductividades térmicas. Sin
embargo pueden transmitir el calor rdpidamente por medio de la
conveccién: proceso mediante el que se transfiere calor debido al
movimiento de una cierta cantidad de masa. Puede ocurrir por
ejemplo espontineamente al calentar un fluido desde abajo y se
denomina conveccién natural (ver figura 3.15).

Cuando el movimiento es asistido por una bomba o ventilador por
ejemplo, se habla de conveccién forzada. Ejemplos de conveccién
forzada son el calor perdido a través de la ventilacién en los pulmo-
nes, donde el aire entra en general frio y sale méas caliente o el calor
transportado por la sangre en la circulacién.

De toda la energia consumida en forma de alimentos, en torno al
80 % se desprende en forma de calor. La conductividad térmica del
tejido biolégico es bastante baja'® por lo que son necesarios otros
mecanismos para evacuar el calor. La sangre se calienta al pasar
por las partes mds internas del cuerpo y se desplaza hasta las zonas
maés superficiales del cuerpo, como los capilares debajo de la piel,
donde el calor se puede perder por conduccién més eficientemente al
atravesar un menor espesor, por radiacién o por evaporacion (figura

3.16).

Radiacion

Hemos visto hasta ahora mecanismos de transporte de energia
térmica a través de la materia. Sin embargo, ;como llega el calor del
Sol a la Tierra a través del vacio? Llega en forma de radiacién elec-
tromagnética. Los objetos a temperatura habitual en la Tierra radian
sobre todo en el infrarrojo, por lo que es la radiacién infrarroja la
que se denomina radiacién térmica. Cualquier cuerpoa T > 0K
necesariamente emite energia en forma de radiacién. El ritmo al que
se emite energia (calor) es

O = ecAT* (3.27)

donde Q es el ritmo de transmisién de calor o potencia radiada en W,
e la emisividad caracteristica del material y de su superficie:

m O<e< .

» ¢ ~ 1 para un cuerpo negro e < 1 para cuerpos blancos y superfi-
cies pulidas™”.

oc=567x10"8W/ (m2 . K4) es la constante de Stefan-Boltzmann y T
la temperatura del objeto en Kelvin y A el area del cuerpo a través
de la cudl se radia la energfa.

s

GO

Figura 3.15: Corrientes de conveccion.
El agua mas caliente de abajo se expan-
de, disminuyendo su densidad, por lo
que tiende a flotar. El agua mas fria y
densa tiende a ocupar la zona del fondo.
El movimiento da lugar a las celdas de
conveccion.

(< 1W/(m-K)), similar a la del agua

iel
sangre P

exterior

Q MW,
/\,\W

interior

Figura 3.16: Conveccién forzada El
corazén bombea la sangre desde el
interior del cuerpo a zonas superficiales
donde se enfria por conduccién a través
de un espesor de tejido menor, por
radiacién o evaporacién.

7 En realidad, para temperaturas
moderadas, lo mas importante es la
emisividad en el infrarrojo, no en el
visible, de modo que el color en el
visible es solo ligeramente indicativo
de la emisividad del cuerpo. Por otro
lado, un “cuerpo negro” tiene una
definicién concreta en fisica como
emisor y absorbedor perfecto en toda
longitud de onda, en la que no vamos a
entrar en este curso
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Balance de energia por radiacién. Si la energia radiada Q o T*,
¢los cuerpos se enfrian hasta perder toda su energia y quedar a

T = 0? No, también absorben energia. Considérese una persona a
T7 en una habitacién a T, < T7. El ambiente emite energia de forma
proporcional a Ty, que es absorbida por el cuerpo. El balance neto de
energia para la persona es:

(3-28)

donde « es el coeficiente o poder de absorcién (fraccién de energia

. . . 4 4
Qneto = Qemitido - Qabsorbido = e(TATl - MTAT2

absorbida). Para un cuerpo general tanto la emisividad e como el co-
eficiente de absorcién « dependen de la temperatura o de la longitud
de onda de la radiacién considerada. Aqui solo consideraremos cuer-
pos llamados “grises” donde tanto & como e son constantes. Entonces,
la ley de Kirchhoff'® dice que a = e por lo que el balance neto es

Qneto = EO'A(T% - TEL) (329)

La igualdad a = e se deduce al imponer que si un cuerpo alcanza
el equilibrio con un cuerpo negro (emisor perfecto) a una cierta
temperatura, entonces el flujo de calor entre ambos debe anularse.
Para que esto pueda ocurrir a una temperatura cualquiera, la tinica
solucién es que a = e.

Sy E: -l Flujo neto

18 Cuando la emisividad y el poder de
absorcién dependen (fuertemente) de la
longitud de onda o de la temperatura
de emisién, se puede establecer la ley
de Kirchhoff para una determinada
longitud de onda e(A) = a(A) o

para una determinada temperatura

de emisién. Si un cuerpo de estas
caracteristicas (superficies selectivas)
recibe y emite radiacién térmica en
longitudes de onda muy dispares, lo
habitual es utilizar (3.28) pero con la
emisividad y coeficiente de absorcién a
las longitudes de onda adecuadas para
establecer el balance.

Calcular el flujo neto de energfa que pierde un ser humano desnudo en una habitacién a 25 °C. Tome

e = 0,75 para la piel humana, un drea superficial de 1,5m? y una temperatura de la piel de Tpiel = 33°C.

SOLUCION

Qneto = ed A(Tf — Ty) = 0,75 x 5,67 x 1078 W/(m? - K*) x 1,5m? [(33 +273)* — (25 + 273)4] K* ~ 56 W

(.8.2.1)

Opcional. Ley de desplazamiento de Wien

El méximo de la emisién de un cuerpo negro se da a una de-
terminada longitud de onda que depende de la temperatura,
segun la ley de desplazamiento de Wien:

Ritmo de emision de energia

Amax = % donde b = 2,9 x 10 m/K (3-30)

T, = 4000K

3000K

AL a2 )3

max max

Figura 3.17: La longitud de onda del maximo de
emisién se desplaza hacia longitudes de onda cortas
al aumentar la temperatura.
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Evaporacion

Cuando se evapora una cantidad m de agua, esta absorbe un calor:

Q = mlevap (3.31)

donde levap es el calor latente de evaporacién del agua, esto es, la

cantidad de energia necesaria para evaporar 1kg de agua, levap =

2260 x 10%]J/kg. ¢A qué ritmo pierde calor el cuerpo por evaporacion? .)
o

Q= titlevap (3.32)

donde ri1 es el ritmo al que se evapora el agua en kg/s.

3.9 Calorimetria
Figura 3.18: Enfriamiento por evapo-

L 1 L. racién. El cuerpo cede calor al sudor,
Calor esp €lelC0 de solidos y ZlquldOS : provocando la evaporacién del agua.

El calor que es necesario transferir a, o extraer de, un cuerpo™ de 9 S6lido o liquido, gases por ahora no
masa m para variar su temperatura es

Q = mcAT (3-33)
donde

» AT = Ty — T, es la diferencia entre la temperatura final Ty y la
inicial T;. Si siempre se utiliza final menos inicial tenemos que:

Tr > T; = AT > 0 = Q > 0 (el cuerpo absorbe calor)
Tr <T; = AT < 0= Q < 0 (el cuerpo cede calor)

= ¢, calor especifico, es caracteristico del material. Es el calor ne-
cesario para aumentar la temperatur de 1kg del material 1K o
equivalentemente 1 °C. Sus unidades son, por tanto:

_Q N R |
_mi[c]_kgiK_kgOC (3:34)

c

De la definicién anterior de caloria (ver ecuacién (3.21)) sabemos que
el calor especifico del agua es

cro = 1cal/g/°C = 4,18 x 10°]/ (kg - °C) (3-35)

Calor latente

Al estudiar la evaporacién, hemos visto que es necesario propor-
cionar calor a una sustancia para que pase de estado liquido a gas.
En realidad esto ocurre en cualquier cambio de fase y el calor se

denomina calor latente®°. Veamos algunas caracteristicas més de los La denominacién entalpia de cambio
de fase es mds correcta, pero atin no
hemos explicado la entalpia
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cambios de fase.

Cuando una sustancia cambia de fase (de sélido a liquido o de
liquido a gas, por ejemplo) la temperatura permanece constante
mientras coexisten las 2 fases aunque haya aporte o cesion de calor.
Por ejemplo, el calor aportado a un bloque de hielo a su temperatura
de fusién (0°C a 1atm) se emplea totalmente en producir el cambio
de fase, como en la figura 3.19.

El calor latente I de fusién, evaporacién, sublimacion, etc.. . es el
calor necesario para fundir, evaporar, sublimar, etc. .. completamente
1kg de una determinada sustancia. De modo que para una cantidad
m de sustancia, el calor necesario sera

Q=ml (3.36)

Por convencién, los calores latentes se dan siempre como positivos,
como en la tabla 3.3 para el agua. Sin embargo, el signo de Q serd
positivo si el cuerpo absorbe calor en el proceso y negativo si el
cuerpo lo cede. Si en un cambio de fase (fusién de sélido a liquido
por ejemplo) se absorbe un calor Q = mlgs6n, €n el proceso inverso
(solidificacién) el cuerpo cede Q = —mlgy5i6n. De este modo, para los
cambios de fase, hay que establecer el signo correcto para el calor “a
mano”. En la tabla 3.2 se listan los distintos cambios de fase.

Cambio de fase Nombre Q
solido— liquido fusiéon Mitusion
liquido — sélido solidificacién —ltusion

liquido— gas evaporacion o ebulliciéon Mleyvap
gas — liquido condensacién —Mlevap
s6lido— gas sublimacién Mlsublim
gas — solido sublimacién inversa —lsublim

SRR Calor intercambiado en un proceso con cambio de fase

Figura 3.19: Cambio de fase. Mientras
hay coexistencia de fases (hielo + agua,
en este caso) su temperatura permanece
igual a la temperatura del cambio de
fase. Todo el calor aportado se emplea
en convertir el agua sélida en liquida.
Una vez se funde completamente, el
calor aportado producird aumento de
temperatura.

Tabla 3.2: Cambios de fase comunes y
calor intercambiado por una cantidad
m de sustancia al verificarlos, con
indicacién del signo.

Cambio 1(kJ /mol)
fusion 6.01
ebullicién 40.7
sublimacién 46.7

Tabla 3.3: Valores de calores latentes de
cambio de estado para el agua.

(Cudnta energia debe extraer un refrigerador de 1,5kg de agua a 20 °C para hacer cubitos de hielo
a —12°C? Datos: Los calores especificos del agua y del hielo son cp,0 = 4,18 x 103]/(kg - °C) ¥ chielo = 2100]/ (kg - °C)

respectivamente. El calor latente de fusién del agua es 333 x 10%]/kg.

SOLUCION
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ATy
enfriar agua solidificar
0°C \
Q2

Q1

Q1 = mey,0ATy
Q2 = —mlgygion

Q3 = MchicloAT2

De modo que el calor total extraido del agua (cedido por el agua) sera:

enfriar hielo
—12°C

Los calores de los distintos procesos son, segtin lo indicado en la figura:

Qr=Q1+Q2+ Qs =15kg x 4,18 x 10°]/ (kg - °C) x (0~ 20)°C — 1,5kg x 333 x 10°] /kg+

+1,5kg x 2100]/ (kg - °C) x (=12 — 0)°C ~ —6,6 x 10°]

El signo menos indica que el calor es cedido por el agua.

.2)

Balance de calor

En un sistema aislado completamente, sin intercambio de ener-
gia con el exterior, el calor cedido por una parte del sistema ha de
ser igual al calor absorbido por la otra parte. Por ejemplo, para 2
partes del sistema a distinta temperatura (como en la figura 3.20)
considerando el calor en valor absoluto

calor perdido por 1 = calor ganado por 2 (3.37)

O de forma mas rigurosa, llamando Q; al calor intercambiado por
la parte 1 y Q, al intercambiado por la parte 2** y considerando su
signo (positivo si se absorbe, negativo si se cede) tenemos

Q+Q2=0 (3-38)

Un concepto importante para la calorimetria es la temperatura
de equilibrio T.. El intercambio de calor cesa en el momento en el
que todos los elementos dentro del recipiente aislado se encuentran
a la misma temperatura, esto es, se encuentran en equilibrio a la
temperatura T,. El balance de energia ha de hacerse considerando
todos los procesos de absorciéon y cesién del calor que suceden entre
los estados iniciales de las diferentes partes del sistema y el estado
final de equilibrio 7.

El balance de energia permite por ejemplo calcular T; o las pro-
piedades desconocidas de alguna sustancia, como en el ejemplo?
siguiente

Figura 3.20: Calor intercambiado entre
2 partes de un sistema. En un sistema
aislado del exterior, con 2 partes a
distinta temperatura, el calor cedido por
una parte es igual al absorbido por la
otra. En este caso la parte 1 cede 3] y la
parte 2 los absorbe.

** Obviamente, si hay mds componentes
del sistema, se consideraran sus calores
también

» Adaptado de

D. Jou, J.E. Llebot, and C. Pérez
Garcia. Fisica para ciencias de la vida. Mc
Graw-Hill interamericana de Espafia,
Madrid, 1994



FISICA APLICADA A LA BIOLOGIA 71

SEEK - Determinacion del calor especifico de una sustancia

Dentro de un calorimetro (que suponemos que no absorbe ni cede calor) tenemos 100 g de triclorome-

tano a 35 °C. Aniadimos 1,75kg de agua a 18 °C y volvemos a cerrar el calorimetro. Transcurrido un cierto
tiempo, la mezcla se estabiliza a 18,22 °C. ;Cuadl es el calor especifico del triclorometano? Suponga que no
hay pérdidas de calor a través del calorimetro ni al abrir ni cerrar.

SOLUCION

El calor absorbido por el agua es cedido por el triclorometano que esté inicialmente més caliente. Por
tanto

Qrcm + Qagua =0 (3.9.2.1)
Ambas sustancias cambian su temperatura (no hay cambios de fase). Utilizando la expresién correspon-
diente del calor y tomando siempre la diferencia de temperaturas como la final menos la inicial, esto es,
ATrcpm = (18,22 —35)°Cy ATh,0 = (18,22 —18)°C
Qrem = mremeremATrem (5.9.2.2)

QH,0 = MH,0¢H,0ATH,0
Utilizando (3.9.2.1) y despejando crcp obtenemos

S —Mi,0cH,08TH0 _ —(1,75kg)(4,18 x 103]/ (kg - °C))(18,22°C — 18°C)
T™C mremATrem (0,1kg)(18,22°C — 35°C)

~959]/(kg-°C)

El balance de calor puede complicarse si hay un cambio de fase
de alguno de los elementos. Esto podria suceder cuando la T de
cambio de fase de alguna de las sustancias es intermedia entre la
temperatura mds alta y la mds baja de las sustancias inicialmente.

( )
Alrededores
3.10 Las leyes de la Termodindmica

Sistema. Estado. Variables de estado. Proceso

Es conveniente definir algunos conceptos centrales en la termodi-

nédmica (figura 3.21): L )
. X . . . Universo = Sistema + Alrededores
= Sistema (S): conjunto de objetos que estamos estudiando. Ejem- Figura 3.21: Definicién de sistema,

plos: un gas en un pistén, una célula, los reactivos y productos en alrededores y universo termodinamico.
una reaccion.

7

= Alrededores o ambiente: El resto que no pertenece al sistema y lo ] | Q
rodea.

= Universo: sistema + alrededores.

Los sistemas se clasifican como

Figura 3.22: Un calorimetro cerrado es
un ejemplo de sistema cerrado y aislado
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= Cerrados: el sistema no intercambia materia con los alrededores.
Estos a su vez pueden ser:

¢ Aislados: no intercambian energia (ni calor ni trabajo), por
ejemplo el calorimetro de la figura 3.22.

* No aislados: intercambian energia.

= Abiertos: sistemas que intercambian materia (y probablemente
energia también) con los alrededores. Ejemplo: los seres vivos o un
calorimetro abierto (figura 3.23).

Estado. El estado en que se encuentra un sistema viene determinado
por sus variables de estado. Son magnitudes fisicas que se aplican
al sistema entero como T, V, P por ejemplo. Suelen cumplir una
determinada ecuacién de estado como por ejemplo en un gas ideal

PV =nRT.

Proceso. Un proceso es un camino (una sucesién de diferentes
estados) por el cual cambiamos de un estado inicial a otro estado
final. Ejemplos son transformaciones isotermas (sin cambio de T),
adiabaéticas (sin intercambio de calor), etc...Normalmente los repre-
sentaremos como un camino desde un estado inicial a otro en un
diagrama como en la figura 3.24.

Funciones de estado. Las funciones de estado son cantidades
que solo dependen del estado (de las variables de estado) y NO del
camino por el que se ha llegado a dicho estado. Veremos varias como
la energia interna, entropia, energia libre de Gibbs, entalpia, etc....
El trabajo y el calor NO son funciones de estado y dependen del
proceso concreto.

Primera Ley. Trabajo, calor y energia interna

Consideremos la energia total de un sistema de particulas, esto es,
la suma de las energias potenciales y cinéticas de todas las particulas
que lo componen. Esto se denomina energia interna U?3. Segtin
vimos en mecdanica, podemos aumentar el contenido de energia de un
sistema realizando trabajo (mecénico) sobre él de modo que:

AU = Uf — ui = Wsobre (339)

Sin embargo, en Termodindmica es frecuente usar un criterio de
signos diferente y considerar el trabajo positivo (W > 0) cuando
es realizado por el sistema y negativo (W < 0) cuando se realiza
sobre el sistema. Esto es, utilizar el trabajo realizado por el sistema
(en lugar de sobre) y que llamaremos simplemente W. Puesto que
W = Wpor =
sin calor) queda

—Wsobre, 1a conservacion de la energfa (mecénica solo,

AU=Uf—-U=—-W (3.40)

&
:

Figura 3.23: Ejemplo de sistema abierto
que intercambia materia y energia en
forma de calor.

V

Figura 3.24: Proceso A — B en un dia-
grama PV, presién frente a volumen.

» A veces a esto se le llama energia
térmica, ya que segin veremos en

un instante, un cuerpo puede perder
energia interna al cederla en forma de
calor a otro cuerpo

( N

Alrededores
Q>0

B

== \W > 0

N J
AU =Q—-W
Figura 3.25: Primer principio y criterio
de signos. Tomaremos el criterio que
dice que el Q > 0 cuando es absorbido
porelsistemay W >  0cuando lo
realiza el sistema (a costa de su ener-
gia interna). Si se tomara el criterio
mecanico para el trabajo W = Wsobre
entonces el primer principio se escribi-
ria AU=Q+ W.
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Finalmente, segtn la teorfa cinética, el intercambio de calor entre dos
cuerpos corresponde también a una transferencia de energia de uno
a otro. Por tanto, es posible extraer energia de un sistema o cedérsela
en forma de calor Q. Asi, la primera ley de la termodindmica estable-
ce la conservacion de la energia en procesos en los que ademads de
trabajo W existe intercambio de calor Q:

AU=Q-W (3-41)

En esta expresion, el Q ha de llevar su signo correcto segtn el cri-
terio que dice que es Q > 0 cuando es absorbido por el sistema y
Q < 0 cuando lo cede. El criterio de signos se resume en la figura
3.25.

Hemos detallado mucho sobre Q en secciones anteriores, veamos
algunos detalles sobre la energia interna y el W.

Energia interna

El primer principio tiene otro mensaje importante, ademas de
la conservacién de la energia. La energia interna es una funcién de

73

estado, su variacién AU solo depende del estado final e inicial*4 del % De sus variables de estado de hecho,

proceso y es independiente del camino empleado para llegar del estado presion, temperatura, etc. ..

inicial al final. En contraste, el valor de Q y W dependen del proceso.
La energfa interna es la suma de las energias de todas las particulas
del sistema y es en general dificil de calcular. Incluso en ese caso
veremos que puede resultar ttil.

Existen algunos casos en los que se puede calcular explicitamente,
por ejemplo, los gases ideales. El resultado depende del ntimero de
atomos en la molécula.

= Gas ideal monoatémico (He, Ar, etc...). En la seccién 3.4 relativa
a la teoria cinética vimos que para un gas ideal de N particulas,
debido a que no interacttian salvo en los choques, su energia es
s6lo cinética y obtenfamos:

N
U(g.i. monoat.) = Z Ecini = Ecing + Ecing + ...+ Ecinn =
i=1 5 (3-42)

3
= ZNkT = nRT
sz 2n

La dltima igualdad se obtiene de NK = nR, donde # es el niimero de
moles y R la constante de los gases ideales.
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Opcional.
El factor 3 de la férmula (3.42) se obtenia debido a que hay 3 direc-

ciones en el espacio en las que una particula se puede trasladar y
tener energia cinética. Decimos que tiene 3 grados de libertad. Una
molécula formada por 2 d&tomos, ademds de poder trasladarse

en 3 direcciones puede rotar a mayor o menor velocidad en 2 di-
mensiones adicionales —la direccién de una varilla en el espacio se
determina por 2 angulos—. Asi, una molécula de 2 4tomos puede
acumular energfa cinética en 5 grados de libertad. El resultado

es que la energfa interna de un gas ideal diatémico es

= Gas ideal diatémico (CO, Hy, Oy, Ny, etc...)

N
. . 5
U(g-l- diat.) = Z(Ecin,tms,i + Ecin,rot,i) = ENkT
i=1

(3.43)
Para un gas diatémico a alta temperatura (del orden de miles de °C),
hay que incluir la energia cinética y potencial asociada a la vibracién
y el resultado es 7/2NkT.

EI' W en algunos procesos.

Vamos a calcular el W en algunos procesos sencillos realizados
con un gas ideal que se expande o comprime (cambia su volumen).?>
Para ello supongamos un gas a una determinada presién P dentro de
un pistén con un émbolo mévil, como en la figura 3.27.

= Proceso isobaro (P = cte.). Si el émbolo de area A se desplaza una
longitud Ax bajo la accién de una presion constante P, el trabajo
realizado es, segin la definicién de la mecénica de “fuerza x
desplazamiento™:

(3-44)
(3-45)

W = FAx = PAAx = PAV, ya que
F=PAyAV = AAx

Es interesante notar que si el incremento de volumen AV = V —V;
es positivo (AV > 0, expansion) el trabajo resulta positivo (lo efecttia
el gas) y si AV < 0 el gas se comprime, el trabajo es negativo y lo
realizamos nosotros en contra de la presién del gas. Esto es coherente
con el criterio de signos expuesto en la primera ley. En un diagrama
P — V un proceso isébaro tiene el aspecto de la figura 3.28. Como
vemos en la figura, el trabajo corresponde al drea bajo la curva del
proceso, con signo positivo si es una expansion y negativo si es

una compresién. Esta nocion nos permite generalizar el trabajo a
cualquier proceso:

Figura 3.26: Una molécula diatémica
tiene 2 grados de libertad adicionales
(a los 3 de traslacion) asociados a las
posibles rotaciones

5 El gas ideal, estd muy alejado de
los sistemas biolégicos en principio,
pero es interesante porque: es sencillo
y permite estudiar la termodindmica
con ejemplos concretos; los gases
involucrados en reacciones quimicas
pueden sufrir grandes variaciones de
volumen, lo que da lugar a valores
grandes del W; el gas ideal es una
buena aproximacién para disoluciones
diluidas.

= PA

AV = AAzx

Figura 3.27: Pistén. Un gas ideal den-
tro de un pistén con émbolo movil. Si
desplazamos el piston una longitud
Ax el gas aumenta su volumen una
cantidad AV = AAx.
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P W =—Py | AV| Figura 3.28: Proc?so isébaro. Ul:l gas
se expande (izquierda) o comprime
|AV| (derecha) a presién constante Py. En

ambos casos, el trabajo coincide nu-
méricamente con el drea encerrada
bajo la linea del proceso (4rea naranja
rallada). En el caso de la expansion

w = +“4rea” mientras que en la
compresiéon W = —"4rea”
Proceso Volumen  Trabajo

Expansion AV >0 W >0
Compresion AV <0 W <0

= Proceso general. El trabajo corresponde a + 6 - el drea bajo la Tabla 3.4: El signo del trabajo en un

curva del proceso (+ para expansion, - para compresién)?°. Esto es

cambio de volumen.

véalido también para sélidos y liquidos.

* Matematicamente esto también se
puede calcular como W = [ PdV, pero
en general utilizaremos el drea.

Figura 3.29: Proceso General. E1I W > 0
siel V; > V; (expansién) como en la fi-
gura de la izquierda. 5i Vy < V; (com-
presién) entonces W < 0 (figura de la
derecha).

SOLUCION

Calcule el trabajo (con su signo) que realiza un gas ideal que reco-

rre el proceso de la figura correspondiente a una compresién desde

3

una presién y volumen iniciales P; = 101kPa, V; = 20 x 10~°m? a

presion y volumen finales de Py = 202kPay V; = 10 x 103 m3.
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El trabajo corresponde al 4rea bajo la linea del proceso (en este
caso un tridngulo naranja + el rectdngulo azul) con signo negati-
VO ya que se trata en este caso de una compresién. Comenzamos
calculando el édrea del tridngulo naranja

W) = —(4rea ):—%(Vi_vf><Pf_Pi):

1
= 5(20x 103 m?® — 10 x 1073 m?®) (202 kPa — 101 kPa) =
= —505] (

El 4rea marcada de azul es (también negativa pues es compresién):

.1)

Vy V;-V

W, = —(4rea rectingulo) = —P;(V; — V) = —(101kPa)(20 x 10 °m’> — 10 x 10> m°®) =

= —1010] ( .2)
Finalmente, el trabajo total del proceso i — j es la suma:

Wiotal = W1 + Wz = —1515] ( 3)

I

= Proceso isécoro (V = cte.). En un proceso en el que no haya
cambio de volumen W = 0 (figura 3.30, izq.).

= Suma de procesos. El trabajo total es la suma de los trabajos de los
procesos individuales con su signo (figura 3.30, der.).

- = Wiotal = W1 + W-
p AV Oi:>W 0 p , Vool 1 2
MC
b
Wi | W
/ A,
|
V=V, 4 Vi Vi V

= Ciclo. Un ciclo es un proceso con inicio y fin en el mismo estado.
El trabajo total en un ciclo es el drea encerrada dentro del ciclo.
Se deduce de dividir el ciclo en 2 tramos, el superior y el inferior.
Como tienen signos contrarios, el drea fuera del ciclo se cancela.
El W, serd positivo para un ciclo recorrido en el sentido de las
agujas del reloj y negativo para un ciclo en contra de las agujas
del reloj (figura 3.31) .

= Proceso isotermo. Un proceso isotermo es un proceso realizado a
T = cte. Corresponde al drea bajo la curva igualmente. En un gas

Figura 3.30: Izquierda: Proceso isécoro.
El trabajo es nulo pues no hay expan-
sién ni compresién. Derecha: Suma

de procesos El trabajo total es la suma
(algebraica) de los trabajos individuales
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P Wi = arefazl + arefnaranja P . Wa = —areauu — Alanaana Flgura 331 Trabajo en un ciclo. El tr.a-
bajo del ciclo como suma de un trabajo
la izquierda, el trabajo de expansién
“gana” al de compresion y el ciclo tiene

Wa = —areanaranjal | W1 = areanaranja contrario y Weico < 0.

f’\@) de expansion y otro de compresién. A
@ ™

Wedo > 0. A la derecha sucede lo
Weiclo = W1 + Wa = +areaa,ul Weiclo = W1 + Wy = —areay,u

ideal, las isotermas corresponden a hipérbolas P = nRT/V en el

diagrama P — V.

Figura 3.32: Proceso isotermo. Isoter-
mas de gas ideal P = nRT/V y trabajo
en un proceso isotermo desde 7 hasta f.

Opcional.
En un gas ideal, el trabajo se puede calcular en general usando la ley de los gases ideales y la definicién

integral del trabajo. Por ejemplo, para una expansién o compresién isoterma tenemos:
W= /PdV /f@dv_ RT/“W

= nRT(log Vy —logV;) = nRT log

Vi
= Proceso adiabatico (Q = 0). Un proceso adiabatico es aquel en

el que no hay intercambio de calor. El trabajo se puede calcular

segun el primer principio que, para Q = 0, se escribe

W=—AU=U;—Ussi(Q=0) (3.47)

El primer principio aplicado a algunos procesos en el gas ideal.

Para el gas ideal monoatémico o diatémico la energia interna
es sencilla y solo depende de T, U(T) = 3nRT o U(T) = 3nRT.
Aplicamos el primer principio en algunos proceso para un gas ideal
monoatémico (3/2) pero es ficil generalizar a diatémico (5/2).
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Figura 3.33: Proceso adiabatico. Las
adiabaticas tienen més pendiente que
las isotermas en un gas ideal.

» Proceso isotermo en gas ideal. Para un proceso isotermo Ty = T;
tenemos

3 3 3
AU = Uf — Ul' = EnRTf - EnRTi = EnR(Tf - Ti) =0 (3.48)
El primer principio queda entonces

Q=W (gasidealy Ty = T;) (3-49)

Esto se cumple para cualquier proceso cuya Ty = T; aunque no sea
isotermo.

= Proceso adiabético (Q = 0) en gas ideal.

AU=-W=W=-AU= %nR(Ti — T¢) (adiab. gas ideal) (3.50)

El primer principio aplicado a ciclos.

En un ciclo el estado final e inicial coinciden. Por tanto AU =
Uf — U; = Uy — Uy = 0 ya que la U es funcion de estado. El primer
principio dice entonces

Q = W (en un ciclo) (3-51)

Unidades en expresiones tipo presion X volumen: ;atm -L o ]?
OJO!! 1atm - L # 1]. La equivalencia es
El producto de presién por volumen (PV) tiene unidades de latm-L =101]

energia y se utiliza como acabamos de ver para calcular trabajos en
los diagramas P — V por ejemplo. En el sistema internacional las
unidades correctas son Pa y m> respectivamente y efectivamente su
producto es “julios”

[P][V]=Pa-m® =N -m%m?=N-m=] (3-52)

Aunque NO es sistema internacional, se puede utilizar la atm para
presién y el litro (L) para el volumen y por tanto utilizar atm - L para
energia o trabajo, sabiendo que NO son equivalentes y que no se
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pueden sumar atm - L con J. La equivalencia es facil de obtener y serd
necesaria en problemas en que aparecen las dos:

Tatm L~ 101 x 10°Pa x 1 x 1073 m?® = 101] (3.53)

Primera Ley y metabolismo animal. Ley de Kleiber

Para realizar los procesos de la vida se necesita, entre otras cosas,
energia. Las plantas la obtienen mediante la fotosintesis. Los anima-
les a partir de la energia guardada en los enlaces quimicos de los
alimentos, utilizando reacciones quimicas, que generan energia en
forma de Wy Q. Se puede utilizar el primer principio para analizar
estos procesos.

Supongamos que durante un tiempo At una persona realiza una
cantidad de trabajo mecanico W > 0 (sube escaleras, monta en bici,
etc...). En muchos casos ese W se puede medir. En general habra
también una cantidad de calor que abandone el cuerpo Q < 0. ;Se
puede medir? Si, por ejemplo, aislando la persona en una habitacién
y midiendo la cantidad de calor que hay que extraer para mantener
la T de la habitacién constante. Segtn el primer principio tenemos
entonces que

AU=Q-W<0 (3-54)

esto es, el organismo va consumiendo su energia interna al realizar
algtn proceso. jCuando recupera energifa interna, esto es, tiene un
AU > 0? Al ingerir alimentos, que poseen energia almacenada en sus
enlaces quimicos.

En metabolismo es mds habitual medir los ritmos de produccién de
calor, trabajo o consumo de energfa, esto es, la energia por unidad de
tiempo o potencia. Dividiendo por At tenemos

AU

Tt:Q_W<O’ (3-55)

donde el punto expresa el ritmo: Q = Q/At es el ritmo de produc-
cién de calor (calor por unidad de tiempo, o potencia) y W = W /At
la potencia mecanica. Las unidades de los ritmos son las de potencia:

. : AU
Q= W)= |3 ~s - w (556
Ademds, el ritmo de consumo de energia 5 se puede medir re-

gistrando la velocidad o tasa de consumo de oxigeno. La energia
procede de reacciones similares a la combustién de los alimentos que
necesitan oxigeno. La mds habitual es la de la glucosa

1mol de CgH1206 +134,4 L de O — 6 CO, + 6 H>O producen 2870 k]
(3-57)

79
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Midiendo el consumo de O; en litros puede obtener la energfa con-

sumida. Un manera fécil es expresarlo en funcién del “equivalente

Eproducida

energético del oxigeno” EEO = 3 g3 0,

2870K]

EEoglucosa = m

= 214LJ/L (3.58)
¢Qué tiene de 1til el EEO? Que es practicamente el mismo para todas
las sustancias que el cuerpo suele utilizar para generar E, como se
muestra en la tabla 3.5 (adaptada de ?7) y podemos tomar el valor
medio de 20,2k] /L para calcular:

|AU| = 20,2K] /L x Vo, (L) (3:59)

Tasa o ritmo metabélico.
Se conoce como tasa metabélica al ritmo al que se consume la ener-
gla interna del organismo para una determinada actividad

rRM = | AU

Ar | &0 W (3.60)

La tasa metabdlica basal RMB es la tasa correspondiente a “estar
despierto descansando”. Es aproximadamente proporcional a la masa
corporal y en humanos es 1,2 W /kg para hombres y 1,1 W/kg para
mujeres. Para una mujer de masa 65 kg seria

RMB = (1,1 W/kg)(65kg) = 715W (3.61)

El RM asciende al realizar alguna actividad para proporcionar la
energia necesaria (ver tabla3.6). El cuerpo humano tiene en general
baja eficiencia y aunque una parte se utilice para realizar W casi toda
la energia del RM se transforma en calor.

SEJCORRI-E Energia utilizada en correr.

Alimento  EEO (kJ]/L) Contenido de E (k]/g)

Glucidos
Proteinas
Grasas
Etanol
media

21.1
18.7
19.8
20.3
20.2

17.2
17.6
38.9
29.7

Tabla 3.5: EEO de distintos alimentos.
El EEO es muy parecido para todos
los alimentos y podemos tomar por
tanto su valor medio para estimar la
energia consumida. Esto no ocurre con
la energia por unidad de masa.

27J.W. Kane and M.M. Sternheim.
Physics. Wiley, 1988

Actividad

RM/mcuerpo (W/kg)

Despierto tumbado

De pie
Correr

Montar en bici

Q1.1, 1.2
2.6
18
8

Tabla 3.6: RM. El RM de distintas
actividades expresado por unidad de
masa del cuerpo de la persona que la

realiza.

(Cudnta energia utiliza un mujer de m = 65kg que corre durante 30 minutos? Si la energfa la obtuviera

exclusivamente a partir de su grasa corporal, ;cudnta grasa habrifa consumido en ese tiempo?

SOLUCION

a) Segtn la tabla 3.6 corriendo se consumen unos 18 W por cada kilo de masa corporal. El ritmo serd

su
At
y el consumo total de energia

AU
t

— (18 W/kg)(65kg) = 1170 W

|AU| = ’ At = (1170 W) (30 min)(60s/min) = 2106 kJ

A
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b) La grasa proporciona 38,9k]/g de energia. Para producir 2106 k] necesitamos

2106 k]

Mgrasa = m =o%g (3.10.2.3)

Ley de Kleiber.

Figura 3.34: El modo de vida y las nece-
sidades energéticas estdn relacionadas
A con el tamafio del animal. ;Por qué los
ratones tienen movimientos frenéticos y
& =7 los elefantes son de movimientos mas
g lentos? Proporcionalmente a su masa,
los ratones tienen un metabolismo mds
P rapido que los elefantes. Los ratones
\ g A necesitan ingerir en torno al 15 % de su
k f peso en comida al difa, mientras que un
elefante apenas llega al 6 %. ;A qué se
debe? Esta secciéon nos da pistas sobre
este fendmeno. Dibujo de L.D.

B T
'

El ritmo de metabolismo basal sigue una ley de tipo alométrico,
esto es hay determinada relacién entre el ritmo metabdlico basal y el

tamafio 0 masa del cuerpo del animal. Segtin Kleiber? M. Kleiber. Body size and metabolism.
Hilgardia, 6(11):315-353, January 1932
RMB ~ 3,6m"73 (3.62)
para los animales de sangre caliente, desde el ratén al elefante®9. Esto K. Bogdanov. El fisico visita al bilogo.

significa que aunque el RMB (y el gasto diario de energia y por tanto MIR, Mosct, 1989

las necesidades de alimento) es mayor para animales mayores, el
ritmo NO es directamente proporcional a la masa (exponente 1) si no
que crece més despacio. En relacién a su masa, el ritmo de animales
mayores es mds lento, como se muestra en el siguiente ejemplo.

SEJERNEE Ritmo Metabdlico del raton y el elefante.
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Suponiendo correcta la ley de Kleiber, el ritmo metabdlico especifico (RMBE)—el ritmo por cada kilo—

para el ratén y el elefante serian

m0,73
RMBE, = 3,6—/— = 3,6m, %%
My
m0,73
RMBE, = 3,6—— = 3,6m, **’

me

y por tanto
RMBE, _ (m, —0,27 (me 027 ( )
RMBE. \m, - \m, '
Tomando masas de m, = 6000kg y mg = 19 g obtenemos
RMBE, _ (m\"* [ 6000kg\"*
RMBE, <m,> = \oo1okg) 300 veces (:10.33)

En proporcién a su masa, el “ritmo al que viven” los ratones es de unas 30 veces mds rapido que el de los

elefantes. De hecho, la longevidad media de un ratén Mus musculus es aproximadamente de 1 a 2 afios,

mientras que para el elefante Loxodonta africana es en torno a 40-60 afos, lo cual da una relacién parecida.

La misma relacién aproximadamente de 30 la encontramos en la frecuencia cardiaca en reposo de 300-800

pulsaciones por minuto para el ratén y de 20-30 para el elefante, o en el periodo de gestaciéon de 20 dias a

22 meses respectivamente.

¢3/4 6 2/3? El exponente de la ley de Kleiber es muy cercano a
0,75 = 3/4. Existe algo de controversia en cuanto al exponente exacto
y el origen de la ley, aunque parece aceptado que estd entre 2/3 y
3/4. Una posible justificaciéon en cuanto a la razén de esta ley se
obtiene del balance entre el calor generado y el calor expulsado al
exterior, aunque esto produce un exponente 2/3.

Supongamos la situaciéon de reposo en la que un animal no realiza
trabajo W = 0 y su ritmo metabdlico es el basal. Segiin hemos visto el
ritmo al que se produce calor en el cuerpo de un animal serd

. AU
Qgen = ’At‘ = RMB (3‘63)
Por otro lado, el calor se pierde hacia el medio ambiente de forma
proporcional a la superficie, como vimos en la transmisién del calor
Qperd o A. Por ejemplo en el calor por conducciéon3®.
. AT
Qperd = kTA (3.64)
Como solo nos interesa el exponente, podemos agrupar todo lo que
va delante del 4rea en un solo coeficiente a = kAT /1

Qperd =aA (3-65)

3 Aunque consideremos otro mecanis-
mo, el ritmo también serd proporcional
al drea
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Para seguir avanzando necesitamos relacionar el drea del animal con
su masa. Los animales de mayor masa tendrdn mayor area de piel.
Vamos a suponer un animal esférico de tamafio o radio R. Aunque
los animales no son esféricos, si se cumple que su volumen es una
distancia al cubo, su superficie una distancia al cuadrado, etc....
Como veremos con eso es suficiente para calcular el exponente.
Tomando un animal esférico como el de la figura 3.35 tenemos que
su 4rea es A = 47R? y su volumen V = 471R3/3. Recordando que la
densidad es p = M/V podemos relacionar drea con masa:

4 3 \1/3 3 \2/3
m_P37TR3:>R—< ) m1/3:>R2—( ) m?/3

47p 47mp

2/3 (3.66)

3
=A=4nR*=4r(— | m?*?
4o
2/3
Agrupando términos en una constante b = 47 (ﬁ) podemos

expresar el drea mds sencillamente

A =bm?/3 (3.67)

Utilizando la expresién del area (3.67) en (3.65) escribimos el calor
perdido como

Qperd = ab m*/3 (3.68)

Para que el animal mantenga su T constante, tiene que existir un ba-
lance entre el calor perdido y el calor generado, de donde obtenemos
utilizando (3.63) y (3.68)

Qgen = Qperd = RMB = ab m?/ (3.69)
Este argumento predice un aumento del RMB con la masa
RMB « m?/3 (3.70)

del tipo de ley de Kleiber, pero con exponente 2/3 algo menor a 0,73.

Es interesante sefialar que algunos estudios3' més recientes que el de
Kleiber efectivamente encuentran un exponente cercano a 2/3.

Entalpia

Muchos procesos en biologia se realizan a P = cte. (por ejemplo
los que se realizan a presién atmosférica). Resulta conveniente definir
la funcién de estado termodindmica llamada entalpia

H=U+PV (3.71)

La entalpia es funcién de estado ya que para calcularla solo hacen
falta variables de estado. ;Qué utilidad tiene la entalpia? Se utiliza en

Figura 3.35: Vaca esférica. Animal
esférico considerado en el texto. Aun-
que los animales no son esféricos, el
exponente calculado es el mismo que
considerando otras formas.

3 C. R. White and R. S. Seymour.
Mammalian basal metabolic rate
is proportional to body mass2/3.
Proceedings of the National Academy of
Sciences, 100(7):4046—4049, April 2003
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cualquier sistema termodindmico, no solo gases, y tiene la siguiente
propiedad. Calculemos su variacién en un proceso de un estado
inicial 7 a uno final f

AH = Hf — H; = Uf + Pfo — (U,- + Pivi) =AU+ Pfo — P;V; (3.72)

En el caso de que la presi6n sea constante (P = P; = P) en el proceso
entonces PfVy — P;V; = P(Vy — V;) = PAV y la variacién de entalpia
es

AH = Hf — H; = AU + PAV (P = cte.) (3.73)

Ahora bien, en un proceso a P = cte. el término PAV es el trabajo de
expansién/compresion, de modo que AU = Q — PAV y entonces

AH = Hf — H; = Q — PAV + PAV = Q (P = cte.) (3.74)

Esto es en un proceso a presién constante la variaciéon de entalpia
AH coincide con el calor intercambiado Q. Sin embargo no son lo
mismo en general: AH depende solo del estado final e inicial y Q
depende del proceso concreto. En la figura se comparan dos procesos,
a'y b con los mismos estados inicial y final. El proceso a es a P = cte.
y en él el sistema absorbe 30] en forma de calor. El proceso b no es a
presién constante. Tenemos

Proceso a: AH, = Hf — H; = 30] (3.75)
Qa =30]

Proceso b: AH, = Hy — H; = 30]
Qp 7# Qa

Otras propiedades de H.
= Como funcién de estado también cumple que
Ciclo (l:f) iAH:Hf*Hi:Hf*HfZO (3.76)
En proceso inverso f — i = AH; ,; = H; — Hy = —AH; ,¢ (3.77)

= Para un gas ideal monoatémico por ejemplo

H=U+PV = %nRT +nRT = gnRT, puesto que PV = nRT
(3.78)

= En una reaccién quimica como esta por ejemplo

A+B—C+D (3.79)

tenemos que AH = Hproq — Hreac = Hc + Hp — Hq — Hp. Si AH >
0 la reaccién es endotérmica y necesita absorber Q = AH > 0

V

Figura 3.36: Entalpia es funcién de es-
tado. Dos procesos a y b que empiezan

y acaban en los mismos estados tienen

la misma variacién de entalpia. Solo en
el procesoaa P = cte. se cumple que
Q= AH.

CeH1206(s) + 6 O2(g) — 6 CO2(g) + 6 H2O(y
AH = —2808 k] /mol

Figura 3.37: Combustién de la glucosa.
En la combustién de la glucosa se
liberan 2808 k] /mol cuando se realiza a
presion constante
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para verificarse a presién constante. Si AH < 0 la reaccién serd
exotérmica, liberard un calor Q = AH < 0 si se hace a presién
constante y esta energia estard disponible para utilizarse en algiin
otro proceso. Por ejemplo, la energia liberada en la reaccién de
combustién de la glucosa (fig. 3.37) se puede utilizar por el cuerpo @

para verificar algtin otro proceso que necesite energia.

Pero, ;por qué AH representa mejor la energia disponible para
aprovechar que AU que es precisamente la variacién de energifa
entre productos y reactivos? Para entender esto, supongamos

que se verifica, dentro de un pistén mantenido a P = cfe. una
reaccién exotérmica entre reactivos en disolucién (no gases) y
como resultado se produce un gas, como en la figura 3.38. Para
producir el gas (que ocupa un volumen V; frente a o inicialmente)
es necesario hacer un W = PAV, donde AV = Vprod — Vreac €s el
cambio de volumen de los productos menos el de los reactivos. Al

verificar la reaccién, una energia PAV se utiliza necesariamente para Figura 3.38: Reacci6n verificada a
presion constante. Estado inicial en el
que los reactivos estdn en fase liquida
para otra cosa. Vedmoslo con un ejemplo. (arriba) y estado final (abajo) en el que
al menos uno de los productos estd en
fase gas. La mayor parte del cambio de

volumen se debe a la aparicién del gas.
SRR Reaccion exotérmica con produccion de gas

Se sabe que en la reaccién A(j) + By — 2C(y) la variacién de energia interna es —200k]J/mol. Si la
reaccion se verificaa P = latm y T = 25°C, ;cudl serd la variaciéon de entalpia y el calor liberado por la

la expansién del gas contra la presion cte. y no puede utilizarse

reaccion?

SOLUCION

La variacién de entalpia serd, puesto que P es constante, AH = AU + PAV = Q. Necesitamos calcular el
término PAV esto es el trabajo de expansion. Por cada mol de reactivo A se producen 2 moles de C. Usan-
do la ley de los gases ideales podemos calcular el Vy que ocupan. O mejor atin, puesto que el volumen
inicial de gases V; =0

PAV = P(Vf —-V) = PVy =nRT (3.80)
Entonces, la AH cuando reacciona 1 mol de A

Q = AH = AU + PAV = AU + nRT = —(200k]/mol) (1 mol) 4 (2mol)(8,31]/ (K - mol)) (298 K) =

(3.81)
= (=200 +5)k] = —195K]
por cada mol de A que reaccione. El calor coincide con AH al ser la P constante.
Nota: es posible que los liquidos también sufran algtin cambio de volumen en la reaccién (de hecho en
este caso desaparecen), pero este es normalmente muy pequefio frente a los cambios de volumen asociados
a los gases (debido a la mucho mayor densidad de liquidos frente a gases) y se suele despreciar.
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Sequnda Ley. Entropia

La segunda ley permite distinguir los procesos que ocurren espon-
tdneamente en la naturaleza y los que no. En los ejemplos represen-
tados en la figura 3.39 se cumple la conservacién de la energia, tanto
en el proceso directo como en el inverso. No estdn prohibidos por la
primera ley pero sin embargo suelen ocurrir en la naturaleza solo en
uno de los dos sentidos.

a) b) QJ
i o
@ E, = mgh . T Si Z/ .\,L ? T
) N
el P
c)

(3 D
e No

No Si

————— ey

7 >E,,:0

<7
J/INC

En términos sencillos, la segunda ley dice:

Los cambios en la naturaleza ocurren de manera espontanea de
forma que la energia y la materia se dispersan, reparten o desorde-
nan y de forma que un sistema aislado tiende al equilibrio.

Una pista de la razén de este comportamiento nos la aporta la
teoria cinética, segtn la cual las moléculas estan en continuo movi-
miento y en cierto sentido es como si se movieran al azar. De esta
manera, los sistemas tienden a colocarse en los estados macroscopi-
cos (de T, P, etc...) més probables (los que corresponden a un mayor
ndmero de estados microscépicos)3?. En el ejemplo de la figura 3.39b)
hay muchas mds maneras de colocar las N particulas en toda la caja
que si lo hiciéramos solamente en la seccién recuadrada. Tendemos a
ver estados macroscépicos que corresponden al recipiente lleno con
mucha mayor probabilidad33.

SRR La baraja de cartas y la segunda ley.

Figura 3.39: a) Un vaso cae al suelo y se
rompe en pedazos. La energia potencial
se transforma en energia para romper
los enlaces dentro del vidrio y en forma
de calor. b) Las moléculas de un gas,
inicialmente confinadas en una pequefia
region se expanden hasta ocupar todo
el volumen disponible. ¢) Una parte
maés caliente de un sistema aislado cede
calor a una parte mds fria y equilibran
sus temperaturas.

La 2% ley de la Termo en palabras
llanas

32 Con esta visién en mente, en realidad
la segunda ley simplemente dice que
lo que solemos ver en la naturaleza es
simplemente aquello mds probable.

33 Si el nimero de particulas es muy
grande como ocurre con el ntimero de
moléculas en una cantidad apreciable
de cualquier gas, esta probabilidad es
infinitamente mayor hasta el punto
de que cualquier otro estado no es
observable en la edad del universo

Tomemos para empezar 5 cartas de la baraja, del mismo palo y del 1 al 5. Llamamos microestado al

orden exacto en que estan las cartas, por ejemplo, {3,2,5,1,4}. Como son permutaciones de 5 elementos,
tenemos 5! = 5 x 4 x 3 x 2 = 120 microestados distintos. Supongamos que con nuestros sentidos solo

pudiéramos percibir o solo estuviéramos interesados en si las cartas estdn o no formando escalera. En-
tonces tenemos solo los 2 siguientes macroestados definidos por una cualidad que llamamos orden o

“escaleridad” por ejemplo:
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= Estado con alto orden, Escalera: solo formado por 2 microestados {1,2,3,4,5} v {5,4,3,2,1}

= Estado con bajo orden. El resto de los microestados los consideramos desordenados y los agrupamos

en el (macro)estado Desordenado: {1,4,2,3,5},{1,3,4,5,2} etc. ... Este macroestado engloba 120 — 2 = 118

microestados diferentes.

El movimiento aleatorio de las moléculas esté representado en este ejemplo por la accién de barajar. Co-

menzamos con el estado Escalera y barajamos bien. Lo mds probable (118 veces de cada 120 en promedio)

es que acabemos con un microestado correspondiente al estado Desordenado. La evolucién espontanea

corresponde a pasar de Escalera a Desordenado. El proceso inverso puede ocurrir, pero es poco probable

(menos de 2 % de probabilidad), incluso aunque barajemos muchas veces es dificil recuperar el estado

Escalera. El estado Desordenado representa el estado de equilibrio. Esto es aiin més acusado segiin va-

mos afladiendo cartas al juego. Es interesante sefialar que desde el punto de vista microscépico, todas las

ordenaciones particulares ({1,2,3,4,5} 0 {4,5,2,1,3}) tienen en principio la misma probabilidad de salir tras

un barajado aleatorio. La diferencia entre el estado macroscépico Desordenado y el Escalera consiste en el

namero de microestados compatibles con cada uno.

Escalera Desordenad

0]

Barajar

muy probable = espontaneo

1[4/ 23
3[4l 2
151[1] 34

poco probable = no espontaneo

Figura 3.40: La analogia de la baraja.
Cuando barajamos lo mds probable es
pasar de un estado de Escalera a uno
no secuencial. El proceso inverso, de
un estado Desordenado a una escalera
puede ocurrir con 5 cartas, aunque es
dificil. Con 40 cartas se vuelve extrema-
damente poco probable. En un sistema
fisico grande (macroscépico), el ntimero
de “cartas” con el que jugamos, esto es,
de moléculas es astronémico.

Forma macroscopica de la sequnda ley. Entropia

La medida de la “dispersiéon” o “desorden” de la materia y la

energia es la entropia S. La segunda ley dice que:

En un sistema aislado la entropia siempre crece o permanece
constante:
ASaislado = 0.

El cambio de entropia se puede medir en un proceso reversible (a T

constante)3* seglin

Qreversible
AS = =———
T

donde T es la temperatura a la que se lleva a cabo el proceso.

(3.82)

La 2? Ley de la Termo en su forma
clasica

34 Se puede generalizar a T variable
mediante una integral

La S definida segtn (3.82), es una
medida de la aleatoriedad o dispersion
afiadida al sistema.
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Qreversible €s €l calor transferido al sistema de forma reversible.

Un proceso es reversible si se lleva a cabo de forma que se esta siem-
pre muy cerca del equilibrio (tanto mecénico como térmico: no hay
diferencias grandes de presién ni de temperatura). Por ejemplo, si en
un proceso se transfiere W o Q para que el proceso sea reversible :

= La presion exterior tiene que ser en todo momento muy cercana de
la presion del sistema P ~ Peyt, como en la figura 3.41 (izquierda).

= La parte que cede calor tiene que estar a la misma temperatura
aproximadamente que la parte que absorbe calor. En la figura 3.42,
Ty = T, (izquierda).

Estrictamente, ningtin proceso real es asi, es una aproximacién
similar a suponer que no hay rozamiento o que algo estd completa-
mente aislado, etc...

Sin embargo, también se puede calcular AS para procesos irrever-
sibles. Tenemos que imaginar un proceso reversible con igual estado
inicial y final que el proceso irreversible y calcular AS para el proceso
reversible. Después, la entropia es una funcién de estado y por tanto
su variacién no depende del proceso concreto por lo que es valida
para el proceso irreversible también (figura 3.43).

@ reversible

SIS

~—e

~
s @/’ irreversible

4
/
/
/

T

S

¥

AS, = A5,

Reversible Irreversible

ext

P> Py

Figura 3.41: Presién. El proceso de la
izquierda es reversible, las presiones es-
tan casi equilibradas en todo momento.
Con un ligero incremento o descenso de
la presion interior podemos hacer que
el gas se expanda o se comprima. No
ocurre asi en el proceso de la derecha
que corresponde a una expansion
irreversible.

Ty~ Ty > T

T T T T

I —1

2 Q

Figura 3.42: Temperatura. El proceso
de la izquierda es reversible, las tempe-
raturas estdn casi equilibradas en todo
momento. Modificando ligeramente la
T} por encima o debajo de T, podemos
revertir el sentido de la transferencia
de Q. No ocurre asi en el proceso de

la derecha que corresponde a una
transferencia irreversible de calor.

Figura 3.43: S es funcién de estado. Po-
demos calcular AS a través del camino
a y este valor serd el mismo para todo
proceso que comience en el estado i y
acabe en f

SEJERNIE Variacion de S en un proceso reversible y otro irreversible

1kg de hielo a T, = 0°C se funde y transforma totalmente en agua liquida en un ambiente a T,y,.

Calcule la variacién de entropia en el caso de que T,, = 0°Cy para Typ = 20°C. (En cudl de las dos

situaciones el proceso es reversible? Datos: El calor latente de fusion del hielo es | = 334 kJ/kg.

SOLUCION

Para que el hielo se funda es necesario suministrarle una cierta cantidad de calor Q;, = m!

a) En el primer caso, T, = T de modo que la transferencia de calor se realiza sin apenas diferencia de

temperatura (podemos suponer que el ambiente estd a una temperatura solo ligeramente superior de

modo que el calor necesario fluya del ambiente hacia el trozo de hielo, por ejemplo a T, = 0,0001°C y
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para calcular tomamos T,y = 0°C). De modo que este proceso sucede de forma reversible y calculamos
la variacién de entropia del hielo en el proceso de fusién segun la definicién

_ Qrev % _ 334k]J/kg x 1kg

~ 3
AS;, = T T, 73K ~ 1,22 x 10°J/K ( 1)

Notese que ASj, es positivo y esto es 16gico pues el estado final (agua liquida) es méds desordenado que
el estado inicial (agua sélida). En el proceso inverso, la congelacién, tendriamos Aszong < 0.

En el caso de Ty, = 20°C el proceso es irreversible, pues la transferencia de calor se hace entre dos
cuerpos a temperaturas distintas. No obstante, para el hielo, el proceso tienen el mismo estado final
(agua a 0°C, solo estamos analizando la fusién, no un posible calentamiento posterior) e igual estado
inicial (hielo a 0°C) que en el apartado anterior, de modo que, como S es funcién de estado tenemos
que:

AS, =1,22 x 10°]/K ( 2)

La diferencia entre ambos procesos, el a) y el b) se encuentra analizando el ambiente o alrededores (o como
veremos mas adelante, el universo = alrededores + sistema). Segtin la conservacién de la energia, sabemos
que Qamp = —Qp. De modo que la variacién de entropia de los alrededores vale en el caso

a)

b)

reversible (T, = 273 K):
Qamb _ _Qh

Tamb Tamb

ASmp = =-122x10°]/K (3.10.6.3)

e irreversible (T, = 293 K):
Qamb — _Qh —334 k]/kg X 1kg N

A = = ~ —1,14 x 10°]/K .
Samb Tamb Tamb 293K ’ x 10 J / ( 4—)

¢ Como predice la sequnda ley la espontaneidad o no de los procesos?

O equivalentemente, ;cémo distinguimos un suceso espontaneo de

otro que no lo es? Tenemos que aplicar la segunda ley a un sistema

aislado. En general hay estas opciones:

El sistema de interés es aislado. Los procesos espontaneos son
aquellos que tienen AS > 0.

El sistema esta hecho de varias partes que intercambian calor. Es

necesario aplicar la segunda ley al conjunto completo. Teniendo

en cuenta que la entropia de un sistema cualquiera es la suma de

las entropias de las partes3> tenemos que los procesos espontaneos % Técnicamente, se dice que S es
cumplen ASiyia = AS1 + ASy + ... > 0. Nétese que cada una de aditiva.

ellas por separado (ASy, ASy, etc...) puede ser positiva o negativa.

El sistema intercambia calor con sus alrededores. Es un caso
particular de la anterior muy frecuente y relevante. Hay 2 partes
sistema + alrededores y conjuntamente forman el universo que
es aislado. Los procesos espontaneos son aquellos que tienen
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ASyniv = AS + AS,;, > 0. Ademads la fuente, por ser muy grande, se ASfoco = %fm , siempre para un foco
considera siempre que cambia poco su estado termodindmico, en “ e
particular su T, y por tanto AS,, = Qa1 / Talr independientemente
de si el proceso analizado es o no reversible3°. 36 Mark Waldo Zemansky and Ri-

. . . chard H. Dittman. Calor y termodindmica.
Veamos cémo predice la espontaneidad del paso de calor de McGraw-Hill, 1984

cuerpos calientes a frios con un ejemplo.

Syl ERVA Dos partes de un sistema intercambian calor

Supongamos que un sistema aislado estd hecho de 2 partes (parte 1 y parte 2) cuyas masas son muy
grandes y se encuentran a temperaturas diferentes 77 = 100°C y T, = 50 °C. Si intercambian 1] de calor,
calcular la variacién de entropia si el calor pasa de la parte caliente a la fria o bien sucede al contrario.

T, > Ts

¢Cudl de los dos sucesos es espontaneo?

SOLUCION

Suponemos primero que el calor pasa del caliente al frio, de modo
que Q1 = —1J (1 cede) y Q2 = —Q; = 1] (2 absorbe). Como las ma- 1 2
sas son grandes, podemos suponer que 1] transferido no cambia las

T, =100°C | T, =50°C

—_
temperaturas practicamente y calcular las variaciones como procesos 1J
a T = cte.. Entonces, las variaciones de entropia seran:
Q1 —-1J
AS1 = = = ————~— = —0,0027] /K .
U= T, T 273+ 100)K I/ (-107.1)
1
ASy; = % J K= +0,0031J/K

T, (273 +50)
y la variacién total de entropia serd ASiy = AS7 + ASy = —0,0027]/K +0,0031]J/K = 0,0004] /K > 0.

En el caso contrario, que 1] fuera transferido de la parte fria a la caliente ahora Q1 = 1]y Qp = —1]
y el resultado total seria AS,y = —0,0004]/K < 0. Como el sistema total es un sistema aislado, lo
tnico compatible con la segunda ley es el primer caso con ASi, > 0y por tanto el calor se transfiere
espontidneamente del cuerpo caliente al frio y no al revés.

Energia libre de Gibbs

Frecuentemente encontramos sistemas que intercambian energia
con sus alrededores que consideramos un foco térmicoa T = ctey a
p = cte. Por ejemplo: una reaccién quimica se da en una célula den-
tro del cuerpo a 37 °C, una persona intercambia calor con una piscina
a 27 °C, etc...En tal caso resulta atil definir la funcién termodindmica
G energia libre de Gibbs y utilizar lo aprendido en la seccién ante-
rior3”. Supongamos que en dicho sistema se da un procesoa Py T %7 Aunque es especialmente util en
constantes y el sistema intercambia un calor Q con los alrededores, €s0s casos, es una funcién de estado

y por tanto su variacién se puede
de modo que Qg = —Q. Para los alrededores tenemos: calcular conocido el estado final e

inicial, independientemente del proceso

ASalr = T (383)
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El segundo principio aplicado al sistema aislado compuesto por
sistema + alrededores dice:

Q

ASiotal = AS + AS,y, = AS + _T >0, (3.84)

que a veces se expresa como AS > % El signo igual se da para
procesos reversibles y entonces AS = %

Para procesos a presién constante hemos visto al hablar de la
entalpia que Q = AH por lo que podemos escribir (3.84) como

—AH
ASiotal = AS + T >0 (3-85)

donde ahora todo lo que aparece son funciones de estado del sistema.
Multiplicando por T tenemos

TASiora1 = TAS — AH > 0, (3.86)

donde ya se ve que la cantidad importante es TAS — AH. Si definimos
G = H—-TS = U+ pV — TS tenemos para un proceso isdbaro e
isotermo:

AG = AH — A(TS)=AH — (TS — TS;) = AH — TAS = —TASiotal-
(3-87)

y por tanto los procesos espontdneos —aquellos que cumplen la
segunda ley— son tales que ASiy, > 0 = AG < 0. De este modo
podemos calcular AG, que solo depende de variables del sistema,
para comprobar la espontaneidad de los procesos a T y p constantes
en sistemas que intercambian energfa (Q y/o W) con sus alrededores:

Espontaneo < ASiotal >0 AG L0
No espontdneo < ASiy < 0 AG >0

(3.88)
El caso AG = 0 corresponde a procesos reversibles o en equilibrio.

AG = —TASotal = {

Noétese que el signo de AG podria modificarse al cambiar la tempe-
ratura en algunos casos. Por dltimo, los procesos no espontaneos
(AG > 0) se podrian no obstante producir si se acoplan a un se-
gundo proceso 2 que libere suficiente energia libre de forma que
AG, + AG < 0. Veamos c6mo aplicar todo esto en un ejemplo38:

e N
Alrededores
w
! Q
p
N\ J

Universo = Sistema + Alrededores
Figura 3.44: Energia libre de Gibbs.El
sistema S intercambia energia con
sus alrededores en procesos a T'y p
constantes. En esta situacion la energia
libre de Gibbs resulta especialmente ttil.
Esto es de hecho lo habitual en muchos
procesos biolégicos.

3 Adaptado por el autor de:

Peter Atkins and Julio de Paula.
Physical Chemistry for the Life Sciences. W.
H. Freeman, January 2011

SER ALK Formacion del complejo NAD™ + lactato deshidrogenasa.

Se sabe experimentalmente que al producirse la unién de la nicotinamida adenina dinucleétido con

la enzima lactato deshidrogenasa la variacién de entropia vale AS = —16,8]/(K-mol)a T = 25°Cy

pH=7.0y p = 1bar. Al producirse la reaccién se libera calor, en concreto, la entalpia de reaccién vale

AH = —24,2k]J/mol. El signo negativo de la variacién de entropia es esperable puesto que se forma una



92 LUIS DINIS

estructura més agregada y compacta. ;Como es posible entonces que esta reaccién se dé espontaneamente

(si disminuye la entropia)?

SOLUCION

Segtin lo explicado en las secciones anteriores, para estudiar la espontaneidad de un proceso es necesa-

rio considerar la variacién de entropia del sistema y de sus alrededores. Alternativamente, para un proceso a

T y p constantes también podemos estudiar el signo de AG.
a) Utilizando AS;yar:

Qalr - Q —AH 24/2 k]/mol
ASalr = = = =

T T T 298K

K _ = =81,2]/(K-mol) = ( 1)

ASioal = AS + ASy, = —16,8]/(K - mol) + 81,21/ (K - mol) = 64,4]/(K - mol)

Por tanto, AS;ua) > 0 y la reaccién es espontanea a esa temperatura.

b) Mediante AG

G=H-TS=(aT,pcte) AG=AH—TAS = —24,2Kk]/mol + (298K)(16,8] /(K - mol)) = —19kJ/mol.

Dado que AG < 0 el proceso es espontaneo.

( 2)

Interpretacion de AG como trabajo “1itil”

El significado profundo de G se puede comprender en sistemas
que verifican procesos a T, p constantes en los que ademads del trabajo
habitual de expansién/compresién pAV existe otro tipo de trabajo
Wotro:

Wiotal = PAV + Wotro (3-89)

donde Wyiro puede representar el trabajo necesario para algtun otro
tipo de proceso como puede ser por ejemplo llevar a cabo un reaccién
quimica acoplada, trabajo eléctrico,etc. .. En este caso, el primer
principio dice

AU=Q—-W=Q —pAV — Wotro (3.90)
que llevado a la definicién de G, para un proceso a T,p constantes3?

AG = AU + pAV — TAS = Q — pAV — Woiro + pAV — TAS =

(3.91)
=Q—TAS — Wotro = Wowo = Q — TAS — AG

Si el proceso es reversible, como hemos visto, AS = % y entonces
Wotro = —AG (3.92)

lo que significa que —AG corresponde al trabajo, distinto al de expan-
sidn, que se puede extraer en un proceso reversible o que hay que
aportar para verificar el proceso, dependiendo del signo que tenga.

3 El resultado es el mismo si partimos
de AG = AH — TAS teniendo en
cuenta que si hay trabajo Wy, entonces
AH = Q — Wyyo utilizando también el
primer principio.
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Para procesos irreversibles, AS > % y entonces

Wotro S —AG. (3-93)

Puesto que Wi, es positivo si lo hace el sistema, significa que si AG
es negativo (el proceso libera energia para usarla) el trabajo maximo
que se puede extraer es —AG. Si por el contrario el proceso consume
energia AG > 0 entonces el trabajo que tenemos que poner nosotros

Wotro €s al menos AG para lograr que se verifique el proceso#°. Si una 4 Como ya se ha dicho antes, ese
trabajo puede venir de una reaccién por

L. , ejemplo que tenga AG < 0y que se dé
entonces el trabajo til que se puede hacer con esa energfa es como de forma acoplada.

mucho 8]. Si la reacciéon necesitara AG = 8] para producirse, tendria

reaccién quimica (a T, p ctes.) libera energia, por ejemplo, AG = —8]

que acoplarse a otra que produzca al menos AG = 8]. Veamos un par

de ejemplos** 41 Adaptados de
Peter Atkins and Julio de Paula.
. Physical Chemistry for the Life Sciences. W.
SRR Hidrolisis del ATP H. Freeman, January 2011

La reaccién de hidroélisis del ATP en condiciones de pH =7y T = 37°C:
ATP*™ (aq) + H,0(1) — ADP®~ (aq) + HPO4%™ (aq) + H30" (aq) (3.10.0.1)
tiene las siguientes valores de entalpia y energfa libre de reaccién:

AH = Hproq — Hreact = —20k]/mol (3.10.9.2)
AG = Gprod — Greact = —31KkJ/mol

La reaccion tiene una AS > 0 puesto que el efecto neto es que se rompe una molécula, lo que da maés
posibles configuraciones en el espacio. Esto significa que la reacciéon produce 20kJ/mol de calor si se da
a presién constante, pero que pueden llegar a aprovecharse hasta 31 kJ/mol —debido al término entrépico
(—TAS)- para realizar alguna tarea ttil dentro de la célula, ya descontado el posible trabajo de expansién.

SENJEROAIE Oxidacion de la glucosa

Otras veces el efecto de considerar TAS es més pequefio. En el caso de la glucosaa T = 25°C p = 1bar

tenemos que
CgH1206 + 60y — 6CO;, + 6 H,O (3.10.10.1)

produce AH = —2808k]J/mol y AG = —2828k]/mol, menos de 1 % de diferencia. Por cierto, con estos
datos, ;podemos calcular AS para la reaccién de glucosa? ;Qué estado tiene mayor entropia, productos o
reactivos?

SOLUCION

AH — AG _ —2808Kk]/mol + 2828 kJ /mol

AG =AH —-TAS = AS = T 2731 BK

=67]/ (K- mol) (3.10.10.2)
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Como AS = Sprod — Sreact > 0, los productos tienen mayor entropia, lo que es consistente con que son
moléculas aparentemente maés sencillas.

SEJERORRE Estimacion de AG en un proceso metabolico

Un péjarillo de 30 g vuela desde el suelo a una rama a 10 m por encima. Utilizando la energia liberada

por la glucosa AGyolar = —2828 k] /mol calcule la masa minima de glucosa necesaria para realizar dicha
tarea. La férmula de la glucosa es CsH1204

SOLUCION

El trabajo es el necesario para incrementar la energia potencial del pajarillo de masa m:
Wotro = mgh = (30 x 107 kg)(9,8m/s?)(10m) ( 1)

Si la oxidacién de 1 mol de glucosa produce AGpyglar, €ntonces 1 moles producen AG = nAGpglar Y €5a
energia producida en la oxidacién es la que se utiliza para realizar el trabajo mecanico (recuérdese el
cambio de signo entre AG y Woro):

— VVotro
WO‘LTO = 71’1AGm01ar =>n= ﬁ ( .2)
molar

Finalmente, una vez conocidos los moles n necesarios, la masa total de glucosa se haya multiplicando por
la masa de 1 mol de glucosa M = 180 g/mol

—Wotro ,, _ —(30 % 1073 kg)(9,8m/s?)(10m)

= M = =
Mg =1 AGnmolar —2828 x 103 ] /mol

x 180 g/mol ~ 0,19 mg ( 3)

3.11 Fluctuaciones

En la seccién 3.5 hemos visto como no todas las particulas en un
gas a una T tiene la misma velocidad (y por tanto la misma E;), si
no que existe una distribucién, la distribucién de Maxwell. Es un
caso particular de un principio més general que establece que, en
un sistema en equilibrio a T, la fraccién de particulas que tienen
una determinada energia E es proporcional a un factor exponen-
cial#*. La fraccion de particulas con energia E o equivalentemente la 4 conocido como factor de Boltzmann
probabilidad de encontrar 1 particula con energfa E es

Prob(E) o« e T (3.94)

k es la constante de Boltzmann. En cierto sentido puede decirse que
la distribucién es el resultado del equilibrio de dos tendencias, las de
las particulas a disminuir su energia y la de la agitacion térmica que
tiende a mantenerlas en movimiento. Veamos algunas consecuencias
interesantes.
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Férmula barométrica

Un ejemplo concreto de ese equilibrio de tendencias es la distribu-
cién de un gas sometido a la accion de la gravedad. Es bien conocido
que la densidad del aire desciende con la altura (ver figura 3.45). La
gravedad tiende a acumular las moléculas del gas cerca del suelo
(donde tienen menor energia potencial) mientras que la accién de la
agitacion térmica tiende a homogeneizar la densidad. El resultado, en
equilibrio, lo podemos encontrar utilizando el factor de Boltzmann.
La energia de 1 molécula de masa mgjscyla € €l campo gravitatorio
es MpyoléculagZ donde z es la altura desde el nivel del suelo. La densi-
dad de moléculas a cada altura z serd proporcional a la probabilidad
de encontrar de una molécula con una energfa Mpojsculagz, €5 decir:

_ Mmolécula8?
kT

p(z) o Prob(z) e (3.95)

La constante de proporcionalidad se fija sabiendo que az = 0
tenemos una cierta densidad p:

_ Mmolécula8?
kT

(3-96)

Si se trata de un gas ideal, podemos relacionar densidades y presio-

p(z) = poe

nes ya que

PV =NkT = P = %kT = kT, (3-97)

conp = % en mol/m?3. Por tanto, P y p son proporcionales, asi que

podemos escribir:

_ Mmolécula8?

P(z) =Ppe”~ # (3.98)

con Pj la presién a nivel z = 0. A ésta se la conoce como férmula
barométrica y expresa la P a una altura z conocida la presién a z = 0.

Ley de Nernst

Otro ejemplo de este equilibrio de tendencias sucede en el caso de
tener de las membranas biolégicas. Las membranas de las células
presentan cargas que generan un campo eléctrico y por tanto una
diferencia de potencial entre el exterior y el interior en torno a unos
—70mV43.

Un i6n de carga Q tiene una energia eléctrica asociada proporcio-
nal al potencial eléctrico#4 y a la carga, que es diferente en el interior
y el exterior de la célula debido a la diferencia de potencial eléctrico:

Eext = qVext
Eine = qVint (3-99)

Debido a la accién del campo eléctrico los iones tienden a situarse en
el interior o exterior de forma que minimicen su energia eléctrica. Por

Figura 3.45: Variacién de la presién
con la altura z. La densidad del aire en
la atmoésfera disminuye con la altura
de forma exponencial. Es el resultado
del balance de dos tendencias, la de

la gravedad, a acumular las particulas
abajo y la agitacion térmica que tiende a
dispersarlas en todas direcciones.

Figura 3.46: Ecuacién de Nernst. Un
ion con carga q tiene distinta energfa
eléctrica dentro que fuera de la célula
debido a la diferencia de potencial
de membrana y tendra tendencia a
desplazarse hacia menor energia. Por
otro lado, la difusién tiende a igualar
concentraciones.

4 El valor es ciertamente muy variable
e incluso puede llegar a ser positivo,
pero esto no es importante para esta
discusién

# Veremos esto con detalle en el tema
siguiente, aunque deberia ser més o
menos conocido
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otro lado, la agitacion térmica o la difusién tiende a homogeneizar
las concentraciones. En el equilibrio, si el ién puede atravesar la mem-
brana sin dificultad, el flujo producido por ambos efectos se equilibra
y no existe flujo neto. La diferencia de potencial VN, — VN para la
que se alcanza el equilibrio para unas determinadas concentraciones
interna [ion]int y externa [ion]ext se denomina potencial de Nernst. Se
puede calcular suponiendo de nuevo que la probabilidad de encon-
trar un ion dentro o fuera de la membrana es exponencial, y que la

concentracion es proporcional a esta probabilidad:

[, ] —Eext 7"7Vel\>1t
_E on xXe kT =e¢ T
Prob(E) «x e T = ext - N, (3.100)
[ion]in; x e F = e *T
donde hemos utilizado (3.99). La fraccién seré:
VN
k
[lon]‘EXt = e v = eiq(vel;jtivi{\l{c) (3_101)
[101‘1] int p T;im
Tomando logaritmos:
kT [ion]
N N t
Vext - Vint = _? log [ion}ie; = (3-102)
kT . [ion]
N N t
Vi = Vext = 0198 i (103

g es la carga del ion con su signo, y el log es neperiano. Utilizaremos
esta ecuacion para estudiar la transmisién del impulso nervioso.

Equilibrio quimico

Ciertas reacciones quimicas necesitan que los reactivos interaccio-
nen con suficiente energia como para superar una barrera energética,
antes de proseguir hasta convertirse en productos, tal como se mues-
tra en la figura 3.47. La energfa necesaria la pueden obtener de la
energia cinética contenida en las particulas por el hecho de estar a
T. Considerando el estado de transicién, la energfa necesaria para
moverse hacia la derecha (hacia productos) sera:

E. = Etrans - Ereac = AEbarrera (3~104)

La reaccién avanza hacia los productos a un ritmo proporcional a

la fraccién de (o probabilidad de encontrar ) &tomos o moléculas de
reactivos que tengan energfa mayor a la necesaria para avanzar. La
probabilidad o fraccién de atomos con energia suficiente es exponen-

cial:
E—

P, xxe ¥T

(3.105)

E
estado de
transicion
Etrans
o Eharmru
i Ercac
reactivos
W [AEruu('(:i('m
Eprod
productos

avance de la reaccion
Figura 3.47: Perfil energético de una
reaccién quimica. Los reactivos han de
superar una cierta barrera de energia
antes de convertirse en productos



FISICA APLICADA A LA BIOLOGIA 97

y entonces el ritmo k_, al que reaccionan es
_Eo
k_, o [reacle” ¥T , (3.106)

con [reac] la concentracion de los reactivos. Andlogamente, para la
reaccién inversa, la energia necesaria es E.. = Ejrans — Eprod- La
velocidad de reaccion inversa k. sera

ke = [prod]e_%. (3.107)

En el equilibrio quimico se cumple

ke xk = =e = T (3.108)

Con la definicién habitual de energia de reaccién AE eaccion = Eprod —
Eteac tenemos

AEreaccion = Eprod — Ereac = Eprod — Etrans + Etrans — Ereac = E» — E

(3-109)

de donde
[prod] —AEreaccion

=e¢ t  (equilibrio) (3.110)
Por ejemplo, si la energia de reacciéon AE,eaccion < 0 (como en

la figura 3.47), la reaccién esta desplazada en el equilibrio hacia
mayor concentracién de productos. La T alta tiende a igualar las
concentraciones en general.






4
ELECTRICIDAD

4.1 ;De qué trata el capitulo?

LA CONEXION ENTRE ELECTRICIDAD Y VIDA es muy estrecha. Algu-
nas de las observaciones que las relaciona se remontan a los experi-
mentos de Galvani en el siglo XVIII sobre la naturaleza eléctrica del
impulso nervioso o la constatacién en la antigtiedad de la existencia
de peces eléctricos.”

Por poner algunos ejemplos, podemos citar que las interacciones
de biomoléculas como los fosfolipidos de las membranas, las que do-
minan el plegamiento de proteinas o la conformacién del ADN son,
en ultima instancia, eléctricas. A una escala mayor, el transporte de
iones a través de membrana, el potencial de membrana y el potencial
de accién son fenémenos eléctricos. Los sensores que proporcionan
los sentidos a los animales convierten las diferentes sefiales que de-
tectan en un impulso eléctrico (electroquimico) que se transmite al
cerebro. Finalmente, algunos animales tienen directamente sensores
de campo eléctrico que detectan las débiles corrientes que generan
otros animales.

En este capitulo, dedicaremos una seccién especial al andlisis de la
transmisién del impulso nervioso, un tema clasico de la biofisica.

4.2 Carga eléctrica. Conservacion de la carga

Existen 2 tipos de carga eléctrica, que llamamos positiva y negati-
va.

Frotando algunos objetos podemos poner de manifiesto la carga.
Lo que sucede es que se transfiere algo de carga de un objeto al otro
y ambos quedan cargados. Aparece una fuerza entre ellos ya que las
cargas de distinto signo sufren una atraccién. Las cargas de igual
signo sufren una fuerza repulsiva. Aunque las cargas se pueden
transferir, estd bien establecido el principio de conservacién de la

* Parece ser que los experimentos de
Galvani inspiraron a Mary Shelley
para la escritura de Frankenstein. Sin
llegar a esos extremos, la relacién entre
electricidad y vida es sin duda muy
estrecha

2 tipos de carga: +y -
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carga:
En cualquier proceso, la carga total se mantiene constante,

entendiendo como carga total la suma (con su signo) de todas las
cargas presentes en el fenémeno estudiado. Por ejemplo, si frotamos
dos objetos eléctricamente neutros (inicialmente ninguno tiene carga)
se puede transmitir carga de uno a otro, pero siempre de manera que
la carga negativa de uno sea igual a la positiva del otro (figura 4.1).

En los atomos que conforman la materia que vemos, la carga
positiva se encuentra en el nicleo, en los protones, y la negativa en
los electrones:

protéon: +e

. cone=1,602x 10" C
electrén: —e

siendo e la carga mds pequefa que puede existir libremente, cono-
cida como carga fundamental. La unidad de la carga en el sistema
internacional es el Coulomb (simbolo C) y lo definiremos mas tarde.

Conductores y aislantes

Algunos materiales conducen (dejan fluir, transmiten) facilmente
la carga eléctrica a su través y otros no. Los llamamos conductores y
aislantes (figura 4.2).

Los metales tienen sus electrones poco ligados a los nticleos y
muy méviles, por lo que en general son muy buenos conductores.
Volveremos a este tema de forma maés precisa cuando veamos la
resistencia eléctrica.

4.3 Fuerza entre cargas. Ley de Coulomb

Como toda fuerza, la fuerza eléctrica entre dos cargas tiene médu-
lo, direccién y sentido.

Moédulo de la fuerza

Dos cargas eléctricas, Q1 y Q» de distinto signo se atraen (o si son
de igual signo se repelen) con una fuerza de médulo

k|Q1]]Q

con
= 1y Qy, las cargas respectivas en C

= 7 la distancia que las separa, en m

eléctricamente
neutros

ha ganado4e™

ha perdido 4e™

Figura 4.1: Conservacion de la car-

ga. Arriba: objetos sin carga inicial o
Qtotal = 0. Abajo: los objetos se cargan
uno con +4e y otro con —4e de modo
que la carga total sigue siendo la misma
que antes Qo) = +4e —4e = 0.

alslante

Figura 4.2: Conductores y aislantes.
Arriba: Situacién inicial, un objeto
cargado y otro neutro. Medio: al po-
nerlos en contacto mediante un buen
conductor, la carga se puede transmitir
de uno a otro. Abajo: los aislantes no
dejan fluir la carga a su través.
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= la constante de Coulomb k que depende del medio en el que se
encuentran las cargas, por ejemplo en el vacio k = 9 x 10° N - m?/C?

Lo que significa mds precisamente es que la carga 1 ejerce una fuerza
sobre la carga 2 de médulo dado por (4.1), igual en médulo a la
fuerza que la carga 2 ejerce sobre la carga 1, segtin nos dice la 3* ley
de Newton.

Direccion

Las fuerzas eléctricas apuntan en la direccién de la linea que une
las posiciones de las dos cargas.

Sentido

Si las dos cargas son de signo contrario, las particulas se atraen,
por lo que la carga 1 ejerce una fuerza sobre la 2 que apunta hacia
la carga 1 y trata de acercarla hacia si. Igualmente, por la 37 ley de
Newton, la fuerza que 2 ejerce sobre 1 es desde 1 hacia 2. Como
vectores

Fio = —Fxn (4-2)

donde Fj, es la fuerza que 1 ejerce sobre 2 y Fy la que 2 ejerce sobre
1. En caso de cargas de igual signo, las fuerzas apuntan en sentidos
contrarios a estos, de forma que tienden a separar las cargas. Esto se
resume en la figura (4.3)

4.4 Ley de Coulomb vectorial

Todo lo explicado en la seccion anterior sobre la fuerza de Cou-
lomb se puede resumir en una sola férmula, sencilla de “construir”.
Vamos a encontrar la expresién para la fuerza que ejerce la carga Qg
sobre una carga Q> colocada en una posicién diferente. Se basa en el
concepto de vector unidad, que es un vector que apunta en una cierta
direccién que nos interesa y tiene médulo uno. La fuerza eléctrica
tiene la direccién que une las dos cargas, asi que construyamos un
vector unidad en esa direccién. Supongamos que la carga Q; estd en
una posicion dada por 7; como en la figura (en el plano, sus coorde-
nadas serdn algo como 74 = (2,3)m o7} = (—1,5)m o algo asi). La
carga (Q; estd en la posicién 7;. El vector que va desde el punto de
coordenadas 71 al punto 7, tiene la direccién que nos interesa, y se
calcula facilmente:

Flo =7 —1 (4-3)

Q2
e
Q2

@ I
A/.——‘————-.—“——' F12
Fy

Figura 4.3: Arriba: fuerzas entre cargas
de distinto signo. Abajo: fuerzas entre
cargas de igual signo. En ambos casos,
Ej; es la fuerza que la carga 1 hace so-
brela carga 2y Ly la fuerza que ejerce
2 sobre 1. Noétese que las fuerzas se

pintan sobre los objetos que las sienten.

Q2

Figura 4.4: El vector 7}, es el vector que
va desde la posicion de la carga 1 a la
de la carga 2. Es un vector que marca la
direccién de la fuerza entre las cargas.
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Ademas el médulo de este vector |715| es la distancia que separa las
cargas. Con él podemos construir facilmente un vector unidad en esa
direccién. Si dividimos 71, por su médulo, el vector resultante tiene
moédulo unidad:

. 7 . 7
Uiy = 7_,12 = \u12| = 7|_.12‘ =1 (44)
712] 12|

y por supuesto sigue apuntando en la misma direccién y sentido que
712.

Utilizando el vector unidad iy, es facil escribir la ley de Coulomb
en su forma vectorial. La fuerza de Coulomb que la carga 1 ejerce
sobre 2 entonces es:

Fip = kQ} Q22 i1 (4.5)
712

Es muy importante fijarse en lo siguiente. Por un lado, la fuerza Fy,
tiene el médulo dado por la ley de Coulomb. En efecto, tomando el

”lédulo

donde el valor absoluto en las cargas se debe a que el médulo es
una cantidad siempre positiva y hay que recordar que |7,|? es la
distancia que separa las cargas al cuadrado, como establece la ley de
Coulomb. Por otro, el vector Fy, tiene la misma direccién de iy, ya
que es un ntimero multiplicado por dicho vector. Finalmente, si se
introducen correctamente los signos de las cargas, Fy, tiene ademds el
sentido correcto:

= cargas del mismo signo: QQ, > 0y Fy, apunta hacia el mismo
sentido de i1y, esto es, desde 1 hacia 2 (1 repele la carga 2).

= cargas de signo contrario: Q,Q, < 0y F apunta hacia el sentido
contrario de i1y, esto es, desde 2 hacia 1 (1 atrae la carga 2).

como se observa en la figura 4.5.
Para acabar, la manera més compacta de escribirlo todo es sustituir
el valor de il = 2 y obtener para dos cargas situadas en 7 y 7»:
12 [712] y p & 1yn

= Q1 Qo S L
Fp = kwﬁzr confp =7 — 7 (4.7)

La fuerza que ejerce 2 sobre 1 se podria calcular de igual forma
teniendo en cuenta que ahora hay que usar el vector ¥p1 =71 — 7, y ver
que el resultado es

By = —Fp (4-8)

como predice la 37 ley de Newton.

Figura 4.5: Arriba: la fuerza que ejerce
1 sobre 2 lleva la direccién de i1, y el
mismo sentido. Abajo: la fuerza que
ejerce 1 sobre 2 lleva la direccién de ifqp
y sentido contrario
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y(m

SRR Ley de Coulomb vectorial

Una carga Q; = 6uC se encuentra en la posiciéon (1,2) dada
en metros. Otra carga se encuentra en (5,5)m y tiene un valor de
Q> = —4nC. Calcule la fuerza que ejerce 1 sobre 2 y la fuerza de 2
sobre 1 en el vacio.

Datos: k=9 x 10° N - m?/C?

| .
l ' l I "

z(m)
= Figura 4.6: Disposicién de las cargas del
f s
Primero calculamos el vector que une las cargas
fp=" -7 =(55)—-(1,2)=(5-15-2)=(43)m (4.4.1.1)

y su médulo

[P12| = V42 +32 = V16 +9 = 5m (4.4.1.2)

que es la distancia que las separa. Calculamos ahora la fuerza con la férmula (4.7):

. —4
Fp = k%Q'; Fip = kW(AL,?;) ~ —0,0017(4,3) = (—0,0069, —0,0052)N = (—6,9, —5,2)mN
12

(4.4.1.3)
que son las coordenadas del vector. Ambas coordenadas son negativas, como corresponde a un vector que
apunta hacia abajo a la izquierda segtn los ejes de la figura 4.6.
La fuerza que ejerce la carga 2 sobre la carga 1 se calcula de forma andloga o directamente:

By = —Fp = —(—6,9,—5,2)mN = (6,9, 52)mN (4.4.1.4)

también representada en la figura.

La constante dieléctrica

La ley de Coulomb se expresa con una constante delante k

Q1Q2

F= k=3

(4-9)

que vale en el sistema internacional y para el vacio k = 9 x 10° N -
m?/C? y tiene otros valores en diferentes medios como el agua, aceite,
etc. Otra manera equivalente de expresar esa constante es mediante
la permitividad del vacio €, asi

1 0102

" imey 12 (4-10)
Comparando ambas expresiones, tenemos
1
=g = -— ~885x 10 2C%(N-m?) (4.11)

- 47eg 47tk



104 LUIS DINIS

Cuando las cargas se encuentran en otro medio que no es el
vacio, como el agua, la fuerza eléctrica se apantalla® de forma que la
constante es diferente. Por ejemplo, en lugar de €y tendremos una €
de mayor valor y la fuerza pasa a ser

_ 1 01

T 47me 12

(4.12)

o lo correspondiente en su forma vectorial. La manera habitual
de dar el valor de € es de forma indirecta, mediante la constante
dieléctrica del medio que es

€
K= o (4.13)
Por ejemplo, para el agua tenemos que K = 80,4 y por tanto3
€ = ¢oK = 80,4¢g (4.14)
y la ley de Coulomb en el agua queda
1T Q1Q2 1 0102
Time 2 80Axdme 12 (4.15)

es decir, las fuerzas eléctricas son en agua unas 8o veces mas débiles
que en el vacio, a igualdad de cargas y distancias.

4.5 Campo eléctrico

El campo eléctrico es una idea ttil en fisica y muchas ramas de
la ciencia. Una vez calculado el campo, permite olvidarse de las
cargas que lo generan y centrarse en el efecto sobre las cargas que lo
experimentan.

El campo eléctrico en cada punto del espacio se define como la
fuerza eléctrica (por unidad de carga) que sentirfa una pequefia carga
de prueba situada en ese punto*. Matemdticamente,

E= (4.16)

= |

donde F es la fuerza que siente la carga g5. Es un vector definido
en todo punto del espacio alrededor de una o varias cargas. Sus
unidades son

[E] = =1N/C (4-17)

Una vez establecido un campo creado por una o por mdltiples
cargas en un punto del espacio, si situamos otra carga g’ en ese
punto, ésta sentird una fuerza dada por

F(sobre q') = ¢'E (4.18)

2 Debido a las cargas presentes en el
medio, lo veremos luego tras hablar
del campo eléctrico en los medios
dieléctricos

3 No confundir la constante dieléc-
trica K con la constante de la ley de
Coulomb k

4 Por el efecto de otras cargas preexis-
tentes en una zona cercana

5 Como es independiente de la carga
de prueba que se pone, suele ser lo més
facil pensar en que ponemos una carga
positiva de prueba

/lf\

Figura 4.7: Izquierda: La carga Q
establece un campo E en todo punto del
espacio. Derecha: Una nueva carga q
situada donde existe un campo E siente
una fuerza ¢'E, independientemente de
qué carga o cargas lo hayan creado.
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Como se ve, la idea de campo eléctrico separa la interaccién eléctrica
en dos partes, por un lado existen cargas que generan campo eléc-
trico en el espacio. Después, cuando otras cargas se sitian en algtin
punto del espacio donde existe un campo eléctrico, surge una fuerza
sobre estas nuevas cargas debida al campo (figura 4.7).

Campo creado por una carga puntual

Empecemos calculando el campo creado por una carga puntual
de valor Q en un punto del espacio. Para simplificar, situamos nues-
tro origen de coordenadas encima de la carga Q que crea el campo.
Calculemos el campo que genera en un punto situado en las coor-
denadas 7, como en la figura 4.8. Para ello colocamos una carga test
g en el punto de coordenadas 7. La fuerza que siente, segin (4.7)
(tomando 7] =0y 7 =7)es

- 7
F= quW (4.19)
y de la definicién de campo
. F 7 .= 1 QF
E= i kQW (oblen, E= 471€O|7|3> (4.20)

Recordando el vector unitario, en este caso ﬁ vemos que el campo
creado por una carga Q en un punto situado en la posicién 7 respecto
de ella, tiene

= la direccién de la linea que une la carga y el punto donde estamos
hallando el campo (dada por el vector 7). Es radial.

= moédulo |E| = kLQ . Recuerde que |7| es la distancia entre el punto
72 q P y

la carga.

= tiene sentido “hacia afuera” (el mismo que 7) si la carga Q es
positiva y sentido “hacia la carga” (sentido contrario a 7) si la
carga () es negativa.

Todo esto se resume en las figuras 4.9 y 4.10.
Finalmente, si tuviéramos la carga Q en un punto 7; que no sea el
origen de coordenadas, haciendo el mismo proceso, llegamos a

- 712
E=k
Q|?12\3

(4.21)

donde la carga que crea el campo Q estd en 71 y el punto donde
calculamos el campo en 7, e igual que antes 71, = 7, — 7, como
en la figura 4.11. Esta expresion es ttil si tenemos varias cargas en
diferentes sitios y queremos calcular el campo total, como en la
siguiente seccion.

!

Q

Figura 4.8: Para calcular el campo
creado por Q en un punto del espacio,
situamos una carga de prueba en el
punto, medimos la fuerza. El campo es
el resultado de la fuerza dividido por la

carga 4.

unto donde
calcylamos
po

punto donde
calculomos
el campo

Q

carga que crea el campo
Figura 4.9: El campo creado por una
carga positiva es radial y hacia afuera y
decrece con el cuadrado de la distancia
a la carga.

otro punto donde
calcylamos
el campo

&5

punto donde
calculomos
el campo

w511

Q

carga que crea el campo
Figura 4.10: El campo creado por una
carga negativa es radial, apunta hacia la
carga, y decrece con el cuadrado de la
distancia a la carga.

—

E

carga que F12
crea el campo

L campo
Q el

punto donde
calculamos

Figura 4.11: Los vectores necesarios
para calcular el campo creado por una
carga que no estd situada en el origen
de coordenadas
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Superposicion de campos

Ademads, en caso de que haya varias cargas que generan el campo,
puesto que las fuerzas se suman vectorialmente, el campo total
generado por varias cargas en un mismo punto es la suma de los
campos que crea cada una de ellas por separado

Etotal = Ey + E2 + E3 + ... (4.22)

Campo creado por placa plano paralelas

Un objeto cualquiera, una esfera, un plano, un boligrafo, una cé-
lula, una proteina, puede en algin caso tener carga eléctrica no nula.
Las cargas eléctricas se distribuyen en el objeto® y crea un campo ® La forma concreta depende de sus
eléctrico a su alrededor que serd la suma (vectorial) de los campos propiedades eléctricas
creados por cada carga. A esto en fisica se le llama una distribucién
de carga. Para nosotros serd interesante el campo generado entre
dos superficies planas paralelas cargadas con la misma cantidad de
carga (, una positiva y otra negativa (placas planoparalelas). Esta
situacién es parecida a la que sucede en una membrana biolégica y
nos servird como modelo para estudiar las propiedades eléctricas de

las membranas. El campo dentro de una membrana
bioldgica se parece al campo entre dos

Empecemos por el campo creado por un plano infinito (bueno
p P P P P ( / placas planoparalelas

muy grande en comparacién con la distancia a la que miramos el
plano cargado

campo) cargado positivamente con una carga total Q, con la carga o
positivamente

repartida uniformemente. Si el plano es grande, por simetria pode-
mos ver que el campo tiene que ser perpendicular al plano. Esto se
ve claramente en la figura 4.12, pues el punto P donde calculamos el

campo siempre va a tener cargas a un lado y a otro que crean cam- A .

pos cuyas componentes paralelas al plano son iguales y de sentido Ep
contrario. Se compensan por tanto y solo quedan componentes per- P _‘I .
pendiculares al plano. Un cédlculo detallado” muestra que si miramos . Es s+ Eg
en puntos no muy lejanos del plano y lejos a su vez de los bordes, el B ‘ A

campo es independiente de la distancia al plano y vale en médulo:

Q (4-23) ®

|E1p1an0| = 2Ae,

El campo apunta en un eje perpendicular al plano, hacia afuera para
Figura 4.12: Vista transversal de un

un plano con carga + y hacia el plano si la carga es -, como en las
P & y P & ! plano uniformemente cargado. El

ﬁguras 4.13 y 4.14. Donde campo en un punto P es perpendicular
al plano. Las cargas situadas en A y en
= Q es el valor de la carga total del plano (como ntimero positivo B, a la misma distancia de P y con valor
siempre) igual, generan campos cuyas compo-
nentes paralelas al plano se compensan
exactamente.

= Aes el drea
7 Que se escapa del objeto de este curso

= ¢ permitividad del vacio
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plano cargado

A veces se expresa en funcién de la densidad superficial de carga 1B = 52 positivamente +Q
- o « >

|E1 larlol = (4-24) >

P 2¢ s

Con esto podemos calcular facilmente el campo entre dos planos >

cargados con cargas opuestas +Q y —Q. Teniendo en cuenta que el .
campo serd superposiciéon (suma vectorial) del campo creado por

el plano positivo y el negativo, y teniendo en cuenta que el campo E i
creado por el positivo apunta hacia afuera del plano, pero el negativo Figura 4.13: Campo eléctrico creado por
crea campo que apunta hacia el plano negativo. Entonces, en el una placa cargada positivamente con
) ) carga +Q. Es perpendicular al plano,
espacio entre los dos planos, los dos campos apuntan en el mismo apunta hacia afuera.
sentido (desde el positivo hacia el negativo) y el valor total es la plano cargado _
suma (ver figura 4.15) B = 5% negativamente
7 Q Q Q e
E = + = —— (regi6n interior a los planos) (4.2
| 2planos’ 2Aey ' 2Aey  Aeg (reg P ) (4.25)
En la region externa a los dos planos, el campo creado por el plano
positivo y el del negativo apuntan en sentidos opuestos y se anula
. i —_— ) —
(figura 4.15): i}
E E

Figura 4.14: Campo eléctrico creado por
una placa cargada negativamente con
carga —Q. Es perpendicular al plano,
apunta hacia el plano.

|E2p1anos| = TQeO - 2151260 = 0 (regién externa a los planos)  (4.26)

Resumiendo, el campo en la regién entre dos planos cargados con
la misma carga pero de signos opuestos es uniforme (igual en todo
punto en médulo, direccién y sentido), perpendicular a los planos y
apuntando desde el positivo al negativo. Fuera de las placas se anula.
Se muestra en la figura 4.16.
—-Q Figura 4.15: Arriba: El campo entre 2

+Q
planos cargados con +Q y —Q apunta
< en el mismo sentido en la regién entre

- s > > < <
- e > > < < los planos y en sentidos contrarios en
. . R . , . el exterior de las placas. Abajo: Suma
b X i vectorial de los campos generados por
< < > i’ g i’ cada plano.
E + E + Etot al E +
— > > —
— = — + 7(2
E_ E_ E_ N
-1 g ‘Em:>t;¢l‘ = %
Etotal =0 — Etotal =0
Broral = & —
total| — A¢ o - .
_
—_—
. _
Eiotar =0 |

Eiotal = 0

Eotal

Figura 4.16: El campo entre 2 placas
paralelas es uniforme en el interior y
nulo en el exterior.
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El campo eléctrico en la membrana plasmatica

Las membranas de la mayoria de las células vivas, debido a las
diferentes permeabilidades de los iones, acaban con algo de carga
positiva en su superficie exterior y algo de carga negativa en la
interior, en reposo®. Aunque la membrana no es plana, su superficie
es grande (hasta miles de micras cuadradas) mientras que el espesor
es relativamente pequefio (unos pocos nanometros) de modo que en
una pequefia porcion, la curvatura no serd grande. Para estudiar el
flujo de iones, podemos pensar en la membrana como si fuera un par
de planos paralelos cargados, con un campo eléctrico uniforme en el
interior de la membrana.

Por otro lado, el espacio en la membrana no es vacio, por lo que
para el médulo del campo eléctrico dentro de la membrana tenemos
que sustituir la permitividad del vacio ey por la permitividad de la
c_Q
e Ae
donde cabe recordar € = Kej con K constante dieléctrica. La constan-

membrana €:

E= (4-27)

te dieléctrica de la membrana celular estd en el rango de 3 o 5 aunque
otros autores dan valores superiores9*°.

SECEN R Densidad superficial de carga de la membrana

exterior celular

R

interior celular

...T ®

LT
e
000 000 00
Figura 4.17: Arriba: La membrana
celular adquiere cierta carga en su
superficie exterior e interior, por re-
distribucién de iones disueltos. La
conservacion de la carga implica que la
carga positiva de una cara se compensa
con la negativa de la otra. Abajo: Mode-
lo de membrana como dos placas plano
paralelas.

8 A veces la polaridad se invierte, como
veremos en la transmisién del impulso
nervioso

Estime la densidad superficial de carga de una membrana biolégica sabiendo que el valor de la constan-

te dieléctrica es 6 y el campo eléctrico 1 x 107 N/C. Datos: Permitividad del vacio ¢y = 8,9 x 10-12N - C%/m?

SOLUCION

Directamente de (4.27) escribimos

0 == =¢E =KepE =6(8,9 x 107 12C?% (N -m?))(1 x 10’ N/C) = 5,3 x 10 C/m? (1.5.1.1)

A

Lineas de campo

Para representar el campo creado por cargas o distribuciones de
carga podemos pintar el valor del vector en determinados puntos. No
obstante, esto puede llegar a ser confuso si tratamos de representar
el campo en puntos cercanos. Otra manera de representar el campo
es mediante las lfneas de campo. Las lineas de campo son lineas en
las que el campo es tangente en cada punto (indicando por tanto
la direccién). El sentido se indica con una flecha. Finalmente, si
representamos las lineas equiespaciadas en dngulo, el campo resulta
ser mds intenso donde las lineas estdn mds juntas, por lo que también
indican indirectamente el médulo. En la figura 4.18 se representan

9D.C. Giancoli. Fisica: Principios con apli-
caciones. Prentice Hall Hispanoamérica,
México, 1997

J. C. Weaver and K. H. Schoenbach.
Biodielectrics. IEEE Transactions on
Dielectrics and Electrical Insulation,
10(5):715-716, October 2003. Conference
Name: IEEE Transactions on Dielectrics
and Electrical Insulation
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las lineas de campo para las cargas y distribuciones que hemos visto
hasta ahora.

+@Q -Q

&
[eh

Q>0 Q<0

&l

Campo eléctrico y conductores en equilibrio

En los buenos conductores como los metales, los electrones tienen
mucha libertad para moverse. Por tanto, las cargas eléctricas en un
conductor tienden a separase lo mds posible, acumuldndose en la
superficie. Por otro lado, se alcanza el equilibrio rdpidamente y las
cargas se colocan de forma que el campo eléctrico es perpendicular
a la superficie. De no ser asi, si hubiera componente de E tangencial
a la superficie, apareceria una fuerza tangencial, como las cargas
se pueden mover facilmente, se moverian, lo cual contradice que
hayamos llegado al equilibrio. La tinica posibilidad de equilibrio es
que el campo sea perpendicular a la superficie.

El caso anterior de dos placas planas paralelas de metal es un
buen ejemplo de esto (figura 4.18). El campo es perpendicular a las
placas. En una esfera metélica cargada, la carga se acumula en la
superficie y es radial, similar al campo de una carga puntual (figura

4.19).

4.6 Potencial eléctrico

Energia potencial eléctrica

Al igual que con la fuerza gravitatoria, hay una energia potencial
asociada a la fuerza eléctrica. Pensemos por ejemplo en un electrén
(carga —e) que depositamos en reposo en una zona donde hay un
campo eléctrico, en el punto B de la figura 4.20 por ejemplo. El elec-
trén sentira una fuerza F, = —¢E y (si no hay otra fuerza actuando)
una aceleracién (de médulo) a = F./m, = e/m,|E|. Al cabo de
un tiempo habra acelerado hasta una cierta velocidad v y tendra
una energfa cinética asociada $m,0%. ;De dénde viene esa energia?

Figura 4.18: Izquierda: Lineas de campo
de una carga positiva. Centro: Lineas de
campo de una carga negativa. Derecha:
Lineas de campo entre placas cargadas.
Los vectores dibujados en un punto
muestran que el vector campo es tan-
gente a la linea de campo. Las lineas de
campo “nacen” en las cargas positivas y
“mueren” en las cargas negativas.

Q>0

Figura 4.19: Campo eléctrico alrededor
de una esfera conductora cargada. En
un conductor en equilibrio, la carga se
acumula en la superficie y el campo E
es perpendicular a la superficie. En la
figura se representa el corte de la esfera
con el plano del papel o de la pantalla.
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De energia potencial que tenfa acumulada por estar en un campo
eléctrico.

Podemos verlo de otro modo. Para llevar el electrén por ejemplo
desde el punto A al punto B hay que luchar contra una fuerza eléctri-
ca E, = —¢E y desplazarlo una cierta distancia, por lo que realizamos
un trabajo W. Ese W queda acumulado como (cambio) de energia
potencial eléctrica.

E

v
v
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Definiremos la energia potencial eléctrica en base a esto. El cambio
de energia potencial eléctrica de una carga g entre dos puntos A
(inicial) y B (final) sera:

AE, = Eyp — Eps = —WiS (4.28)

donde WE¢ es el trabajo que realiza la fuerza eléctrica sobre la carga g
al pasar de A a B. Recordando la relacién entre trabajo de una fuerza
y su contraria, también se puede definir como

AE, = Epg — Epn = W5 (4-29)

donde ng es el trabajo de la fuerza “que hago yo” en contra de la
fuerza eléctrica para llevar la carga g desde A hasta B, y que queda
acumulado como energia potencial™’.

El trabajo podria ser en general una integral complicada. Aqui
veremos unos casos simples. Lo importante es que la fuerza eléctrica
es conservativa y ese trabajo no depende del camino exacto de A
a B, solo de la posicién inicial y final. Al igual que sucedia con la
gravedad, de modo que la energfa potencial eléctrica tiene sentido y
ademads da lugar de nuevo a la conservacién de la energia.

Figura 4.20: Fuerza eléctrica sobre un
electrén en un campo eléctrico. Si solo
actda esa fuerza, un electrén dejado en
reposo en el punto B acelerara hacia la
izquierda (en direccién de la fuerza) y
al cabo de un tiempo adquiere cierta
velocidad.

1 Esto es exactamente igual que con la
energia potencial gravitatoria, comparar
con la expresién (1.36)
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Conservacion de la energia

Al igual que pasaba con la gravedad, si no hay fuerzas de roza-
miento, solo fuerzas eléctricas tenemos que

W = AE, (4-30)

donde ng es el trabajo neto de las fuerzas eléctricas. El trabajo neto
de las fuerzas aplicadas es la variaciéon de energia cinética (igual que
vimos en (1.42)). Utilizando (4.28) tenemos

WE = —AE, = AE. = AE, + AE. =0 (4.31)
es decir, tomando la energia mecanica como E. + E, tenemos de nuevo

la conservacién de la energia mecénica, simplemente ha cambiado el
tipo de energia potencial.

Potencial eléctrico

Para evitar calcular trabajos para cargas positivas y negativas, es
atil utilizar el potencial eléctrico V. La relacién es la siguiente, una
variacién de potencial V entre dos puntos A y B es

AE, —W
AVpg=Vp—Vy=—L=——48 (4-32)
q q
donde AE, es la variacion de energia potencial de la carga g entre
el punto A y el B. O bien, una carga g en un punto donde hay un
potencial V' tiene una energia potencial E, = qV'y

AEp = EPB — EpA = qAV = q(VB — VA) (433)

Las unidades del potencial son por tanto

[E] _J
Vl=rt=m===1V (4-34)
V=g~ ¢c 4-34
que recibe el nombre de “voltio” en honor a Volta™. Con esto, po- 12 De aqui deriva también voltaje, aun-

que lo correcto es hablar de diferencia

demos calcular diferencias de potencial para diversas configuracio- X
de potencial

nes de campo eléctrico. Vamos a ver 2, potencial creado por cargas
puntuales y potencial en las placas plano paralelas. Este tltimo es
aplicable al potencial de membrana de las células, como veremos.

SEJOEN R Conservacion de la energia

Un protén parte de un punto A en reposo y llega a un punto B con una cierta velocidad final v. Entre

el punto A y B hay una diferencia de potencial eléctrico Vg — V4 = —10V. ;Cudnto vale la velocidad final?
Datos: Carga del protén: g = +¢ = 1,6 x 1071 C, masa de un protén: m, = 1,7 x 10~ kg
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SOLUCION

Utilizando la relacién entre energia potencial eléctrica y potencial eléctrico calculamos la diferencia de
energia potencial entre ambos puntos (final menos inicial):

AE, = Epg —Epa = qVg —qVa = q(Vg — Va) = (1,6 x 1072 C)(=10V) = —1,6 x 107 18] (1.6.1.1)
El protén pierde energia potencial, que transforma en energfa cinética:
1 -
AEc+AE, =0= Ecf —Eci = —AE, = E;y = —AEp, = 5MpUf = —AE, ( .2)

donde se ha tenido en cuenta que E.; = 0. Despejando

—2AE 2(1,6 x 10-187)
— P _ 4 ~ 4
vf = \/ ; = \/ 17 %10 Tkg = 44 x10°m/s ( .3)

Notese que al ser la diferencia de energia potencial negativa, con el signo negativo queda un ntmero
positivo y el resultado tiene sentido. Asi, las cargas positivas caen espontdneamente hacia abajo en el
potencial (en B hay un potencial 10 V menos que en A, por ejemplo en A 24V y en B 14V). Las cargas
negativas por el contrario, suben espontdneamente por el potencial. Para comprobarlo, podemos repetir
el ejercicio suponiendo ahora un electrén que parte del punto B en reposo y llega a A, con la misma
diferencia de potencial Vg — V4 = —10V. OJO, el punto final es A ahora y el inicial B y la carga de un
electrén es g = —e¢

AEy = g(Va — Vg) = —e(10V) = ~1,6 x 10'%] (1:6.1.4)

al igual que antes y la velocidad sale diferente por la diferente masa del electrén (m, = 9,1 x 1073! kg) pero
se puede calcular

—2AE
vf = Tepzl,9x106m/s ( .5)

Las cargas negativas tienden a subir en el potencial, las positivas tienden a bajar. Esto es consistente con
el hecho de que situadas en el mismo campo eléctrico la fuerza que sienten unas y otras tienen sentidos
contrarios. Por dltimo, decimos que tienden a bajar en el potencial, por ejemplo, igual que una piedra
tiende a caer en el campo gravitatorio, aunque por supuesto puede subir si le damos velocidad inicial hacia
arriba. Igual una carga positiva podria subir en un potencial si la lanzamos con velocidad suficiente.

Potencial eléctrico creado por cargas puntuales

Ahora que sabemos que el potencial eléctrico es algo parecido a
la energia y por tanto resulta ttil, veamos como calcular el poten-
cial creado por diferentes cargas. Vamos a ver 2 casos, las cargas
puntuales y las placas paralelas cargadas (0 membrana celular).

Para calcular el potencial creado por una carga positiva Q en
un punto alejado de ella una distancia r tenemos que acudir a la
definicién:
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whe
Vg—Vy = —%

esto es, tenemos que calcular el trabajo de la fuerza eléctrica F. = gE

(4-35)

sobre una carga g cuando pasa de un punto A a otro B en el campo
eléctrico E. Recordando el campo E creado por una carga a una
distancia r de la carga Q:

k
=t (4.36)

que apunta radialmente. Como depende del cuadrado de la distancia
y por tanto la fuerza sobre la carga g, F. = gE = ky% depende de la
posicion, y el trabajo hay que calcularlo con una integral (la integral
de 1/72, que es, —1/r). Pongamos que movemos la carga q desde un
punto a distancia r4 de Q a una distancia rp de Q en linea recta de
forma radial, como en la figura 4.21. Hacerlo asi, nos permite tomar
el angulo entre fuerza y desplazamiento como o y cosf = 1. Como
la fuerza eléctrica es conservativa, el trabajo no depende del camino
exacto, solo de posicién final e inicial. La diferencia de potencial es
entonces

WFE — r r r
VB—VA:—ﬂ——l/BFedr:—/BEdr:—kQ/Blzdr
q Jra A ra

.
(4-37)
Haciendo la integral, que es como [ 1/x*dx = —1/x tenemos
B 1 1Y\  [kQ kQ
wovmre(n-n) = () e

De aqui, podemos tomar el potencial creado por una carga Q en un
punto a una distancia * cualquiera como'3

k
V=-= (4-39)
p
Esta férmula vale igualmente para una carga negativa sin mas que

poner en Q el valor con su signo correcto.

Potencial creado por varias cargas

La ventaja de trabajar con el potencial, sobre el campo, es que no
es un vector, es simplemente un ntmero (con su signo). Asi, si en
una regién del espacio hay varias cargas, el potencial eléctrico en
un punto se calcula como la suma de los potenciales creados en ese
punto por todas las cargas'+. Por ejemplo, si tenemos 2 cargas Q; y
Q> y queremos un calcular el potencial total en un punto P como en
la figura 4.22, a distancia ry de la carga 1 y a distancia r, de la carga
2, tenemos:

kQr | kQ»

Vtotal(en P) =N+V=—+—

. P (4-40)

o Fo—oF
-
Aq dr B
TA
B

Figura 4.21: La diferencia de potencial
VB — V4 es el trabajo de la fuerza eléctri-
ca desde el punto A al punto B. Como
se ve en la figura, si calculamos el traba-
jo en la linea recta radial, el coseno del
angulo entre fuerza y desplazamiento
es siempre 1.

3 Esto equivale a tomar el valor V = 0
para el potencial a una distancia muy
grande. Como con las energias, lo
importante para la fisica es la diferencia
de potencial y la fisica no cambia si
cambiamos el 0 de lugar,

Q1 -7

Figura 4.22: Dos cargas generan un
potencial en un punto P del espacio.

4 Al igual que en el campo, el potencial
se extiende por todo el espacio, de
modo que tenemos que especificar en
qué punto calculamos el potencial



114 LUIS DINIS

y si tuviéramos mds cargas creando potencial, pues se suman mads
términos. Aqui es facil ver que las cargas negativas hacen disminuir
(hacia —o0) el potencial en un punto, mientras que las positivas lo
aumentan (hacia +c0).

Energia potencial de una configuracion de cargas

Recordemos la relacién entre el potencial V en un punto P del
espacio y la energia que tiene una carga g si la situamos ahi que
hemos visto en 4.33:

Ep =qV(enP) (4-41)
Ese potencial V en el punto donde esta g lo puede haber creado una
carga, dos, tres o las que queramos, es igual.
Ahora, supongamos que el potencial V en ese punto lo ha creado
una sola carga puntual Q, la energia que tiene g serd

Q

E, = qV(creado por Qen P) = kq7 (4-42)

donde r es la distancia entre las cargas. Igual, podriamos pensar que
g crea un potencial kq/7 en el punto donde estd Q y la energia de Q
seria

E, = QV(creado por q en el punto donde estd Q) = ng (4-43)

y el resultado es exactamente el mismo. Esta energia potencial es en
realidad la energia de interaccién de la pareja.

Si en lugar de 2 cargas solo, tenemos un conjunto de mds cargas
Q1,Q2,Q3, etcétera, la energia total de interaccién eléctrica seréd la
suma a todas las parejas posibles de términos kQ; Q> /r, contando
cada pareja 1 sola vez

Ep= ), k%

- (4-44)
parejas I

con r;; la distancia entre las cargas i y la j. Por ejemplo para tres
cargas Q1, Q2, Q3 como en la figura 4.23 serd

E, =k <Q1Q2 L Qs Q2Q3>

12 13 723

(4-45)
Este ndmero puede ser 16gicamente positivo o negativo, dependiendo
de los valores de las cargas y las distancias.

El signo de la energia potencial

Para una configuracién de cargas (dos o mas), el signo de la ener-
gia potencial refleja si es una configuracién ligada o no. Considere-
mos la configuracién que sea como un estado final. Si consideramos

-3

Figura 4.23: Para calcular la energia
total, hay que sumar (con su signo) las
contribuciones de cada pareja. Cada pa-
reja contribuye una vez con un término

del tipo kQQ' /7
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un estado inicial en el que las cargas estan infinitamente separadas su
energia inicial es E,; = 0, entonces la energia de interaccién

Ep:k(Q1Q2+Q1Q3+Q2Q3+‘

12 13 723

. ) = Epf - Epi = W¥° (446)

representa la diferencia de energia entre las dos situaciones, o lo que
es lo mismo, el trabajo que nos cuesta crear dicha configuracién de
cargas trayéndolas desde el infinito en contra de las fuerzas eléctricas.
Si la energfa potencial final es positiva, nos ha costado trabajo y
tenderdn a separarse cuando las soltemos, igual que nos cuesta
trabajo aumentar la energia potencial de una piedra aumentando

su altura. Si la energia final es negativa (por ejemplo 2 cargas, una
positiva y otra negativa) lo que nos cuesta trabajo es llevarlas de
nuevo al infinito, esto es separarlas en contra de la fuerza eléctrica
que tiende a juntarlas. Una energfa potencial total negativa representa
un estado ligado, al que hay que proporcionar energia para romperlo,
similar a la energfa de un enlace quimico. Con esta idea en mente,
podemos calcular la energia de enlace de hidrégeno entre las bases
nitrogenadas en el ADN, como en el siguiente ejemplo.

SNl Energia de interaccion A-T y G-C en el ADN

Basédndose en la figura, estimar la energfa necesaria para separar la adenina de la timina, suponiendo

que la distancia entre 4tomos dentro de cada base es 0,10nm. Las cargas de los 4tomos son 8,0 x 10720 C
para el oxigeno y 3,0 x 10720 C para el nitrégeno y el hidrégeno. Repetir el cslculo para el par guanina-
citosina.

Timina (T) Citosina (C)

Adenina (A) Guanina (G)

b
0100y,

SOLUCION

Adenina-Timina
Para separar la Adenina de la Timina hay que vencer las fuerzas netas que se establecen entre los atomos
de la Adenina y los de la Timina, debido a las cargas eléctricas, y realizar un trabajo. Como hemos visto
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en teorfa, el trabajo coincide con la variacién de energia potencial entre dos estados: el final, totalmente
separadas A y T, y el estado inicial reflejado en la figura. Como en el estado final, los 4tomos dentro de
cada base mantienen sus posiciones, la energia de interaccién entre 4&tomos dentro de la misma molécula
no contribuye a la energia de enlace A-T. Tenemos por tanto que calcular la energia potencial asociada a la
situacién de la figura, considerando parejas de 4tomos en bases diferentes y utilizando la expresién (4.45).
Utilicemos la expresién con los d&tomos O - - - H — N en el primer enlace de hidrégeno, la fila de arriba

,\_ ........ ’\. Eponn = k (M + M) (1.6.2.1)

010,y TOH TON
AT .E:
donde segun la figura las distancias son roy = 28nm y rog = (0,28 — 0,10)nm = 0,18 nm Sustituyendo
los valores de las cargas
—8x10720C)(3x1072C) (-8 x1072C)(-3 x 1072 C)

_ on 2,02y | ( =
Eponn = (9 x10°N-m?/C") { (0,18 x 109 m) * (028 x 109 m) (1.6.2.2)

= —43x10"2]

El primer término es negativo como corresponde a una atraccién que tiende a ligar, mientras que la
interaccién O-N contribuye con un término positivo en la energia. Para la segunda fila, N — H - - - N, tenemos
de forma similar

(4.6.2.3)

Epniiy = k (QNQH n QNQN)
I'NH NN

con ryg = (0,30 — 0,10)nm = 0,20nm y ryy = 0,30nm. Para hacer un célculo correcto, tendriamos que
considerar otras interacciones “en diagonal” como por ejemplo entre el H de la Adenina en la primera fila
y el N de la Timina en la segunda. Sin embargo, no tenemos informacién sobre esas distancias, por lo que
no lo podemos calcular. Por otro lado, como la energia decrece con la distancia, y las distancias en diagonal
son mayores, podemos suponer que van a contribuir poco al resultado final.

Recolectando los 4 términos que tenemos, la energfa de enlace de A-T es

Epar = Epnun + Eponn =~ —5,6 x 107207 (4.6.2.4)

El resultado es negativo. Corresponde a un estado ligado y habria que hacer un trabajo o proporcionar
una energia de 5,6 x 10720 ] para separar la Adenina y la Timina totalmente.

Guanina-Citosina

Procedemos de igual forma, calculando la energia de interaccién entre los 4&tomos en las tres filas en las
que se forma enlace de hidrégeno

QfQH+2QOQN+QNQN+QNQH> (

5)
OH TON NN 'NH

@mzk@

donde las distancias son un poco diferentes ahora royy = 0,19nm, ryy = 029nm, ryy = 0,30nm y
rnH = 0,20nm. Los dos primeros sumandos estdn multiplicados por 2 porque corresponden a la fila de
arriba y a la inferior, que son iguales. El resultado final es

Epgc = —92x107%] (4.6.2.6)

La energia de enlace es mayor en G-C (hay que proporcionar mayor energia para separarlas) como co-
rresponde al hecho de que tiene 3 enlaces de hidrégeno en lugar de 2. De hecho, la relacién de energias es
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E
pGC _ 92 16 ~ 3
Eyar 56 2

(4.6.2.7)

Medidas experimentales’> dan para las energias de enlaces (en fase gas) valores algo superiores de 8,4 x

10~2°] para A-T y de 14,6 x 10~2°] para el par G-C, de modo que nuestra cuenta simple es bastante

aproximada.

Diferencia de potencial entre dos placas paralelas cargadas

Volvamos a las 2 placas paralelas cargadas, modelo para la mem-
brana celular. Recordemos que el campo eléctrico entre las placas es
uniforme, apunta de la placa positiva a la negativa y vale en médulo
|E| = Z (ver ecuacién (4.27)) con o = % la densidad superficial de
carga de la placa positiva. Calculemos la diferencia de potencial entre
las 2 placas. De la definicién:

_wk
Mzwewzw—w:7ﬂ (4-47)
tomando un punto b en la placa positiva y un punto a en la placa
negativa como en la figura 4.24. Tenemos que calcular el trabajo

WaFg de la fuerza eléctrica para llevar una carga g desde a hasta b. La
fuerza eléctrica sobre una carga q es

F. =4E (4-48)

y apunta en la direccién del campo si tomamos una carga q positiva.
El campo va de la placa + a la — y es constante. Segtn la figura el
angulo entre fuerza y desplazamiento es 180° y el trabajo

Wqi = qlEld cos(r) = —q|E|d (4-49)
con 4 la separacion entre las placas. La diferencia de potencial queda

E, =
AV =V, -V_ _ Wap _ gl |E|d (4.50)
9 q
Notese que es una cantidad positiva, el potencial de la placa positiva
es una cantidad |E|d més alto que el potencial de la placa negativa.
Lo importante es la diferencia de potencial, podemos poner el cero
de potencial en cualquiera de las placas®. Por ejemplo, si tomamos el
cero de potenciales en la placa negativa V_ = 0 entonces

Vy=V,—-V_=AV =|Eld (4.51)

Si por el contrario, ponemos el cero de potencial en la positiva V; =
0, entonces V_ queda

Vo=Vo - Vi =—(Vy = V)= —|Eld (4.52)

15 Celia F. Guerra, F. Matthias Bic-
kelhaupt, J. G. Snijders, and E. Jan
Baerends. Hydrogen bonding in DNA
base pairs: Reconciliation of theory and
experiment. Journal of the American
Chemical Society, 122(17):4117-4128, 2000

_Q +Q
IE| =
al 4 b
—— D
F=qF 180
d

Figura 4.24: El campo entre dos placas
cargadas apunta de la placa con carga
positiva hacia la placa negativa. La fuer-
za eléctrica sobre una carga g es gE en
el mismo sentido. Si movemos la carga
q desde la placa negativa a la positiva el
angulo entre fuerza y desplazamiento
es 180°.

6 Jgual que podemos poner el o de
alturas en cualquier punto para calcular
AE, gravitatoria
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y en cualquier caso la diferencia V; — V_ es la misma. Esto es intere-
sante porque el potencial de membrana se define como Vi, — Vext y
normalmente se toma Veyx; = 0. Veamos un par de ejemplos.

SN M Diferencia de potencial de membrana

En unas determinadas condiciones, el campo de la membrana celular vale 0,75 x 10’ N/C y apunta

desde la superficie exterior a la interior. El espesor de la membrana es de 8 nm. ;Cudnto vale el potencial
de membrana? Si tomamos el potencial en la superficie exterior como 0V, jcudnto vale el potencial en el
interior?

SOLUCION

Si el campo apunta del exterior al interior, el exterior de la membrana esta cargado positivamente y el
interior negativamente (el campo va de cargas + a -). El potencial del exterior (placa positiva) es superior al
del interior (placa negativa). Segtin hemos visto entonces:

Vext = Vigg = Vi — V_ = |E|d = (0,75 x 10’ N/C)(0,8nm) = 0,060V = 60 mV (1.6.3.1)

Por tanto, el potencial de membrana, definido como Vj,; — Vx vale

Vint — Vet = —|E|d = —60mV (4.6.3.2)
Si tomamos V,,; = 0 entonces
Vipt = —60mV (4.6.3.3)
Resumiendo
exterior celular
Veat =0 Membrana en polaridad normal.

Potencial de reposo.

T e =
(]

Vint = —60mV

interior celular

Syl XXM Diferencia de potencial de membrana en polaridad inversa

Durante el potencial de accién, la polaridad de la membrana puede invertirse. Supongamos que el
campo de la membrana celular vale 0,4 x 10’ N/C y apunta desde la superficie interior a la exterior, al
contrario de la situacion de reposo. El espesor de la membrana es de 8 nm. ;Cudnto vale el potencial de
membrana? Si tomamos el potencial en la superficie exterior como 0V, jcuadnto vale el potencial en el
interior?

SOLUCION
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Si el campo apunta del interior al exterior, el interior de la membrana estd ahora cargado positivamente
y el exterior negativamente (el campo va de cargas + a -). El potencial del interior (placa positiva) es

superior al del exterior (placa negativa). Segtin hemos visto entonces:

Vigt — Vext = V4 — Vo = |E|d = (0,4 x 107 N/C)(0,8nm) = 0,032V = 32mV (4.6.4.1)

y ese es por tanto el potencial de membrana (siempre se define interior menos exterior). Si tomamos el

exterior cero V,,; = 0 entonces

Vint:32mV
Graficamente:
exterior celular
‘/'(”l‘f:O
O 0 0000 @0
~ membrana
RREERRNERR RS
® ®© 06606 6 6 6
Vint = 32mV

interior celular

(4.6.4.2)

Membrana en polaridad invertida

I
Relacién campo eléctrico y potencial
Las placas paralelas nos permite establecer otra relacion entre
campo y potencial eléctrico. Segtin hemos visto AV = V, — V_ = |E|d,
de modo que
|E| = % (453)
Si pensamos en una distancia pequefia entre dos puntos, el médulo
campo coincide con la variacién del potencial por unidad de lon-
gitud, esto es, el gradiente del potencial. Ademds sabemos que el
campo apunta de donde hay mayor potencial a donde hay menor
potencial ya que va de cargas positivas a negativas y el potencial ® i ®
cerca de cargas positivas es mayor que cerca de cargas negativas (ver ol—le
ejemplos anteriores). De hecho, rigurosamente si sabemos el potencial —
en el espacio, el campo es el menos gradiente del potencial: V=0 ® - ® = oomy
®_,|®
E = —grad(V), o bien E = —@V (4.54) exterior celular ! : interior celular
V() m?embrqno
segtin las diferentes notaciones. I [Bl=0 18] =gk |E]=0 .

Sin entrar en detalles matemaéticos, el campo apunta en la direc-
cion de mayor decrecimiento del potencial y es més intenso cuanto
mas rapido varie el potencial por unidad de longitud. Por ejemplo,
en zonas en las que el potencial es constante en el espacio, el campo
es nulo y viceversa. En la membrana celular, el campo estd confinado

Veat F0 ' ] T
'
' Vipe = —60mV

&nm
Figura 4.25: Potencial eléctrico a través
de la membrana celular. El salto de
potencial y el campo se restringen a la
zona interior a la membrana. Fuera el
potencial es constante y el campo nulo.

!
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a la region interna de la membrana, donde es uniforme y el potencial
pasa linealmente de 0V a Vj;,;; mientras que en el exterior el potencial
es constante (y el campo nulo), como en la figura 4.25.

Superficies equipotenciales

Una superficie equipotencial es el lugar geométrico de los puntos
de igual potencial eléctrico o potencial constante. El campo eléctrico
es perpendicular a las superficies equipotenciales: si nos desplazamos
cualquier distancia por una superficie equipotencial, por definicién
de diferencia de potencial, el trabajo es nulo, y por tanto la fuerza
eléctrica tiene que ser perpendicular a la superficie equipotencial.

En torno a una carga puntual, las superficies equipotenciales son
esferas (el potencial solo depende de la distancia a la carga, puntos
a igual distancia tienen igual potencial). En el interior de dos placas
plano paralelas cargadas con +Q y —Q son planos paralelos a las
placas (perpendiculares al campo).

Si dos supetrficies equipotenciales de potencial V; y V, estdn se-
paradas una distancia d, el médulo del campo es aproximadamente
E = |V} — V;|/d. Resumiendo, dadas unas superficies equipotenciales,
el campo:

= es perpendicular a las superficies en todo punto

= entre 2 superficies cercanas, apunta de la superficie a potencial

mas alto hacia la superficie a potencial més bajo'” 17 El potencial es mds alto cuanto mds
cerca de 400 y mds bajo cuanto mas
= es mds intenso cuanto mds juntas estan las superficies cerca de —oo. Por ejemplo, -6 es mds

alto que -10.

-Q Figura 4.26: Superficies equipotenciales
> (en color) superpuestas a las lineas de
> campo (en negro). El campo es perpen-
dicular a las superficies equipotenciales,
va de potencial alto a mds bajo, es més
intenso cudnto mds cerca estén las
lineas.

+Q

sup equipotencial

10V 8V 6V 4V 2V 0V

Por ultimo, vimos que en un buen conductor eléctrico el campo es
perpendicular a la superficie, de donde se deduce que la superficie
de un conductor es equipotencial, como por ejemplo las placas
paralelas de la figura 4.26.
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4.7 Capacidad de la membrana biolégica

La combinacién de dos planos paralelos cargados con carga Q y
—Q respectivamente es un elemento eléctrico que se conoce como
condensador o capacitor. Es un arreglo capaz de almacenar carga
separada una cierta distancia y por tanto acumula una cierta energia
eléctrica™. La relacién entre la carga almacenada y la diferencia de
potencial entre las placas es una magnitud fisica llamada capacidad C

Q

C= NG (4-55)

y se mide en “faradios”
[C] =1C/V =1F (4.56)

En el caso de las placas cargadas, la capacidad resulta no depender
de la carga o el potencial impuesto, si no ser una constante:

. Q Q€A
AV Fd_ 4 (4-57)

puesto que el campo entre dos placas es E = %, con A el drea de las
placas, y d la distancia entre las placas. Asi, diferencia de potencial y
carga son proporcionales en un condensador

Q=CAV = %AV (4.58)
y cuanta mds carga se acumule mayor serd la diferencia de potencial
y viceversa. Esto vale igualmente para una membrana bioldgica
cargada. La capacidad de la membrana biolégica depende del 4rea
de la membrana obviamente (como en (4.57)), pero podemos dar un
valor para la capacidad por unidad de area de la membrana C,

C €

Cn = A d (4.59)

Un valor tipico de la capacidad por unidad de drea de las membranas
bioldgicas es

Cn=1x10"2F/m? (4.60)

para axones sin mielina, mientras que en axones con vaina de mielina
es sensiblemente menor, aproximadamente

Cm =5x10"°F/m? (4.61)

lo que tiene implicaciones para la transmisién del impulso nervioso,
como veremos mds adelante.

¥ Los flashes de las cdmaras se alimen-
tan con un condensador normalmente
porque es capaz de proporcionar ener-
gia a la bombilla muy rdpidamente al
descargarse
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4.8 Corriente eléctrica

Pasamos a estudiar cargas en movimiento a través de un medio
material (un cable, una disolucién, el axén) lo que se conoce como
corriente eléctrica. Para mantener una corriente eléctrica durante un
cierto tiempo se necesita proporcionar energia de forma continua,
por ejemplo mediante una baterfa o un generador. Los primeros
experimentos de corriente que dieron lugar a la invencién de la
baterfa o pila por A. Volta estaban relacionados precisamente con la
“electricidad animal”, por parte de Galvani.

La bateria

Las baterias no generan la carga eléctrica, si no que la ponen en
movimiento. Mds especificamente las baterias proporcionan una dife-
rencia de potencial entre sus dos polos (uno positivo y otro negativo)
que mantiene la corriente. Por motivos histéricos, esta diferencia
de potencial se conoce también como “fuerza electromotriz” pero
no es una fuerza. Las cargas eléctricas (los electrones en los cables
metélicos normalmente) llegan a la baterfa por un polo. Esta les pro-
porciona una cierta cantidad de energia gAV y vuelven al circuito por
el otro polo donde esa energia se utiliza en los elementos eléctricos,
por ejemplo en una bombilla, para generar la luz y el calor.

Intensidad de corriente

La intensidad de corriente I es la cantidad de carga que atraviesa
una determinada seccién de un circuito o un elemento eléctrico (una
bombilla, una resistencia, un ventilador...) por unidad de tiempo:

_AQ
I= AL (4.62)
Sus unidades son c
1
1] = [%] = 1A (4.63)

que recibe el nombre de “amperio”. La intensidad de corriente se
define de forma que una carga positiva circula desde el polo positivo
de la bateria al polo negativo, perdiendo energia potencial eléctrica.
Dentro de la bateria circula del polo negativo al positivo y gana
energia potencial eléctrica™®.

Este es el signo convencional de la intensidad de corriente, aunque
hoy sabemos que por ejemplo en los metales la conduccién eléctrica
se debe a electrones poco ligados que circulan del polo negativo
al positivo de la bateria a través del circuito. A todos los efectos*°

“ o

una carga negativa circulando de “-” a “+” es como una positiva

" La pila transforma energia quimica en
energia potencial eléctrica para hacer
esto

20 Bueno, no todos, el efecto Hall
permite distinguir si los portadores
son positivos o negativos. Pero no
entraremos en eso en este libro.
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73

circulando de “+” a “-” por lo que tomaremos el sentido habitual de

la corriente.

Resistencia eléctrica. Ley de Ohm

En muchos casos la intensidad de corriente en un elemento eléc-

trico es proporcional a la diferencia de potencial que se le aplica®’. A 2 Es un poco como el flujo de agua en
una tuberfa, que serd mayor cudnto mas
alto esté el depésito desde el que fluye
el agua.

esto se le conoce como ley de Ohm:
V =1IR (4.64)

donde V es la diferencia de potencial aplicada al elemento eléctrico en

cuestion, I la intensidad que lo recorre, y R se conoce como resistencia
eléctrica, ya que a mayor R menor [ para el mismo V aplicado. Aun-
que es una diferencia de potencial aplicado y seria mejor escribir AV
normalmente se acepta escribir V en la ley de Ohm.

Para muchos materiales, la R es aproximadamente constante y no
depende de la intensidad que recorra el elemento, sobre todo para
buenos conductores como los metales. La resistencia tiene unidades:

Vv
R:7:>[R]:1V/A:10 (4.65)
que recibe el nombre de “ohmio”. Veamos un ejemplo simple de la
ley de Ohm.

SECER A Una bombilla conectada a un pila

La bombilla de la figura tiene una resistencia eléctrica de 6 ). La

baterfa es de 12 V. Calcular la intensidad de corriente que circula por
la bombilla. Figura 4.27: Circuito del ejemplo 4.8.1.

SOLUCION

La bateria proporciona una diferencia de potencial de V' = 12 V. Por el momento pensemos que los
cables no ofrecen resistencia y trasladan directamente el potencial de un otro extremo al otro del cable. La
bombilla tiene aplicada una diferencia de potencial entonces de V = 12 V. Utilizando la ley de Ohm sobre
la bombilla:

VelRo =212V 54 (1.8.1.1)
R 60
Noétese que el hecho de circular una corriente por la bombilla (o por cualquier resistencia) hace que las
cargas (de valor q) pierdan energia potencial eléctrica (V) ya que antes de entrar en la bombilla las cargas
estaban a un potencial 12V y salen a 0V, por ejemplo, o cualquier otros dos ntimeros que den la misma
diferencia de potencial. ;Dénde se ha ido esa energia? Obviamente se transforma en luz y calor emitidos
por la bombilla.

El origen microscépico de la resistencia de los materiales al paso
de la corriente eléctrica es variado. En el caso de los metales, se debe
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esencialmente a las colisiones de los electrones con los 4tomos de
la red cristalina del metal que estdn en vibracién. En el caso de una
disolucién, la electricidad se transmite si hay iones disueltos y la
resistencia dependerd de la mayor o menor movilidad de los iones
a través del fluido, de la cantidad o concentracién de ellos, y de la
carga que tengan.

Resistividad de un cable eléctrico y del axon

La resistencia de un segmento de material conductor (un cable
por ejemplo) es proporcional a la longitud. A mayor longitud, mayor
nimero de colisiones de los electrones. Es ademads inversamente
proporcional al drea de la seccién transversal del conductor, pues
se puede mover mayor cantidad de carga a través del cable para la
misma diferencia de potencial:

L
Re— (4.66)

Finalmente, la resistencia depende del material del que este hecho
el cable. Esto se mide mediante una propiedad del material llamada
“resistividad” (p), de modo que

L
R=p= (4.67)

La resistividad es baja en los buenos conductores (metales) y alta
para los aislantes eléctricos. Las unidades de la resistividad son

2
p=R%$[p]=%=lQ-m (4.68)
La resistividad del axén que transmite el impulso nervioso es,

segun el libro de Kane®* de p, = 2Q) - m. Los valores en la literatura
oscilan entre 0,3 — 0,7 () - m para los axones de calamar, y algo supe-
rior para vertebrados, en torno a 0,8 —2() - m siendo 1() - m un valor
comunmente aceptado como valor representativo?3. Es en general pa-
recida al agua de mar, ya que es esencialmente agua con iones desde
el punto de vista eléctrico. Este valor es intermedio entre aislantes
y conductores, mds bien aislante. Resulta quizds sorprendente que
el medio empleado para la transmisién del impulso nervioso sea de
un material que uno considerarfa como un aislante de la electricidad.
Esto indica probablemente que dicha transmisién es en realidad mds
complicada que la simple conduccién eléctrica a través de un cable,
como veremos en secciones posteriores.

SRRl Resistencia del axon

material o(Q)-m)
Plata 15,9 x 10~
Cobre 16,8 x 1077

Agua de mar 0,3
Agua pura 2,5 x 10°
Vidrio 1010 — 1014

2].W. Kane and M.M. Sternheim.
Physics. Wiley, 1988

*» John Bekkers. Resistivity, Axial, pages
2617-2619. Springer New York, New
York, NY, 2015
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Calcule la resistencia total R de una porcién de 1 cm de largo de axén sabiendo que p;, = 1Q)-m y el

radio es r = 5um.

SOLUCION

Utilizando directamente (4.67):

L L  (1Q-m)(1m) N
R =P =P = 2 x10om) =

1,3 x 1080 (4.8.2.1)

Por comparacion, si el cable estuviera hecho de cobre de didmetro razonable para un cable d = 0,08 mm,

bastante mds grueso que el axén, se necesitarian unos 39 000 km de cable para tener la misma resistencia

eléctrica que el axén.

Circuitos

Un circuito eléctrico normalmente tendréd una bateria o fuente de
alimentacién y uno o varios elementos eléctricos con una determina-
da resistencia*4, conectados por cables. En general la resistencia total
de los cables es muy pequeria frente a la resistencia de los demas
elementos, por lo que podemos habitualmente considerar que los
cables no tienen resistencia. Esto significa que el potencial es igual en
todos los puntos conectados por un cable (la diferencia de potencial
entre extremos de un cable es V = IR =~ 0).

Vamos a estudiar los circuitos en situacion estacionaria (corriente
constante) en corriente continua, no alterna. Veamos primero un
ejemplo muy sencillo, similar al anterior de la bombilla

SEJERIKE El circuito mas simple

La bateria del circuito de la figura 4.28 es de 12V y la resistencia

de 120 Q). Diga cuél es la diferencia de potencial entre los bornes de
la resistencia y dénde es mayor el potencial en el punto a o b. Calcule
la intensidad que recorre el circuito.

SOLUCION

Como interesan solo las diferencias de potencial, podemos tomar
el borne negativo de la baterfa como origen del potencial, esto es
V_ = 0V. El polo positivo tiene por tanto V; = 12V.

En los cables no hay caida o diferencia de potencial. De este modo,
en el punto a el potencial es el mismo que en el borne positivo de
la bateria, 12 V. Igualmente, en b el potencial es o. La diferencia de
potencial en los extremos de la resistencia es

Vp=Va—V, =12V (4.8.3.1)

>y capacidad, o autoinductancia, etc...
pero aqui veremos elementos resistivos
solo, salvo en el circuito RC

12V
IOV

— W\

Figura 4.28: Circuito compuesto por
una resistencia, una bateria y los cables
que los unen
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|
R
siendo el punto a el que estd a mayor potencial. Eso significa que la + =
corriente fluye desde el punto a al b, como por otra parte sabiamos R
por los polos de la bateria. Finalmente calculamos el valor de la I 12V 0V
intensidad: ‘—‘—W_l‘)—
a
Vab =JR=1= @ = ﬂ =0,1A ( ‘2) Figura 4.29: Solucién del circuito, se
R 12000 indica el valor del potencial en los

que fluira del borne positivo al negativo como se muestra en la puntos ay by el sentido de la corriente

solucioén (figura 4.29).
I

¢Qué ocurre si complicamos el circuito y ponemos 2 resistencias
seguidas (en serie)?

Resistencias en serie, circuito equivalente

Supongamos que ahora tenemos el circuito de la figura 4.30 con
dos resistencias en serie, de forma que la corriente pasa primero
por una resistencia y luego por la otra. ;Cémo calculamos ahora la
intensidad de corriente que circula por el circuito?

Uno podria intentar aplicar la ley de Ohm a la resistencia R4
por ejemplo. Sin embargo, inicialmente no conocemos la diferencia
de potencial aplicada a la resistencia R; que seria la diferencia de
potencial entre los puntos a y c¢. Conocemos V,;, =V, — V}, que estara
dado por el voltaje de la bateria, en este caso, V, = V, =V, =
12V, pero este voltaje no seria el correcto para la ley de Ohm en la
resistencia Ry que cumple

Vae =Va— Ve = 1Ry (469)
Analogamente, para la resistencia R, tenemos
Voo =Ve—Vy =IR; (4'70)

donde es importante darse cuenta de que la intensidad que circu-
la por ambas resistencias es la misma, al estar colocadas en serie.
Sumando ambas ecuaciones tenemos

Vet Vp = Vo= Ve+ Vo=V = V=V, = Vi = IR; + IRy = I(R1 + R,)

(4-71)

o bien

VbII(Rl+R2)=>1=i (4.72)

’ (R1+Ra)
. . . . . . 12V
que nos permite calcular la intensidad que circula por el circuito | OV
ya que V;; coincide con el voltaje de la bateria, en este caso 12'V. ItT
Por dltimo, utilizando ahora (4.69) podemos calcular el voltaje en el * " .
punto c (V) y las diferencias V;c y V, si fuera necesario. LM?L
Es 1til pensar en el llamado circuito equivalente. Imaginemos que a c b

Figura 4.30: Asociacién en serie de dos
resistencias. La corriente que circula por
ambas es la misma.

mantenemos la bateria pero sustituimos las resistencias R; y R»
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por una sola que llamaremos resistencia equivalente R.;, como en

el circuito de la figura 4.31. ;Cudnto tiene que valer la resistencia
equivalente para que por el circuito equivalente circule la misma
corriente que en el que tiene R; y R,? Aplicando la ley de Ohm a esta
resistencia equivalente tenemos

V,
Vip = IReg = I = 2 (473)
Req
Comparando esta expresion con (4.72) vemos que
Req =Ri1+R; (4-74)

A todos los efectos eléctricos podemos sustituir la asociacion serie de
R1 y Ry por una resistencia de valor igual a la suma de ambas.

Si tenemos més resistencias, podemos ir agrupando sucesivamente,
de modo que la resistencia equivalente de un conjunto de resistencias
R1, R;y... Ry colocadas en serie serd la suma total de todas ellas:

Reg=Ri+Ry+Rs...+ Ry (4-75)

Resistencias en paralelo, circuito equivalente

Otra posibilidad frecuente es conectar dos resistencias en paralelo,
de manera que la intensidad de corriente se divide o reparte entre
ambas ramas, pasando en general corrientes distintas por cada
resistencia, como en la figura 4.32. Esta es la manera en la que se
conectan los aparatos eléctricos en las casas por ejemplo en un ladrén
o una regleta.

¢Coémo calculamos la intensidad I que circula por el circuito? ;y
las corrientes Ij e I, que circulan por cada resistencia? Comenzamos
con la ley de Ohm

Vap = 1 Rq
Vb = bR

(4.76)
(4.77)

donde es importante sefialar que la diferencia de potencial en los
bornes o extremos de cada resistencia es la misma, y en este caso es
conocida porque es directamente la de la bateria. Podemos por tanto
despejar las intensidades I; e I»:

Vap
L =-2 78
1T R (4.78)
Vb
L= .
2= R, (4-79)

(Pero cudnto vale la intensidad total? La conservacién de la carga
implica que

I=L+D (4.80)

12V
|, 0V
I I

4+ —
I 12V 1 4 A_OV
a b
Figura 4.31: Este circuito serd equiva-

lente al de la figura 4.30 si tomamos
Reg = Ry + Ry

a |1, 12

Figura 4.32: Asociacién de dos resis-
tencias en paralelo. La diferencia de
potencial (V,, = V,; — V}) en los extre-
mos de ambas resistencias Ry y Ry es la
misma.
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Veamos ahora el circuito equivalente. Sustituimos las dos resistencias 12V 0V
en paralelo por una sola R.;. ;Cuédnto debe valer R,; para que la I L
intensidad total sea la misma?. I I
En el circuito equivalente tendremos de nuevo + -
V,
[ = b (4.81) Req

Ry’ I 12V14A ov
En el circuito original, utilizando (4.80) y (4.79) tenemos a b

Figura 4.33: Este circuito sera equiva-

. o Vo Vb B 1 1 lente al de la figura 4.32 si tomamos
I=h+h=1I=3"+%, Vol T/ (482) Ry = il

Con estas dos tltimas ecuaciones vemos que ambos circuitos son
equivalentes si
1 1 1 R1Ry

— =—+—=R

a2 8
Ry Ri R " Ri+R, (4-83)

Al igual que antes, podemos a todos los efectos sustituir el circuito
de dos resistencias en serie de la figura 4.32 por uno con una sola
resistencia de valor R,; como en la figura 4.33.

Finalmente, si tenemos mds resistencias en paralelo sometidas a la
misma diferencia de potencial, por ejemplo N resistencias, podemos
ir agrupando de dos en dos y el resultado serd

11 1 1
= (4-84)

— = 4.

Ry Ry R Ry
de donde se puede calcular el inverso de Re; y después se invierte
para obtener el valor de Reg.

Asociaciones de resistencias serie y paralelo

En el caso de que tengamos una combinacién mas complicada
de resistencias, podemos llegar a un circuito equivalente total sus-
tituyendo primero agrupaciones de resistencias en paralelo por su
equivalente y luego finalmente todas las que estén en serie por su
equivalente serie. Llegar al circuito equivalente nos permite calcu-
lar la intensidad que circula por el circuito al completo. Veamos un
ejemplo.

SEJCER XM Asociacion de resistencias

En el circuito de la figura 4.34, donde Vp;; =24V, R1 =3Q, Ry =20y R3 =150 calcule:

a) La intensidad que circula por el circuito
b) La diferencia de potencial aplicada a la resistencia R;

¢) La intensidad de corriente I, que circula por el la resistencia Ry
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Figura 4.34: Circuito de ejemplo. Son co-
nocidos los valores de las resistencias y
el potencial aplicado a todo el circuito.

SOLUCION

Comenzamos agrupando las resistencias en paralelo R, y R3 y sustituyéndolas por su equivalente que

Ilamamos Ry3:
~ RRs  (20)(15Q) _
R = Rt rs ~ 20 +150 ~ 0860 (540

y sustituimos llegando al circuito equivalente de la figura 4.35.  Ahora podemos agrupar R; y Rp3 que

Voat Figura 4.35: Paso 1. Circuito equiva-

L lente tras sustituir la combinaciéon Rj
I en paralelo con Rj3 por su resistencia

equivalente Ry3.

estan en serie:

Ri23 =R;+Rp3=30+0,860 =386 ( .2)
quedando el circuito equivalente total como en la figura 4.36.  Con esto podemos calcular la intensidad
Vbat Figura 4.36: Paso 2. Circuito equiva-
| | lente tras haber agrupado todas las
I I resistencias. Ahora es facil calcular la

intensidad total I que recorre el circuito.

Ria23

que recorre el circuito

Vi 24V
_ = 2V 62 A .
Ris 3860 % (4:8.4.3)
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Esta intensidad circula por las ramas sin bifurcar del circuito, como a través de la bateria o por la resisten-
cia Ry. Al llegar a las resistencias en paralelo se divide de forma que

I=h+1s (4:5.4.4)
Para calcular por ejemplo la I, podriamos aplicar la ley de Ohm a la resistencia R;
Voe = Ry (4.8.4.5)

teniendo en cuenta que el potencial que se aplica a la resistencia no es el de la baterfa directamente.
Necesitamos calcular esa diferencia de potencial. Una manera es recurrir a la resistencia equivalente Rp3 y
el circuito de la figura 4.35. Por la resistencia Rp3 si circula la intensidad total I y entonces

Vie = IRy3 = (6,22A)(0,86Q) =53V (1.8.1.6)

Notese que en las resistencias R y R3 cae el potencial 5,3 V. La otra caida de potencial hasta completar los
24V de la bateria ha de producirse en la resistencia Ry ya que Ve = V, + V., (puede comprobarse con
Vap = IRq). Finalmente, ya podemos calcular I:

Vie 53V

Vbc:IZRzélzzsz— 0

=28A (4.8.4.7)

De nuevo, tiene que cumplirse que I = I, 4 I3 de donde podriamos sacar I3 o bien V. = I3R3. Si estd
correctamente resuelto ambas deben dar lo mismo para I3, salvo error de redondeo.

I
Vab
Potencia eléctrica R
Cuando una cierta carga circula por un elemento eléctrico de I
resistencia R, desciende en el potencial (recuerde que V, =V, =V, = ﬂ—m—ﬁ
IR > 0, luego V, > V},) y pierde energia. Esa energia se utiliza en el Figura 4.37: La diferencia de potencial
aparato para producir el efecto deseado o se pierde en forma de calor, Vap en los extremos de la resistencia R

., . hace que circule una intensidad dada

0 ambas cosas en general. Recordando la relacién entre potencial Vi, .
o ) ] o por laley de Ohm [ = -#. La potencia

eléctrico y energia potencial eléctrica, E, = qV, podemos calcular el consumida o disipada en forma de calor

ritmo de consumo de energia o potencia consumida en el elemento es P = IV

eléctrico. La potencia consumida o disipada por un elemento eléctrico

por el que circula una corriente I es

vV
p=T2 v, (4.85)

Es facil ver que la potencia eléctrica tiene en efecto las unidades
adecuadas:

C
[P]:[I][V]:lAV:lg%=1]/5=1W (4.86)
Ademas, en la resistencia se ha de cumplir V,;, = IR, de modo que
la potencia se puede expresar de distintas formas, segtin convenga,
sustituyendo bien el potencial o la intensidad en la férmula de la
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potencia. En general, la conservacion de la energfa impone que un
circuito la suma de las potencias consumidas por los elementos

ha de ser generada en la bateria o la fuente de alimentacién que
proporciona la diferencia de potencial. Recuerde que en la bateria
la carga positiva aumenta su energia potencial desde que entra por
el borne negativo hasta que sale por el positivo. En tltimo término
podemos ver la bateria como un conversor de energia quimica en
eléctrica, que luego se utiliza en el resto del circuito.

4.9 Transmision del impulso nervioso

Carga y descarga de un condensador

Como veremos maés adelante, la transmisién del impulso nervioso
consiste en la despolarizacion y repolarizacién de la membrana del
axon. Puesto que la membrana tiene una cierta capacidad, cambiar
la carga eléctrica acumulada en la membrana es similar a cargar o
descargar un condensador.

Si conectamos una baterfa y un condensador, a través de una
resistencia obtenemos un circuito RC en serie, como en la figura
4.38. Al conectar la bateria al condensador inicialmente descargado,
aparece una corriente eléctrica y el condensador de capacidad C va
acumulando carga y aumentando la diferencia de potencial a medida
que acumula carga. El proceso se detendréd cuando la diferencia de
potencial del condensador iguale al de la bateria y la corriente deje
de fluir. Esto ocurre en un tiempo que es del orden de magnitud del
producto RC:

T~ RC (4.87)

donde C es la capacidad del condensador y R la resistencia a través
de la cual pasa la corriente que llega al condensador. Es facil com-
probar que RC es en efecto un tiempo, aunque a primera vista no lo
parece:

[R][C] =1QF (4.88)

Recordando las ecuaciones V = IRy Q = CV podemos escribir el
“ohmio” y el “faradio” en funcién de otras unidades

[RI[C]=10F=1V/AxC/V=1C/A=1Cxs/C=1s (4.89)

Al principio el condensador no tiene carga ni diferencia de po-
tencial entre sus placas (recuerde la relacién entre diferencia de
potencial en un condensador y su carga Q = CV). La corriente es
muy alta inicialmente y el condensador acumula carga muy rapido.
Cuando esta casi totalmente cargado, la diferencia de potencial en el

12V
| Y
| ! b
+ - =120V
3V
R I a

Figura 4.38: Circuito RC en el proceso
de carga. Inicialmente el potencial

del condensador (V, — V3) es bajo, la
intensidad alta. La corriente que llega
al condensador carga las placas del
condensador. El potencial del conden-
sador aumenta y se opone al potencial
de la bateria, reduciendo la intensidad
que circula por el circuito. Finalmente,
cuando los potenciales se igualan, la
corriente es nula y la carga no aumenta
mas.

|
I
I
I
I
I
I
|
I
:
/ |
"/ RC 2RC 3RC
|
V

5 6
t(s) x10®
Figura 4.39: Carga de un condensador

en un circuito RC serie. R = 2Qvy
C = 1pFdan un tiempo de carga
T = RC = 2ups. Laraya discontinua

horizontal marca el valor final de carga
Qf = CVpyy con Vyy €l voltaje aplicado
al condensador para cargarlo. Las rayas
verticales discontinuas marcan los
tiempos t = T,t =271y t = 37.
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condensador es casi igual a la de la baterfa, pero se opone al sentido
de la corriente inicial. Hacia el final de la carga, la corriente es muy
baja, casi nula. Esto supone un aumento exponencial®> de la carga
como en la figura 4.39. Como se ve en dicha figura, en un tiempo RC
el condensador ha alcanzado aproximadamente el 62 % de la carga
final y en 3RC practicamente esta totalmente cargado.

La descarga se produce de forma similar. Si conectamos un con-
densador cargado inicialmente a una resistencia como en la figura
4.40, este se descargard a través de la resistencia, con una corriente
inicialmente muy alta e ird disminuyendo a medida que decrecen
tanto carga como potencial del condensador. La forma de la curva
también es exponencial y el tiempo vuelve a ser del orden de RC.
Esto se puede ver en la figura 4.41.

Potencial de membrana. Ecuacién de Nernst

Como hemos visto, en el interior de la membrana celular hay
habitualmente un campo eléctrico. Dependiendo del estado de
polarizacion de la membrana (normal o invertido) el campo eléctrico
puede apuntar hacia el interior o hacia el exterior de la célula. Este
campo eléctrico supone que hay una diferencia de potencial entre el
exterior y el interior, llamado potencial de membrana, Vy,. El potencial
de membrana siempre se expresa como diferencia de potencial
interior menos exterior, y es habitual tomar V,y; = 0, de modo que

Vin = Ving — Vext (4.90)

Como hemos visto anteriormente, si V,;; < 0 entonces el exterior
de la célula estd a mayor potencial y el campo apunta del exterior al
interior de la célula. Esta es la polaridad normal. En caso de V;;, >
0, el campo apuntara del interior al exterior. Esta es la polaridad
inversa.

En presencia de iones, estos pueden verse arrastrados por el
campo eléctrico (en el sentido del campo eléctrico en caso de iones
positivos y en contra del campo en caso de iones negativos). En
ausencia de otro efecto, esto tenderia a acumular iones en uno u otro
lado de la membrana. Sin embargo, la agitaciéon térmica produce
difusion y los iones tienen otra tendencia a difundir desde las zonas
de mayor concentracién a zonas de menor concentracién. Un ion
estard en equilibrio cuando ambas tendencias estén equilibradas.

La relacién entre las concentraciones y el potencial de membrana
que produce el equilibrio estd dado por la ecuacién de Nernst (ver
seccioén sobre fluctuaciones 3.11).

kT Coxt
VN — VN = 2" Jog ==
int ext q Og Cint

(4.91)

> La dependencia exponencial se puede
obtener integrando la correspondiente
ecuacion diferencial, lo que excede del
temario del curso

_tbov

++512V
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Figura 4.40: Circuito RC en el proceso
de descarga. Inicialmente el conden-
sador se carg6 utilizando una bateria
de 12V y el voltaje del condensador

Vu =V, = 12V). Se establece una
corriente alta inicialmente y el conden-
sador se descarga, disminuyendo su
carga y potencial de forma exponencial
hasta. La carga positiva se traslada a tra-
vés del circuito hasta la placa negativa
compensédndose la carga. La descarga
finaliza cuando no queda carga en el
condensador.
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Figura 4.41: Descarga de un condensa-
dor en un circuito RC serie. R = 2Qy
C = 1pF dan un tiempo de descarga
7 = RC = 2ps. El condensador comien-
za con una carga Qo = CVjpy con Vi
el voltaje que se aplic6 al condensador
para cargarlo inicialmente. Las rayas
verticales discontinuas marcan los
tiempos t = T,t =271y t = 3T.
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donde Cj; y Cext son las concentraciones de un determinado ion, k
la constante de Boltzmann, T la temperatura absoluta del sistema, q
la carga total de un ion con su signo, y finalmente VN, — V., es el
potencial de membrana al que se darfa el equilibrio para ese cierto
ion.

Tomemos la situacion del ion KT reflejada en la figura 4.42. Como
estd cargado positivamente, el campo eléctrico tiende a introducir
iones K™ en la celda, produciendo un flujo hacia adentro debido al
campo eléctrico. Por otro lado, como el potasio se encuentra mds
concentrado en el interior que en el exterior tiene una tendencia a
salir debida a la difusién. Ambas tendencias se equilibran cuando se
cumple la ecuacién (4.91) tomando los datos del potasio.

El potencial de membrana es uno solo en cada momento, y en
general, para un determinado ion no tiene por qué coincidir con
el potencial de Nernst de dicho ion. ;Para qué nos sirve entonces
el potencial de Nernst de un i6n? Tiene dos funciones principales,
relacionadas,

= Permite saber qué flujo domina para un determinado ion, dadas
unas concentraciones y un potencial de membrana

= Indica hacia dénde evolucionaria el potencial de membrana si se
dejara circular libremente el ion en cuestiéon

Para entender esto, basta con pensar que dejado libremente el sistema
tenderd hacia el equilibrio. Por otro lado, hay que recordar que un
ion positivo crea potencial positivo y uno negativo crea potencial
negativo. Asi, si entran cargas positivas, esto tendera a subir el
potencial interior hacia més positivo. Si entran cargas negativas, lo
modificard hacia més negativo.

Veamos algunos ejemplos.

SEJE KR Potencial de Nernst del Na

exterior celular ® baja concent. K~

® FuoE  FluoDif ®
A

Veat =0

POLLP LT L L] L]z menerene

Vint = —60mV
® ® olto concent. K~

y

®

interior c.elulor. ® ®
Figura 4.42: Flujos debidos a electrici-
dad (azul) y a difusién (rojo). En este
caso el campo eléctrico apunta hacia
adentro, arrastrando iones positivos co-
mo el potasio hacia el interior. Por otro
lado, el potasio estd mds concentrado
en el interior, por lo que se establece un
flujo de difusién hacia la zona menos
concentrada, en este caso el exterior.
Ambos flujos se equilibrardan cuando el
potencial de membrana coincida con el
potencial de Nernst del ion potasio.

En una determinada célula, las concentraciones exteriores e interiores del ion sodio son [N a*]m =
145mol/m3 y [Na*];,; = 12mol/m3. Si el potencial de membrana es —90mV y la temperatura T = 37°C

indique
a) El sentido del flujo debido al campo eléctrico de membrana

b) El sentido del flujo debido a la difusién

c) El sentido del flujo neto si se permite el paso libremente al ion sodio.

SOLUCION

a) Para responder a la primera pregunta, tenemos que ver en qué direccién apunta el campo eléctrico.

Puesto que el campo apunta de potenciales mayores a potenciales menores, en este caso de potencial
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exterior celular + Figura 4.43: Sentido de los flujos por
alta concent. Na 8 jos p

. . . . . . . . . campo eléctrico, difusion y neto.

® ruot _ FloDir®

T T e

®
NETO
.

baja concent. Na"

interior celular

interior menor que el exterior, el campo apuntaré de fuera a dentro. Como el Na™ es positivo, siente una
fuerza en la misma direccién y sentido que el campo, por lo que el Na™ tiene tendencia a entrar en la
célula debido al efecto del campo eléctrico.

El flujo de difusion lleva los iones de la zona de mayor concentracién a la de menor concentracién. En
este caso, del exterior al interior. De modo que debido a la difusién el ion Na™ tiene tendencia a entrar.

Puesto que los dos efectos, eléctrico y de difusion, tienden a introducir Na™ en la célula, el flujo neto ira
en el mismo sentido, desde el exterior al interior. Podemos corroborar esto calculando el potencial de
Nernst del sodio en estas condiciones

kT [NllJr]gxt
Ve = Vi, = Vi = —log —— :
Na+ = Vint ext q og NZam ( 1)
tomando g = 1,6 x 10712 C, T = 310K y las concentraciones sefialadas obtenemos
VN =N — VN, = +67mv (4.9.1.2)

El sodio estaria en equilibrio con un potencial de membrana positivo (habria entonces campo hacia

el exterior y el flujo eléctrico compensaria el de difusién que seguiria siendo hacia dentro). Como

el potencial de membrana es inicialmente negativo, para que el sodio consiga llevar el potencial de
membrana interior de negativo hacia positivo, tendria que entrar en gran cantidad. El sodio al entrar, al
ser cargas positivas, harfan subir el potencial hacia +66 mV. Esto corrobora el sentido del flujo neto que
hemos deducido anteriormente.

En el ejemplo anterior, ambos flujos apuntaban en el mismo senti-

do, por lo que ha sido muy facil establecer el sentido del flujo neto.

Veamos cémo discernir el sentido del flujo neto cuando campo eléctri-

co y difusién producen flujos en sentido contrario.

SERCE Xl Potencial de Nernst del K™

En una determinada configuracién, encontramos ion potasio en con las siguientes concentraciones:

[K*]ext = 4mol/m? y [K*];; = 155mol/m?3. Para un potencial de membrana —90mV y la temperatura
T = 37°C indique



FISICA APLICADA A LA BIOLOGIA 135

a) El sentido del flujo debido al campo eléctrico de membrana
b) El sentido del flujo debido a la difusién

c) El sentido del flujo neto si se permite el paso libremente al ion potasio.

SOLUCION

a) El potencial es menor en el interior que en el exterior celular, por tanto, el campo eléctrico apunta desde
el exterior hacia el interior. El ion K™ tiene carga positiva, por lo que debido al campo eléctrico se ve
arrastrado hacia el interior.

b) La concentracién de potasio es mayor en el interior que en el exterior, de modo que debido a la difusién,
el potasio tiene tendencia a salir.

¢) En este caso, la difusion tiende a sacar el ion, el campo eléctrico a introducirlo. ;Qué flujo es mayor?
Podemos responder calculando el potencial de Nernst del K™, que nos indica a qué potencial de mem-
brana se equilibran ambos flujos (y no hay flujo neto). Con los datos del enunciado tenemos, para estas
concentraciones, con g = +e = 1,6 x 10719 C:

kT
VY =V Vi = ?log

J’_
Eﬁ 4?": ~ —98mV (1.9.2.1)
m

int
Elion K™ estarfa en equilibrio en un potencial de membrana de -98 mV. El potencial de membrana en
la situacién descrita es -90mV por lo que el potasio se encuentra casi en equilibrio, siendo ambos flujos
muy similares en intensidad. No obstante hay una ligera tendencia hacia el equilibrio. Para llevar el
potencial de membrana de -90mV hacia -98 mV transportando un ion positivo como el potasio la tnica
manera es que éste salga del interior, bajando atin mas el potencial. Esto nos indica que el K™ tiene,
en esta situacion, algo de tendencia a salir. Consecuentemente, ademads, podemos ver que el flujo que
apunta hacia afuera, el de difusién, es necesariamente ligeramente mayor.

exterior celular

@ FluokE Flyjo Dif.

Figura 4.44: Sentido de los flujos por

baj t K"
QJa concent. campo eléctrico, difusion y neto.

Vezt =0

[§ TTLTTTITTTTTE oo

F, -
. . . NETO ‘ Vit = —90mV
® ® t.
® @ olto concent. K*

interior celular

Veamos también un ejemplo con un ion negativo.

SE KN Potencial de Nernst del CI
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En una determinada configuracién, encontramos ion cloro en con las siguientes concentraciones:
[CI7]ext = 120mol/m3 y [CI™];; = 4mol/m3. Para un potencial de membrana —90mV y la tempera-
tura T = 37 °C indique

a) El sentido del flujo debido al campo eléctrico de membrana
b) El sentido del flujo debido a la difusién

c) El sentido del flujo neto si se permite el paso libremente al ion.

SOLUCION

exterior celular Figura 4.45: Sentido de los flujos por

. . . alta concent. CI™ campo eléctrico, difusién y neto.

@ Flujo E ® Flujo Dif. @

emt—o

O T LI T T T oo

znt = —-90mV
@ @

interior celular

@ @ bojoconcent. Cl™

a) De nuevo el campo eléctrico apunta del exterior al interior. No obstante, al tener el cloro carga negativa,
la fuerza que siente apunta en direccién contraria al campo, por lo que el campo eléctrico tiende a
extraer iones cloro.

b) El sentido del flujo debido a la difusién de cloro es hacia el interior, como corresponde al hecho de que
estd mas concentrado en el exterior.

¢) Ambos flujos tienen sentidos contrarios. Para ver cudl es mayor calculamos el potencial de Nernst para
el ion cloro, teniendo en cuenta que ahora g = —e = —1,6 x 107 C:
kKT . [Cl7]ext (4,28 x 10721]) 120

VCI* V —vN = r log C o = (C16x10-7C) logT ~ —91mV ( 1)

El ion cloro se encuentra casi en perfecto equilibrio, ambos flujos practicamente igual de intensos. Tiene
una ligerisima tendencia a entrar, y llevar el potencial de membrana hacia un poco més negativo.

I

El potencial de accién

El impulso nervioso consiste en un potencial de accién que despo-
lariza la membrana (invierte los signos de las cargas en el exterior e
interior) y se transmite a lo largo del axén. Después, el axén vuelve a
polarizarse en la situacién normal, con carga positiva en el exterior y fon  Cext (mol/m?)  Cint (mol/m)
negativa en el interior. El campo eléctrico o el potencial de membrana 1\1]< ”: 145 2
sufren por tanto una inversién durante un breve periodo. clr- 120 1i5

otros(-) 29 163

Tabla 4.1: Concentracién de iones en el
exterior e interior del axén.
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Vamos a estudiar brevemente el potencial de accién. En la situa-
cién de reposo, las concentraciones de diferentes iones son como se
reflejan en la tabla 4.1. Ademds el campo eléctrico apunta hacia el
interior del axén y el potencial de membrana de reposo es en torno
a —90mV. Las cargas eléctricas se colocan como en la figura 4.46,
con un pequerfio exceso de carga positiva en el exterior y negativa en
el interior. Las concentraciones de la tabla son exactamente las que
hemos usado en los ejemplos de potencial de Nernst de la seccién
anterior, por lo que las conclusiones que hemos obtenido se aplican
aqui también.

Supongamos que en el extremo izquierdo del axén producimos un
aumento del potencial. Esto puede hacerse con un microelectrodo, o
porque llega una onda de despolarizacién desde la izquierda. Pueden
darse dos situaciones, diferentes, dependiendo de si se supera un
determinado umbral que, para fijar ideas, vamos a situar en torno a
—50mV:

= El potencial sube pero no se supera el umbral (por ejemplo sube
hasta —60mV. Esta perturbacién decae y se vuelve a la situaciéon
normal.

= El potencial supera el umbral. Entonces se abren los canales de
Na*t

Los canales de Na*t son unas proteinas transmembrana que estan
controladas por el potencial de membrana. Al superarse el umbral, se
abren y dejan fluir libremente al ion Na*. Mirando la tabla, podemos
ver que el ion Na™ tiene tendencia a entrar en la célula debido a la
difusion. Ademads también entra debido al arrastre por el campo. De
este modo hay un gran flujo de ion sodio hacia dentro. La situacién
es igual que la del ejemplo 4.9.1 como se ve en la figura 4.47. Esta
entrada de carga positiva hace aumentar el potencial en direccién
hacia el potencial de equilibrio del ion Na™, que como vimos en el
ejemplo es +33 mV. Esto estd representado en la parte naranja de la
figura 4.49. Cuando el potencial alcanza un valor suficientemente po-
sitivo el ion Na*t deja de fluir. En ese momento se abren los canales
de K. El potasio tiene un potencial de equilibrio (de Nernst) que
es negativo, en la condiciones de concentraciéon dadas en la tabla y
que como calculamos en el ejemplo 4.9.2 es de —98mV. Al abrirse los
canales, el K™ sale del axén. La situacion del campo y del potasio se
representan en la figura 4.48.

Al extraer carga positiva del interior, el potencial comienza a dis-
minuir. El flujo de potasio lleva el potencial a valores negativos de
nuevo hasta un valor cercano a su potencial de Nernst, —98 mV. El
efecto de la apertura de los canales de K* y la bajada del potencial

exterior celular

exterior celula

LT

interior celular,

Figura 4.46: Situacién de reposo en el
axon. Polarizaciéon normal.
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Figura 4.47: Sentido de los flujos por
campo eléctrico, difusion y neto del ion
sodio al superarse el umbral y abrirse
los canales de sodio.
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Figura 4.48: Sentido de los flujos por
campo eléctrico, difusién y neto del
ion potasio cuando se ha producido la
inversién del potencial y se abren los
canales de potasio.



138 LUIS DINIS

v apertura
int canales

—50mV
—90mV

estimulacion
inicial

corresponden a la parte azul de la figura 4.49. Ademas, la inactiva-
cién de los canales de sodio, que se produce hacia el final de la fase
marcada como naranja, contribuye a que el potasio pueda repolarizar
la membrana®®. Finalmente tras la hiperpolarizacién (cuando el po-
tencial es mds negativo que el de reposo, al final de la fase marcada
en azul) los canales de potasio se cierran.

Por tltimo, con los canales cerrados, la bomba de sodio-potasio
devuelve el potencial de membrana a su situaciéon de reposo, como
se ve en la parte verde de la figura 4.49. Tras un cierto tiempo los
canales vuelven a la situacién inicial y el axén puede propagar otra
vez un nuevo potencial de accién.

Como resultado se ha generado un pulso de potencial, llamado
potencial de accién. Veamos ahora brevemente cémo se propaga a lo
largo del axén.

La depolarizacién (cargas positivas dentro, negativas fuera) de la
membrana del axén en una pequefia zona (figura 4.50) provoca una
diferencia de potencial en la direccién longitudinal del axén. A su
vez esta diferencia de potencial provoca una corriente de carga que
avanza a lo largo del axén, transportando carga positiva hacia una
zona adyacente. Como resultado, el potencial aumenta en la zona ad-
yacente (en la direcciéon de propagacion del pulso, mds a la derecha
en la figura). Si esta carga positiva consigue subir el potencial por
encima del umbral en la zona colindante, el mismo proceso anterior
se desencadena en la nueva zona (apertura canales de sodio, cambio
de polaridad, etc...). El potencial de accién se propaga por tanto a lo
largo del axén, regenerdndose una y otra vez en cada tramo del axén.

Figura 4.49: Comportamiento del poten-
cial de membrana durante el potencial
de accién: estimulacion y superacion
del umbral (morado), apertura de los
canales de sodio y flujo de sodio hacia
el interior (naranja), apertura de los
canales de potasio y flujo de potasio

al exterior (azul) y accién de la bomba
sodio-potasio (verde). El eje horizontal
representa el tiempo.

26 E] estado inactivo del canal de sodio
es al parecer diferente del cerrado,
pero tampoco deja circular el sodio en
cualquier caso

exterior celular

Vit = =90 mV

interior celulo

zona de polaridad
normal

zona de polaridad
invertida

propogocién del potenciol de accion

Figura 4.50: Propagacién de la inversiéon
de polaridad. La inversién de polaridad
provoca una zona de potencial positivo
en el interior del axén y por tanto una
diferencia de potencial en la direccién
longitudinal. A su vez, esta diferencia
de potencial establece una corriente,
que transporta carga positiva en la
direccion longitudinal, propagando la
inversion de polaridad.
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Esto hace que el potencial se transmita sin atenuarse. Por detrés de la
zona de depolarizacién, los canales de potasio y después la bomba de
sodio potasio repolarizan la membrana, devolviendo el potencial de
membrana a su valor (negativo) de reposo.

La regeneracién del potencial en todos los tramos consume energia
y es lenta. Parte de la corriente se transmite a lo largo del potencial,
pero mucha se pierde a través de la membrana. En los axones con
vainas de mielina, esta impide la pérdida de corriente a través de
la membrana y el potencial de accién solo se regenera en los nodos
de Ranvier, unas pequefias zonas de axén entre recubrimientos de
mielina sucesivos. Como consecuencia, el impulso es més rapido y
consume menos energia. En la siguiente seccién vamos a estudiar un
modelo extremadamente simplificado para calcular la velocidad de
propagacién del impulso nervioso en un axén con mielina.

Velocidad de propagacién

nodos de Ranvier

X =1mm

vainas de mielina

Supongamos un axén con vainas de mielina de tamafio X. Supon-
gamos que el potencial de accién se encuentra en un determinado
nodo de Ranvier. El potencial de accién se habra propagado una
distancia X cuando consiga provocar su regeneracion en el siguiente
nodo y la velocidad de propagacién serd aproximadamente

X

v=3 (4.92)

donde T es el tiempo que tarda el potencial de accién en saltar de
un nodo al siguiente. Para propagarse, el potencial debe superar
el umbral en el siguiente nodo. Para ello, como hemos visto, el
potencial del segmento de ax6n se depolariza, esto es, se invierte
la polaridad (se carga de forma positiva el interior y negativa el
exterior).

La membrana del axén se comporta, como hemos visto, como un
pequefio condensador de capacidad C. Cambiar la polaridad de un
tramo de ax6n corresponde por tanto a descargar primero, y cargar
con la polaridad contraria después, un condensador. Eléctricamente,

Figura 4.51: Ax6én con vainas de mielina.
Las vainas no dejan pasar los iones, que
solo pueden atravesar la membrana en
los nodos de Ranvier, donde hay una al-
ta concentracién de canales de iones. El
potencial de accién solo se regenera en
los nodos, aunque la corriente eléctrica
si circula por el interior del axén.
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este proceso corresponde a un circuito RC, donde el condensador que
constituye la membrana se carga a través de la resistencia del axén
por una corriente generada por una bateria. La bateria corresponde a
la diferencia de potencial ocasionada por el potencial de accién (ver
figura 4.52) entre dos nodos adyacentes.

Como vimos, el tiempo caracteristico de carga o descarga es del
orden

T ~ RC (4.93)

donde C es la capacidad del tramo de axén de longitud X y R la
resistencia a través de la que se carga. Recuerde que la intensidad
que produce la depolarizacién recorre el axén longitudinalmente, por
tanto R corresponde también a la resistencia del tramo de axén de
longitud X. Teniendo en cuenta la forma cilindrica de un segmento
de axén de radio r y longitud X, su superficie serd A = 2ntrX y la
capacidad total (ver seccién 4.7):

C = Cy2nrX. (4.94)
Para la resistencia tenemos 7 (ver ejemplo 4.8.2)
PaX
R= .
p— (4-95)
de donde
2 X
T=RrRC="2F “(“;m (4.96)
y la velocidad
0= (4:97)

¢Coémo se compara esta férmula con los datos reales? Si tomamos
una distancia tipica de X ~ 1 mm, con los datos de C;; de la membra-
na con mielina (ecuacién (4.61)) y o, tipico del axén (ejemplo 4.8.2)
tenemos

v~ 10rm/(s-pm) (4.98)

que da la velocidad en m/s al poner el radio del axén en micras.
Segtin los experimentos en axones de gatos®®, se obtiene algo como
v ~ 12rm/(s - pm) que es parecido. Lo més interesante son la
consecuencias que podemos extraer de este modelo:

1. La mielina aumenta la velocidad también al minimizar la pérdida

de corriente a través de la membrana, lo que implica que toda

la corriente se utilice para cargar el “condensador” que supone
la membrana. La corriente que se pierde a través de la membra-
na es como una resistencia en paralelo con el condensador de

la membrana (figura 4.53), que “roba” corriente al condensador,
ralentizando la carga. La mielina suprime dicha corriente trans-
membrana.

V dif. pot.

entre nodos

I
|
— +++

e — Cm

corriente
en el axén

Figura 4.52: Circuito que representa
eléctricamente la depolarizacién del
nodo siguiente al que se encuentra

el potencial de accién, separados una
distancia X. Se muestra el condensador
con polarizacién normal, el potencial de
la baterfa tiende a descargar y después
cargarlo con la nueva polaridad.

|
|
+
R

7 En esta seccién seguimos esencialmen-
te el texto de:

J.W. Kane and M.M. Sternheim. Physics.
Wiley, 1988
aunque en el citado texto utilizan
la resistencia hasta el punto medio
del fragmento del axén dando lugar
a la mitad de resistencia, para lo
que yo no encuentro justificacién,
excepto, que el resultado se acerca
més a lo experimental. No obstante,
nosotros tomamos aqui el valor tipico
de resistividad de 1() - m frente a
20 - m, por lo que el resultado final es
el mismo

#John B. Hursh. Conduction velocity
and diameter of nerve fibers. American
Journal of Physiology, 127(1):131-139,
1939

Figura 4.53: Circuito equivalente del
axoén sin vaina de mielina. Parte de la
corriente generada se pierde a través de
la membrana I;; y no en depolarizar

el siguiente segmento de membrana,
ralentizando la transmision.
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2. El potencial de accién solo se regenera en los nodos, una porciéon
pequenia del axén, de modo que hay menos gasto de energia.

3. Mayor r implica mayor v*°. Los axones largos, para llevar sefiales
eléctricas a grandes distancias suelen ser mas gruesos. Mas radio
implica mayor superficie y més gasto energético por lo que si no es
necesario serdn de menor radio, como en el cerebro, por ejemplo.
Algunos invertebrados no usan mielina y utilizan axones de gran
radio, como el axén gigante del calamar de entre 0,5mm y 1 mm
de didmetro (figura 4.54). Este axén gigante permitié a Hodgkin
y Huxley realizar sus estudios sobre la fisiologia del impulso
nervioso.

4. La velocidad v « % Menor espaciado de los nodos supone mayor
velocidad, pero también mayor gasto energético por el aumento
de regeneraciones del potencial de accién. Lo esperable es un X
optimo en el que hay un compromiso entre ambos efectos.

Figura 4.54: Calamar con esquema de
su “axén gigante”. Hodgkin y Hux-
ley realizaron sus experimentos para
dilucidar el mecanismo del potencial
de accién con este tipo de axones

que alcanzan entre 0,5mm y 1 mm

de didmetro, lo que facilita insertar
microelectrodos. Este trabajo les vali6 el
premio Nobel de Fisiologia y Medicina.
Dibujo de L.D. basado en una foto de
Loligo vulgaris.

*9 Modelos méas complejos dan para los
axones sin mielina una dependencia
con la raiz cuadrada del radio. Expe-
rimentalmente parece confirmarse la
dependencia aproximadamente lineal
en axones mielinados.






5
OSCILACIONES Y ONDAS

5.1 ;Por qué nos interesan las ondas?

Una parte de la informacién que nos llega del entorno lo hace en
forma de ondas, en particular a través de la luz y el sonido. La luz
y el sonido se propagan en forma de ondas, aunque de diferentes
caracterfsticas. Por tanto, algunos fenémenos tipicos de las ondas,
reflexién, refraccién y difraccién por ejemplo, pueden tener su impor-
tancia biolégica.

Las diversas modalidades de ojos, los oidos y otros 6rganos adap-
tados para la ecolocalizacién, son extremadamente sofisticados y
hacen uso de las posibilidades que ofrecen los fenémenos ondulato-
rios.

Por otro lado, algunas técnicas experimentales, como la microsco-
pia, también hacen uso de ondas, por lo que conocer las limitaciones
a la detecciéon que impone el caracter ondulatorio puede resultar
interesante.

Las ondas propagan una perturbacién consistente en un movi-
miento oscilante por lo que empezaremos estudiando el movimiento
armonico simple.

5.2 Movimiento oscilatorio armdnico simple

El movimiento de vaivén de una masa enganchada en un resorte
o de un péndulo es un movimiento oscilante, que se repite cada
cierto tiempo, y armoénico’ , esto es, que puede describirse con una
funcién arménica (seno o coseno). En el caso del muelle por ejemplo,
si lo desplazamos de su posicién de equilibrio, tanto estirdndolo
como comprimiéndolo, aparece una fuerza recuperadora. Esta fuerza
apunta hacia la posicién de equilibrio y es més fuerte cuanto mas
deformamos el muelle. Mateméticamente

F=—kx (5.1)

*si la amplitud es pequefia
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donde x es la elongacion del muelle respecto de la posicién de equili-
brio, positivo para un lado y negativo para otro, como en la figura 5.1.
El signo menos indica que la fuerza apunta en el sentido contrario al
desplazamiento.
La segunda ley de Newton en ese caso nos dice que
d>x k
F=ma = ma = —kx obien: — = ——x 2
dt? m (5:2)
ya que la aceleracion es la segunda derivada de la posicién respecto
del tiempo. El término % que aparece en la ecuacién tiene unidades
de 1/s% de modo que

k

W = m (5-3)

es una frecuencia, denominada frecuencia angular del movimiento.
La ecuacion (5.2) tiene una solucién que se puede escribir asi*:

x(t) = Acos (wt+ ¢) (5.4)

que nos da la posicién de la masa m en cualquier instante de tiempo
t. La funcién coseno es periddica, de modo que el movimiento se
repite cada cierto tiempo, denominado periodo que se relaciona con
la frecuencia angular asf:

2

T = o (5-5)

Otras veces es conveniente hablar de la frecuencia o niimero de
oscilaciones por segundo:

1 w

f:T:E (5-6)

que se mide en “hercios” en honor a Hertz y que corresponde a
1Hz=1/s. El 4ngulo ¢ que aparece en (5.4) determina la posicién
inicial de la masa

x(t = 0) = Acos(g). (5)

Por ultimo, A representa la amplitud del movimiento que corres-
ponde a la posicion mds alejada de la posicién de equilibrio que
alcanza la masa. La posicion estd contenida entre A y —A:

~A<x(t)<A (5.8)

ya que la funcién coseno toma valores entre —1 y +1 incluidos.

Figura 5.1: Una masa enganchada en
un muelle. Cuando se desplaza la masa
de la posicién de equilibrio del muelle
(x = 0en este ejemplo) aparece una
fuerza recuperadora que apunta en

la direccién del desplazamiento y en
sentido hacia la posicién de equilibrio.

? La resolucién de ecuaciones diferencia-
les estd fuera del objeto de este curso.
No obstante puede comprobar que la
expresion es solucién derivando dos
veces y sustituyendo en la ecuacién
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Opcional.

Para el caso de un péndulo, en lugar de una masa en un muelle, el movimiento tiene las mismas caracte-
risticas, pudiéndose igual hablar de amplitud, frecuencia, periodo, etc...y las ecuaciones son las mismas
excepto que la frecuencia angular estd dada por:

w = % (5.9)
donde g es la aceleracién de la gravedad y I la longitud del cable o cuerda de la que cuelga la masa m. La
frecuencia no depende de la masa en este caso.

Energia del movimiento arménico

La fuerza recuperadora de un muelle es conservativa. Conside-
remos un muelle en su posicién de equilibrio. Cuando separamos
(estirando el muelle por ejemplo) la masa de su posiciéon de equili-
brio, hacemos un trabajo que se acumula como energia potencial,
elastica en este caso. Si soltamos la masa, la masa comienza a mover-
se y la energia potencial se transforma en parte en energfa cinética.
Matematicamente, la energia potencial eléstica vale:

1
E, = Ekx2 (5.10)
y sino se aplican maés fuerzas sobre la masa, la conservacién de la
energia dice que
L2, 1 o
Ekx + Emv = cte. (5.11)
El valor de la constante se puede determinar si tenemos informacion
de posicién y velocidad en al menos 1 punto cualquiera de la trayec-
toria. Por ejemplo, sabemos que en el punto de mayor alejamiento
x = A la velocidad ha de hacerse o, de modo que la constante vale
3kA%y
Lo 1 - 1 0
Ekx + FmY” = EkA (5.12)

como se ve en el siguiente ejemplo.

SEJCE A Energia total en un movimiento armonico

Una masa de 200 g estd colocada en un muelle de constante recuperadora 3N/m, en reposo. En un

momento dado, se estira el muelle 4 cm respecto de la posicién de equilibrio, se sujeta en esa posicién
durante un instante y se suelta. ;Cudl es la energia total del movimiento? ;Qué velocidad llevara cuando
pase por su posicién de equilibrio.

SOLUCION

Llamemos x = 0 a la posicién de equilibrio del muelle.
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a) Segun el enunciado en la posicion inicial serd x = 4cm y justo antes de soltarlo, la velocidad es nula

v = 0. La energfa total es

1 1 1
Eiotal = Ep + Ec = Ekx2 + Emv2 = 5(3N/m)(4 x 1072m)% 40 = 0,0024]

b) Conocida la energia total, que es constante, podemos deducir la velocidad en cualquier otro punto:

1 1
Eiotal = Ekxz +smo* =0 = \/(ZEtotal —kx?)/m

2

y para la posicién de equilibrio x = 0:

0=/ (2Eiotal — kx2) /m = \/2Ergra/m = 0,15m /s = 15cm /s

(5.13)

(5.14)

(5.15)

5.3 Movimiento ondulatorio. Descripcion

Una onda es una perturbacién de alguna propiedad que se propa-
ga de forma periddica en el espacio. La onda conlleva un transporte
de energifa, no de materia. Ejemplos de perturbaciones que se pro-
pagan de forma ondulatoria son las variaciones de presién (ondas
sonoras, ondas de un terremoto), el campo eléctrico y magnético
(ondas de radio, luz), la altura de la superficie de un liquido (ondas
en un estanque, las olas del mar), una perturbacién del potencial de
membrana en la transmisién del impulso nervioso, aunque en este
altimo caso es més apropiado hablar de pulsos separados que de
ondas.

Cuando la perturbacién en el origen sigue un movimiento arméni-
co simple, lo habitual es encontrar ondas armoénicas propagandose.

Descripcién de las ondas. Propiedades importantes

Una onda arménica propagandose tiene un aspecto sinusoidal
(funcién seno o coseno) en el espacio. El ejemplo més sencillo es la
propagacién de una onda en una cuerda (o una manguera) cuando
en uno de sus extremos producimos una oscilacién arménica. La
figura 5.2 representa la forma de la onda en un instante dado. Si no
hubiera rozamiento, o si es pequerio, la onda en un instante posterior
se desplazara en su direccién de movimiento manteniendo la misma
forma. Si nos fijamos en un pequefio segmento de la cuerda en una
posicién determinada, este seguird un movimiento similar al de la
perturbacién del extremo, con su misma frecuencia.

En la figura 5.2 podemos identificar algunas propiedades de las
ondas:
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= Amplitud A. La amplitud de la onda es la amplitud del movi-
miento armoénico simple que sigue cualquiera de sus puntos, por
ejemplo el marcado por el circulo azul en la figura, en el caso de
la onda en una cuerda. En el caso de otra propiedad, es el valor
maximo que alcanza la perturbacién respecto del valor medio, o la

mitad del rango completo de oscilacién. Sus unidades son las mis-

mas de la propiedad que se propaga (distancia, campo eléctrico,
presion, etc...).

= Longitud de onda A. Es la distancia que separa dos puntos en
igual estado de oscilacion, por ejemplo la distancia entre dos
crestas.

= Periodo T, es el tiempo que dura una oscilacién completa en
un punto dado (por ejemplo en el circulo azul), o igualmente la
separacién temporal entre el paso de una cresta y la siguiente por
un punto en una posicién fija. Es el inverso de la frecuencia de
oscilaciéon f =1/T.

= Velocidad de propagacién v es la velocidad a la que viaja la onda y
que podemos ver como el espacio recorrido por una determinada
cresta (la marcada con un circulo verde) en el tiempo de una
oscilaciéon completa (como indica por ejemplo el circulo azul). Asf:

A
v= Toblenz}:/\f (5.16)

Estas caracteristicas son comunes a todas las ondas. Por otro lado,
podemos distinguir distintos tipos de ondas en base a cuestiones
geométricas. En cuanto a la relacion entre direccion de propagacion y
el movimiento local que producen las ondas pueden ser:

= Transversales. La perturbacién se produce en una direccién per-
pendicular a la direccién de propagacion. El ejemplo mads claro es
una onda en una cuerda. Si estd horizontal, la onda se propaga en
direccién horizontal, pero cada pequeiio segmento de cuerda se
desplaza verticalmente. Otro ejemplo es las ondas electromagnéti-
cas o las ondas en un estanque.

= Longitudinales. La perturbacién provoca desplazamiento en la
misma direccién de propagacién. Por ejemplo, una perturbacion
de compresién y distensiéon en un muelle. También el sonido es
una onda longitudinal.

Segun la geometria podemos tener ondas unidimensionales (en
una cuerda, en un instrumento de viento), ondas en dos dimensiones
(ondas en una membrana tensa, como en un tambor) u ondas en 3
dimensiones, como el sonido en el agua. En 3D podemos tener ondas

t=0
v A v
2A1 IA
J T
yt=73 A .
xr
L=T
v A v
©-
T

Figura 5.2: Propiedades y propagacién
de ondas. El circulo azul marca el
estado de la oscilacién en un punto fijo.
El circulo verde marca la posicién de la
misma cresta en distintos instantes de
tiempo.
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planas u esféricas (u otras) segtn la forma de los frentes de onda. Un
frente de onda es el lugar geométrico de los puntos en igual estado
de oscilacién.

Si la onda se propaga a la misma velocidad en todas direcciones,
cerca de la fuente los frentes de onda son esféricos3. Lejos de la
fuente, como las esferas se van haciendo de mayor radio, tienen
aspecto de planos si nos fijamos en una pequefia parte del frente y se
suelen considerar ondas planas (figura 5.3).

5.4 Energia, potencia e intensidad de una onda

Energia

Una onda transmite una oscilacién que lleva asociada una energia.

Pensemos en un pequefio trozo de materia de masa m que se pone
en movimiento al pasar una onda armoénica y realiza un movimiento
armonico simple. Su energia serd

1
E= EkA2 (5.17)

donde A es la amplitud de movimiento. Podemos expresar la cons-
tante k utilizando las ecuaciones (5.3) y (5.6) como

k= 4712mf2 (5.18)

de donde
E =2m°mf2A? x A2, (5.19)

La energfa transmitida es proporcional a la amplitud de la onda al
cuadrado. Para dos ondas de la misma frecuencia f, o para la misma
onda en dos puntos del espacio donde tenga diferente amplitud,
podemos escribir

E, A2

E, = X% (5.20)

Potencia

La potencia transportada por la onda es igualmente proporcional a

la amplitud al cuadrado

P = % x A2 (5.21)

Intensidad

En muchas situaciones interesa conocer la energia que atraviesa
una superficie dada (por ejemplo, la superficie de un detector u

3 A veces se considera que se propagan
principalmente en un sentido y no

en el contrario y se consideran solo
semiesféricas

d

Figura 5.3: Arriba. Frentes de ondas
esféricos (solo se representa una parte
del frente). Las lineas negras repre-
sentan direcciones de propagacién (o
rayos) y son perpendiculares al frente
de ondas. Abajo. Lejos de la fuente, los
frentes esféricos tienen tanto radio que
se suelen considerar planos. El rayo
indica la direccién de propagacion y es
perpendicular a los frentes de onda.
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organo sensorial) por unidad de tiempo y superficie. Se denomina

intensidad de la onda
E P

I:E:§0<A2 (5.22)
Las unidades de la intensidad son
P
[1] = [SJ =1W/m? (5-23)

Veamos algunas consecuencias de estas relaciones. En la transmisién
de una onda, esperamos que la energia se conserve aproximada-
mentet de modo que la potencia es constante en la propagacion.
Pensemos en una fuente de onda (un altavoz, una bombilla...) que
emite con una potencia dada P y en todas direcciones por igual. La
onda serd aproximadamente esférica. A una distancia r de la fuente,
la energia (y la potencia) debe repartirse en una superficie esférica de
drea S = 4712, La intensidad valdrd a distancia r
p P

S 4nr?

La intensidad de la onda decrece a medida que nos alejamos de la

I= (5-24)

fuente (con el cuadrado de la distancia). La onda se atentia. Por ejem-
plo, para una onda esférica, conocida la intensidad en un punto I;
que dista de la fuente r; podemos calcular la intensidad en cualquier
otro punto a distancia 7:

2 2 2

I _ P Amrg _n r
2 2

L 4mry p 5 5

(5-25)

La intensidad decrece a medida que nos alejamos de la fuente>

Otra forma de verlo es en relacién con la amplitud de la onda. Da-
do que para una onda de una determinada frecuencia la intensidad
es proporcional a la amplitud al cuadrado, tenemos que

I r% A% r% r1
11 1’% AZ 1’% 2 14 1 (5 )
donde vemos que si r, > r; entonces Ay < A, decrece la amplitud a

medida que nos alejamos de la fuente.

5.5 Volumen e intensidad en ondas sonoras

El volumen con el que percibimos una onda sonora esta relaciona-
do con la amplitud o la intensidad de la onda. A mayor intensidad,
mayor volumen. No obstante, la relaciéon no es lineal si no mas bien
logaritmica, por razones relacionadas con la fisiologia del oido®. Se
define el volumen o nivel de intensidad  como

I
p = 10logy, A (5-27)
0

4En general una parte de la energia
de la onda puede disiparse en forma
de calor en el medio por fenémenos
disipativos

5> Veremos en la siguiente seccién la
relacion entre intensidad y volumen en
las ondas de sonido

¢ Parece ser que en efecto en la mayo-
ria de los sentidos la relacion entre
estimulo y sensacion percibida es lo-
garitmica. Esto se denomina la ley de
Weber-Fechner. La razén tltima no esta
clara, pero permite tener un “sensor”
que detecta fiablemente sefiales en un
rango de 12 érdenes de magnitud de
intensidad, en el caso del oido, por
ejemplo.
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donde I es una intensidad que representa el umbral de percepcién,
la menor intensidad de onda que es posible detectar. En el aire, para

el oido humano se establece” en Iy = 10~12W/m? . Veamos con un 7Si utilizamos la definicién de B, ¢a qué
ejemplo las consecuencias de que el volumen sea logaritmico. ‘I’Olulm?e“ corresponde una intensidad
= Iy?

SR Doblamos la intensidad

Un determinado sonido se recibe inicialmente una intensidad de [ = 10~®W/m?2. En un determinado
momento se duplica la intensidad. Compare el volumen inicial y final.

SOLUCION

El nivel de intensidad o volumen inicial serd

I 10~
B = 1010g101—(1) = 10log;y 17 = 60dB (5.5.1.1)
Al doblarse la intensidad, tenemos I, = 2 x 10~ W/m?2
I 2x107°
B = 1010g101—§ = 10log;y ~ 5, ~ 63dB (5.5.1.2)

es decir, tres decibelios mas.

Veamos ahora cOmo se atenta el volumen en una onda esférica.

SRl Atenuacion de una onda esférica

(A qué distancia dejard de ofrse una conversacién que a 50 cm de distancia tiene un volumen de 60 dB?

Suponga que la conversacién se propaga en todas direcciones por igual formando una onda esférica.

SOLUCION

El limite de audicién humana estd aproximadamente en Iy = 1 x 1072 W/m?2. Tenemos que calcular
a qué distancia la intensidad de la onda ha disminuido hasta ese nivel. Calculamos primero cudl es la
intensidad inicial.

B1 = 101og10%1 = I = Iy x 1081710 = (1 x 1072 W/m?)(10%) = 1 x 10" ® W /m? (5.5.2.1)
0

De esta intensidad, podemos deducir la potencia de la fuente sonora suponiendo que se reparte en una
superficie esférica

p
L = —5 = P=4nri] (5.5.2.2)
4mry

donde r; = 1m. Si la energia se conserva, la potencia total de la onda es constante pero se reparte en una
superficie esférica mas grande cuanto maés lejos estamos de la fuente. La intensidad I de la onda a otra
distancia r, se obtiene de la igualdad de la potencia

P = 47'[1’%11 = 47'[1’%12 (5.5.2.3)
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0 si nos interesa la distancia

I I
2l o=yt (
L

47rr%11 = 47'(1’%12 = r% =r 1
2

4)

Si tomamos para la segunda intensidad la potencia mas pequefia que podemos detectar con el oido
I, =1 x 10712 W/m?, la distancia correspondiente es

1 x 10-6W/m?
ry = (O,Sm)\/ <(1 :10*12W /r;‘lz)) ~ 500m (5.5.2.5)

La distancia es muy grande para ser realista, aunque hay que considerar que en el mundo real hay otros
muchos ruidos que taparian la conversacién, obstaculos y probablemente pérdidas de energia en la propa-
gaciéon del sonido.

5.6 Intensidad de la onda y la superficie de deteccion

Es interesante explorar el concepto de intensidad de la onda en
relacién con la deteccién. Tanto las ondas sonoras como luminicas
pueden ser detectadas por érganos especializados en los animales, o
por aparatos disefiados por el hombre a tal efecto, aportando gran
cantidad de informacién. El érgano (o aparato) detector presenta
una cierta drea donde se recoge la onda y se produce directamente la
conversion en una sefial transmisible al cerebro (como en la retina) o
bien se canaliza hacia el érgano que haré la conversion (como en el
pabell6én auricular). Si la onda llega al 6rgano detector con una cierta
intensidad, la energia total por unidad de tiempo (potencia) recogida
serd mayor segun el drea de deteccién:

P, recogida — I Agetector (5-28)

Utilizando las unidades, esto se ve claramente

[M[A] = 1W/m? xm? = 1W (5.29)

Cuanto mayor sea la potencia recogida, maés facil serd la deteccién
de la sefial. Por esta razdn, una manera de aumentar la sensibilidad
del detector es aumentar la superficie de deteccién, lo cual se aplica
desde el disefio de telescopios a los ojos u orejas de los animales. Si
la intensidad luminica en el entorno es muy baja, como ocurre con
los animales de hédbitos nocturnos, una posible solucién es desarrollar
unos ojos grandes (figura 5.4).
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/ Figura 5.4: El tarsero filipino (Carlito sy-

richta) y el feneco (Vulpes zerda) poseen

/ organos detectores de ondas con gran
superficie de captaciéon. Dibujo de L.D.

i
\‘\

5.7 Fendmenos ondulatorios tipicos

Figura 5.5: Dos rayos indicados en
En esta seccion estudiaremos los fendmenos de reflexion, refrac- una onda circular. Los circulos azules
cién y difraccién, aplicables a las ondas en general. Para la reflexion representan los frentes de onda.
y la refraccion es conveniente definir el concepto de rayo. Un rayo
es una linea perpendicular al frente de onda en todo punto e indica
la direccién de propagacién. Por ejemplo, en la propagacién en 2D
de una onda en todas direcciones desde una fuente puntual (ondas
en la superficie de un lago), los frentes de onda son circulares y los
rayos radiales, como en la figura 5.5. En una onda plana, los rayos u -

son perpendiculares a los planos (3D) o lineas (2D) de los frentes de

onda (figura 5.6).

Reflexion

Figura 5.6: Lejos de la fuente las ondas
son aproximadamente planas. El rayo es
siempre perpendicular a los frentes de
onda.

normal a la superficie

rayo incidente

Figura 5.7: Reflexién. Tanto los frentes
rayo reflejado de onda como los rayos ven la compo-
nente perpendicular a la superficie de
su velocidad cambiada de signo (en
este caso la componente vertical). E1
resultado es que el angulo de incidencia
es igual al dngulo de reflexién (6, = 6;).
El rayo sigue una trayectoria similar a la
fre“tefe‘:li F’r(‘jdo que seguiria una particula que rebotara
Jacos elasticamente contra la superficie, como
una bola de billar contra la banda, por
ejemplo.

Cuando una onda se encuentra con un obstaculo (o medio) en
el que no se puede propagar, se refleja, volviendo a propagarse por
el medio. En una reflexién perfecta sobre una superficie plana bien
pulida, la componente de la velocidad propagacién de la onda en
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la direccién perpendicular a la superficie cambia de signo. Esto
ocurre tanto para los frentes de onda como con los rayos. El resultado
es que el dngulo de incidencia del rayo respecto de la normal 6; a

la superficie es igual que el dngulo del rayo reflejado 6, (también
respecto de la normal):

0, = 0; (5-30)
En una situacién general es posible que una parte de la onda sea

reflejada y otra transferida a través del medio, como sucede cuando
una onda luminica atraviesa un vidrio.

Refraccion

rayo incidente Figura 5.8: Refraccién. Rayos incidente

normal a la superficie

1
0 1 y refractado y frentes de onda en la
1 1 refraccién. En el ejemplo concreto la
P onda se propaga a menor velocidad en
.~ el medio azul.

frentes de onda

Cuando una onda cambia de medio a uno en el que la velocidad
de propagacién es diferente, la direccién de propagacion se modifica.
Este fendmeno se conoce como refraccion. Si la onda entra en un
medio en el que la velocidad es menor, como sucede en la figura
5.8 (los frentes de ondas aparecen més juntos), el rayo se acerca a la
normal. El 4ngulo de refraccién 6, es menor que el de incidencia 6;
ambos medidos respecto a la normal. Si la onda pasa a un medio
de mayor velocidad de propagacién, sucede lo contrario. Podemos
encontrar una relacién entre los angulos de incidencia y refraccion.
Si nos fijamos en detalle en un frente de onda que avanza durante
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un tiempo f determinado, como en la figura 5.9, vemos que hay 2
tridngulos rectdngulos que nos permiten escribir

sinf; = (5.31)

(5-32)

Y oy e

sin 92 =

donde I; y I, son las distancias recorridas por el frente en el tiempo
t en el medio de incidencia y refraccién respectivamente. a es la
hipotenusa en ambos tridngulos. En el medio incidente la onda se
desplaza a velocidad v y tras refractarse se desplaza a v;, de modo
que

ll = uqt (533)

l, =wt (5.34)
Sustituyendo en (5.31) y (5.32), despejando a e igualando, se llega a la
Ley de Snell de la refraccién:

sinfhp vy
sin 92 (%)

(5-35)

La ley de Snell corrobora que efectivamente

= Sivy < v1 = sinf; > sinf, = 01 > 6, esto es si la velocidad es
menor en el segundo medio, el rayo se acerca a la normal, y

" siv; > v = sinf; < sinf, = 07 < 6, esto es si la velocidad
es mayor en el segundo medio, el rayo se aleja de la normal al
refractarse.

Refraccion de las ondas de luz. Indice de refraccion

Para las ondas luminicas se define el indice de refracciéon de un
determinado medio (aire, agua, vidrio. ..) como la relacién entre la
velocidad de la luz en el vacio ¢ y la velocidad de propagacién de la

luz en el medio v:
c

n=- (5:36)

con ¢ = 299792458 m/s ~ 3,0 x 108 m/s. El indice de refraccién de
un medio no tiene unidades (es una relacién) y es siempre mayor que
1. Podemos reescribir la ley de Snell (5.35) en funcién del indice de

refraccion i .
sinf; cvq sinf; np

— :> = .
sinf, cup sinf, my (5:37)

donde n; y n, son los indices de refraccién en el medio incidente y
de refraccién respectivamente. Reorganizando términos queda

n1 sin 91 = 1y sin 92 (538)

que es facil de recordar y es la forma habitual de la ley de Snell.

normal a la superficie

rayo incidente

\
R -

frentes de onda
incidentes

rayo refractado

02

frentes de onda

refractados
Figura 5.9: Detalle de los tridangulos que
aparecen en la refracciéon y permiten
deducir la ley de Snell.
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Lentes y ojos

La refraccién es un fenémeno crucial en las lentes, que permiten
la formacién de imégenes al enfocar los rayos de luz hacia el plano
en el que se acumulan las células fotorreceptoras. Aunque existe
gran variedad de ojos en el mundo animal, con y sin lentes, en los
vertebrados (y algunos invertebrados) la morfologia habitual es la
de una cavidad con células fotorreceptoras en uno de sus extremos
y una lente que forma la imagen sobre ellas. Para ello, las lentes han
de estar compuestas de un material transparente con un indice de
refraccién lo suficientemente alto como para producir una modifi-
cacién apreciable de la trayectoria de los rayos. En qué posicién se
forma la imagen depende de la distancia focal de la lente. La distan-
cia focal (o su inverso, la potencia en dioptrias) estd determinada por
la curvatura de la lente y por su indice de refraccién. En la figura
5.10 se representa un diagrama de la 6ptica geométrica bdsica en la
formacién de imagen en un ojo.  Aunque es habitual estudiar el

cristalino
(lente)

cristalino como una lente delgada, en realidad el humor vitreo que re-
llena el ojo entre el cristalino y la retina tiene un indice de refraccién
muy parecido al del cristalino, por lo que en la segunda superficie
del cristalino hay poca refraccién (los rayos se desvian poco); casi
toda la refraccién se produce en el lado externo del ojo. Por otro lado,
el indice de refraccién similar entre cristalino y humor vitreo hace
que la transmisién de la onda entre ambos se produzca con poca
reflexiéon y una fraccién muy alta de la intensidad (mayor del 99 %)
sea transmitida hacia la retina.

Difraccion

La difraccién de las ondas ocurre en general cuando un frente
de ondas encuentra un obst4culo parcial en su camino. Cuando se
produce difraccion, las ondas parecen rodear en cierta manera los
obstdculos y pueden llegar a zonas en principio en la sombra geomé-
trica del obstédculo (zonas sin linea de visién directa a la fuente de las

Figura 5.10: Esquema de ojo y forma-
cién de imagen. Se representa la retina,
donde estén las células receptoras de
luz y el cristalino que acttia como lente.
Los rayos que parten del objeto son
refractados por la lente y convergen
sobre la retina donde se forma una
imagen nitida del objeto. A modo de
ejemplo, se representan dos rayos de
luz que parten de la parte superior del
objeto y otro que se emite desde una
parte intermedia.
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ondas). En la figura 5.11 se ve cémo una zona que en principio no re-
cibiria luz (por ejemplo) puede aparecer algo iluminada por efecto de
la difraccién. La difraccién estd intimamente ligada a la interferencia,
y en la zona iluminada en la zona de sombra geométrica es posible
observar un patrén de interferencia.

Para entender el origen de la difraccién, pensemos en una onda
plana que encuentra un obstaculo con un pequefio agujero, del ta-
mafio aproximado de la longitud de onda, como en la figura 5.12.

Al llegar la onda, tal y como vimos en la seccién 5.3, el medio en la
region del agujero seguird un movimiento oscilatorio de la misma fre-
cuencia que la onda. Este pequefio elemento vibrante se convierte a
su vez en una fuente de ondas, y si es pequefio, serd aproximadamen-
te puntual, dando lugar a una onda semiesférica (o semicircular) a
su vez. En el caso de que el agujero tenga un tamafio mayor, actuara
en general como varias fuentes diferentes y el resultado de la onda
“aguas abajo” serd mas complicado, pero el principio que produce la
difraccién es similar.

Aunque para la luz visible el fenémeno de difraccién no es sencillo
de observar con el ojo desnudo, con el sonido no es extrafio que
tengamos situaciones como la descrita en la figura 5.11. Por ejemplo,
es facil escuchar a una persona que no podemos ver detrds de un
obstaculo como un muro (incluso prescindiendo de rebotes). La
razén es la muy diferente longitud de onda de la luz y el sonido®.
La longitud de onda de la luz visible es del orden de 1 x 10~7 m,
mientras que para el sonido es de aproximadamente 1 m. Los efectos
de la difraccién son grandes para obstaculos o apertura comparables
con la longitud de onda¥. Resumiendo para un objeto o apertura de
tamafio L y una onda de longitud de onda A:

= Si L>>» A = no se percibe difraccién, no se rodea el obsticulo y la
zona de sombra corresponde con la sombra geométrica.

= SiL < A = la onda no “ve” el obstaculo, practicamente pasa sin
verse perturbada, como por ejemplo un pequefio corcho en un
estanque que no perturba apenas las ondas superficiales que pasan
a su través.

» Si L ~ A = la difraccién es importante.

De esta manera, los efectos de difraccién marcan el limite (por aba-
jo) de tamario de objeto que se puede detectar con una onda. Por
ejemplo, la luz del espectro visible tiene una longitud de onda en
torno a 0,5 um (depende del color) y eso hace que este sea el limite
aproximado de lo que podemos ver con un microscopio 6ptico. Esta
idea se explora en el siguiente ejemplo.

onda

obst&culo

zona ilum. N
por difraccion \d

————pantalla
——
[ ]
zona de zona iluminada
sombra
Figura 5.11: Un frente de ondas plano
encuentra un obstdculo. La onda parece

rodear el obstaculo.

oscilacion

[ i ]
\Qj// fuente
puntual

Figura 5.12: Un frente de ondas plano
encuentra un obstdculo con un agujero
del tamafio aproximado de la longitud
de onda. El medio que ocupa la posi-
cién del agujero oscila cuando llega el
frente plano de la onda. Esta pequefia
regién se comporta por tanto como

un emisor y si es pequefio, como una
fuente puntual de ondas generando
una onda circular o esférica (segtin la
dimension).

8 Por supuesto, esta no es la tnica dife-
rencia entre luz y sonido. El sonido es
una onda de presién en un medio mate-
rial y la luz una onda electromagnética.

9J.W. Kane and M.M. Sternheim. Physics.
Wiley, 1988
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SEJWAN Ecolocalizacion

Algunas especies de murciélagos utilizan para la ecolocalizacién ondas sonoras de frecuencia 80 kHz,
correspondientes a ultrasonidos. Las ballenas por el contrario utilizan infrasonidos, de longitud de on-
da aproximada de 10 Hz. ;Cual es el limite aproximado de tamafio de los objetos que pueden localizar
mediante el sonido?

SOLUCION

El limite viene dado aproximadamente por la longitud de onda. Podemos calcular la longitud de onda a
partir de la velocidad del sonido y la frecuencia:

Para el murciélago, tomando la velocidad del sonido en el aire como v = 340m/s,

v 340m/s

Laod=— =2
f 80 x10°Hz

=425%x10°m ~ 4mm. (5.7.1.2)
Es interesante notar que ese es el tamafio aproximado de un insecto, presa habitual de un murciélago.
Mientras que para la ballena, con una velocidad del sonido en el agua de v = 1500 m/s

_ 1500m/s

== _150m ( 3)

v
L~ -
f 10Hz

que puede corresponder aproximadamente con el tamafio de los bancos de krill.

Microscopia dptica de superresolucion

Como hemos dicho, cuando la separacién entre dos puntos de
nuestra muestra en el microscopio es comparable a la longitud de
onda A de la luz visible, resulta dificil discernirlos, debido a los
efectos de difraccion. En concreto, se suele utilizar el llamado criterio
de Rayleigh que establece que la minima separacién d que puede
distinguirse, esto es, la resolucién del microscopio es

- A
" 2nsinf

(5-39)

donde # es el indice de refraccién del medio y 6 el angulo que sub-
tiende la muestra con el objetivo. En condiciones favorables 7 sin 0
(lamado apertura numérica del microscopio) sera del orden de 1, de

modo que
~ A

d~ > (5-40)

sin tener en cuenta otros problemas como aberraciones de las lentes,
razoén por la que en la seccién anterior hemos sido conservadores
y tomado d ~ A como orden de magnitud. Para luz visible (por
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ejemplo, tomando la zona intermedia del espectro verde A >~ 500 nm)
tenemos aproximadamente

déptico ~ 250 nm (5-41)

Durante mucho tiempo se pensé que este limite no se podria superar
utilizando microscopia éptica. Sin embargo, en afios recientes, gracias
a la microscopia de fluorescencia y a técnicas como PALM o STORM
se han conseguido resolver estructuras de tamafios atin menores y
obtener imdgenes de microscopio éptico de objetos de estructuras
biolégicas, sobre todo proteinas, de tamafio de algunas decenas de
nanometros!! La resolucién de la técnica STORM estd generalmente
en el rango de los 20 — 30nm. En la figura 5.13 adaptada de '© se
observa localizacién de las protefnas Tomz2o y ATP-sintasa de la
membrana de la mitocondria y los autores aseguran que obtienen un
tamarfio de pixel de 10nm.

*° Johnny Tam, Guillaume Alan Cordier,
Joseph Steven Borbely, Angel Sando-
val Alvarez, and Melike Lakadamyali.
Cross-talk-free multi-color storm ima-
ging using a single fluorophore. PLOS
ONE, 9(7):e101772, 2014

Figura 5.13: Imagen de microscopia
STORM (stochastic optical reconstruc-
tion microscopy) de la proteina Tomz2o
(aprox. 15nm) de la membrana externa
de la mitocondria (magenta) y de la
proteina de la membrana interna ATP-
sintasa (aprox. 10nm)(en ). La
barra de escala mide 1 pm. Adaptada
de la Figura 2 de Tam |, Cordier GA, Bor-
bely |S, Sandoval Alvarez A, Lakadamyali
M (2014), “Cross-Talk-Free Multi-
Color STORM Imaging Using a Single
Fluorophore”, PLoS ONE 9(7): e101772,
https://doi.org/10.1371/journal.pone.o101772,
bajo licencia de dominio ptiblico.
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