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1 Introduction

Fluctuations and noise have been a major topic in statistical mechanics since Ein-
stein’s works on Brownian motion. The theory of thermal fluctuations helped to
understand noise in electrical circuits, activation processes in chemistry, the statis-
tical nature of the Second Law and the Maxwell demon, and the origin of critical
phenomena and spontaneous symmetry breaking, to cite only a few examples. In
most of these cases, the role played by thermal fluctuations or thermal noise is ei-
ther to trigger some process or to act as a disturbance. However, in the past two
decades, the study of fluctuations has led to models and phenomena where the ef-
fect of noise is more complex and sometimes unexpected and even counterintuitive.

Noise can enhance the response of a nonlinear system to an external signal,
a phenomenon known as stochastic resonance [1]. It can create spatial patterns
and ordered states in spatially extended systems [2, 3, 4]. Brownian ratchets show
that noise can be rectified and used to induce a systematic motion in a Brownian
particle [5, 6, 7]. In these new phenomena, noise has a very different role from that
considered in the past: it contributes to the creation of order. This could be relevant
in several fields, and specially in biology, since most biological systems manage
to keep themselves in ordered states even while surrounded by noise, both thermal
noise at the level of the cell and environmental fluctuations at the macroscopic
level.

The so-called Parrondo’s paradox is a rather simple illustration of an unex-
pected feature of noise, and shows the basic mechanisms underlying a Brownian
ratchet. In fact, the paradox came up as a translation to gambling games of the
flashing ratchet discovered by Ajdari and Prost [5].

The paradox consists of two games with the following peculiarity: in both of
them the player has a systematic tendency to lose but, if they are alternated, the
resulting game becomes winning [8, 9, 10]. The games reveal that the outcome



of the alternation of two stochastic dynamics can significantly differ from each
separate one.

To grasp an intuitive understanding of this paradox, one can distinguish three
mechanisms which act simultaneously in the games but inspire different exten-
sions and applications. Firstly, the alternation of the two dynamics can stabilize
the transient states of each separate dynamics, something that can happen even in
deterministic dynamics. Secondly, as we have already mentioned, the paradox is
an example of a noise rectifier, i.e., of a system that eliminates negative fluctua-
tions and “promotes” the positive ones. Thirdly, one can explain the paradox as a
reorganization of the trends present in one of the games.

The paper is organized as follows. In section 2 we briefly review the flash-
ing ratchet and explain how it can rectify fluctuations. Section 3 is devoted to the
original Parrondo’s paradox. There we introduce the paradoxical games as a dis-
cretization of the flashing ratchet, discuss the reorganization of trends mentioned
above, and present an extension of the original paradox inspired by this idea. In
section 4 we introduce several versions of the games involving a large number of
players. Some interesting effects can be observed in these collective games: re-
distribution of capital brings wealth [11], and collective decisions taken by voting
or by optimizing the returns in the next turn can lead to worse performance than
purely random choices [12, 13]. In section 5 we turn to a very different field:
pattern formation in spatially extended systems. The general idea that switching
between two dynamics stabilizes transient states is used in this section to design a
new mechanism for pattern formation [14, 15, 16]. Finally, in section 6 we briefly
review the literature on the paradox and present our main conclusions.

2 Ratchets

Here we revisit the flashing ratchet [5, 6], one of the simplest Brownian ratchets
and the most closely related to the paradoxical games. We refer to the exhaustive
review by Reimann on Brownian ratchets [7] or the special issue in Applied Physics
A, edited by Linke [17], for further information on the subject.

Consider an ensemble of independent one-dimensional Brownian particles in
the asymmetric sawtooth potential depicted in Fig. 1. It is not difficult to show that,
if the potential is switched on and off periodically, the particles exhibit an average
motion to the right. Let us assume that the temperature 7" is low enough to ensure
that k7" is much smaller than the maxima of the potential, and that we start with
the potential switched on and with all the particles around one of its minima, as
shown in the upper plot of Fig. 1. When the potential is switched off, the particles
diffuse freely, and the density of particles spreads as depicted in the central plot of



Figure 1: The flashing ratchet at work. The figure represent three snapshots of the
potential and the density of particles.

the figure. If the potential is then switched on again, each particle will move back
to the initial minimum or to one of the nearest neighboring minima, depending on
its position. Particles within the dark region will move to the right hand minimum,
those within the small grey region will move to the left hand minimum, and those
within the white region will move back to their initial positions. As is apparent
from the figure and due to the asymmetry of the potential, more particles fall into
the right hand minimum, and there is thus a net motion of particles to the right. For
this to occur, the switching can be either random or periodic, but the average period
must be of the order of the time to surmount the nearest barrier by free diffusion
(see [5, 6] for details).

This motion can be seen as a rectification of the thermal noise associated with
free diffusion. The diffusion is symmetric: some particles move to the right and
some to the left, but their average position does not change. However, when the
potential is switched on again, most of the particles that moved to the left are driven
back to the starting position, whereas many particles that moved to the right are
pushed to the right hand minimum. The asymmetric potential acts as a rectifier: it
“kills” most of the negative fluctuations and “promotes” most of the positive ones.

The effect remains if we add a small force toward the left, i.e., in a direction
opposite to the induced motion. In this case, the ratchet still induces a motion
against the force. Consequently, particles perform work, and the system can be
considered a Brownian motor. It can be proved that this type of motor is compatible
with the Second Law of thermodynamics. In fact, the efficiency of such a motor



is far below the limits imposed by the Second Law [18, 19]. However, the ratchet
with a force exhibits a curious property: when the potential is permanently on or
off, the Brownian particles move in the same direction as the force, whereas they
move in the opposite direction when the potential is switched on and off.

We have seen that the ratchet effect can account for this surprising behavior.
An alternative interpretation is the following. The stationary state of the Brownian
particles when the potential is permanently on or off possesses a negative veloc-
ity. On the other hand, when the potential is switched on and off periodically, the
system cannot reach these stationary states, but oscillates between transient states
of each dynamics (in fact, to have a net motion to the right, only the transient of
the free diffusion is necessary). Therefore, the switching of dynamics stabilizes a
behavior which is only transient in each separate dynamics.

3 Games

The flashing ratchet can be discretized in time and space, keeping most of its in-
teresting features. The discretized version adopts the form of a pair of simple
gambling games, which are the basis of the Parrondo’s paradox.

3.1 The original paradox

We consider two games, A and B, in which a player can make a bet of 1 euro.
X (t) denotes the capital of the player, where t = 0, 1,2. .. stands for the number
of turns played. Game A consists of tossing a slightly biased coin so that the player
has a probability p4 of winning which is less than a half. Thatis, p4 = 1/2 — ¢,
where the bias € is a small positive number.

The second game, B, is played with two biased coins, a “bad coin” and a “good
coin”. The player must toss the bad coin if her capital X (¢) is a multiple of 3, the
probability of winning being paq = 1/10 — €. Otherwise, the good coin is tossed
and the probability of winning is pgood = 3/4 — €. The rules of games A and B are
represented in Fig. 2, in which the darkness represent the “badness” of each coin.

For these choices of p, pgood and ppag, both games are fair if ¢ = 0, in the
sense that (X (¢)) is constant. This is evident for game A, since the probabilities to
win and lose are equal. The analysis of game B is more involved, but we will soon
prove that the effect of the good and the bad coins cancel each other for e = 0.

On the other hand, both games have a tendency to lose if € > 0, i.e., (X (%))
decreases with the number of turns ¢. Surprisingly enough, if the player randomly
chooses the game to play in each turn, or plays them following some predefined



Game A Game B

‘ Is X(t) a multiple of three? ‘

No/ \Yes
win lose 3/4—8/ &/4+£ 1/10—&7 k)/10+£

win lose win lose

Figure 2: Rules of the paradoxical games.

periodic sequence such as ABBABB..., then her average capital (X (¢)) is an in-
creasing function of ¢, as can be seen in Fig. 3.

The paradox is closely related to the flashing ratchet. If we visualize the capital
X (t) as the position of a Brownian particle in a one dimensional lattice, game A,
for e = 0, is a discretization of the free diffusion, whereas game B resembles the
motion of the particle under the action of the asymmetric sawtooth potential. Fig.
4 shows this spatial representation for game B. When the particle is on a dark site,
the bad coin is used and the probability to win is very low, whereas on the white
sites the most likely move is to the right.

Recall that in the flashing ratchet the sawtooth potential has a short spatial
interval in which the force is negative and a long interval with a positive force.
Equivalently, game B uses a bad coin on a “short interval”, i.e., on one site of every
three on the lattice, and a good coin on a “long interval” corresponding to two
consecutive sites which are not multiple of three (see Fig. 4). As in the flashing
ratchet, game B rectifies the fluctuations of game A. Suppose that we play the
sequence AABBAABB... and that X (¢) is a multiple of three immediately after
two instances of game B. Then we play game A twice, which can drive the capital
back to X (t) or to X (¢) £ 2. In the latter case, the next turn is for game B with a
capital that is not a multiple of three, which means a good chance of winning. That
is, game B rectifies the fluctuations that occurred in the two turns of game A. The
rectification is not as neat as in the low temperature flashing ratchet, but enough to
cause the paradox.

There is a more rigorous way of associating a potential to a gambling game by
using a master equation [20]. However, it provides a similar picture of game B, as
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Figure 3: Average capital as a function of the number of turns for game A, B and
their periodic and random combinations. ¢ = 0.005 and [a, b] stands for periodic
sequences where A (B) is played a (b) consecutive turns.
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Figure 4: A random walk picture of game B.

a random walk that is nonsymmetric under inversion of the spatial coordinate and
capable of rectifying fluctuations.

3.2 Reorganization of trends

We will now present an alternative intuitive explanation of the paradox, showing
that game A boosts the effect of the good coin in B, giving the overall game a
winning tendency.

Game B is played with good and bad coins. Therefore, for this game the prob-
ability to win in the ¢-th turn can be calculated as

pwin(t) = 7I'O(t)pbad + (1 - WO(t))pgood (1)

where 7 (t) is the probability of X (¢) being a multiple of 3 (i.e. of using the bad
coin). To calculate the value of 7y (%), we make use of the theory of Markov chains.
One can define the Markov process

Y(t) = X(t) mod 3 (2)



taking on only three possible values or states, Y (t) = 0, 1, 2. Let wo(t), w1 (t), ma(t)
be the probability of states 0, 1, and 2 at the ¢-th turn, respectively. This probability
distribution obeys the following evolution equation:

™0 (t + 1) 0 1- Pgood Pgood 7r0(t)
1 (t + 1) = Pbad 0 1- Pgood Ut (t) .3
T2 (t + 1) 1-— DPbad Pgood 0 2 (t)

After a small number of turns of game B, 7((¢) reaches the following stationary
value, which is invariant under the transformation given by Eq. (3). The stationary
value for g reads

5 440

st 2

= _ + ~0.38 —0.20¢€. 4
B = 73 ~ 5797¢ O(e”) ~0.38 —0.20 € 4)
Substituting this value in Eq. (1) we obtain the probability of winning for game

B for sufficiently large ¢

LMt o, O(é?) (5)

PwinB = 9 169

which is less than 1/2 for e > 0. This proves that game B is losing for € > 0, as
shown in Fig. 3.

The paradox arises when game A comes into play. Game A is always played
with the same coin, regardless of the value of the capital X (¢), and therefore makes
the probability of states 0, 1 and 2 tend to a uniform distribution. Thus, game A
makes 7o (t) tend to 1/3. Since 1/3 < 78, the effect of game A is to decrease the
probability of playing the bad coin when game B is played.

More precisely, when games A and B are chosen at random, the probability of
using the bad coin decreases to

. 245 48880
Th = —— —
07709 502681

The probability of winning in this randomized combination of games A and B is

)pgood +pa 727 486795
- - €
2 1418 502681

€+ O0(¢?) ~ 0.35 — 0.10c. (6)

/'y Pbad +PA
Pwin = WOT

+ (1 — 7} +0(e*) (1)
which is greater than 1/2 for a sufficiently small e. This is the mechanism be-
hind the paradox: although the coin in game A is also a bad coin, it increases the
probability of playing the good coin in B enough to make the combination win.

Periodic sequences can also be studied as Markov chains and their probability
of winning in a whole period can be easily computed. Finally, the slopes of the
curves in Fig. 3 can be calculated as (X (¢ + 1)) — (X (¢)) = 2pwin — 1.



3.3 Capital-independent games

The modulo rule in game B is quite natural in the original representation of the
games as a Brownian ratchet. However, the rule may not suit some applications of
the paradox to biology, biophysics, population genetics, evolution, and economics.
Thus, it would be desirable to devise new paradoxical games based on rules inde-
pendent of the capital. Parrondo, Harmer and Abbott introduced such a game in
Ref. [21].

In the new version, game A remains the same as before, but a game B’, which
depends on the history of wins and losses of the player, is introduced. Game B’ is
played with four coins B, Bj, Bs, B following history-based rules explained in
table 1.

Before last Last Coin Prob. of win Prob. of loss

t—2 t—1 att att att

Loss Loss  Bj » 1—p1
Loss Win  B) P2 1—po
Win Loss B} 3 1—p3
Win Win Bfl yo 1-— yo

Table 1: History-based rules for game B’

The paradox reappears, for instance, when setting p; = 9/10 — €, po = p3 =
1/4— €, and py = 7/10 — e. With these numbers and for € small and positive, B’ is
alosing game, while either a random or a periodic alternation of A and B’ produces
a winning result. Fig. 5 shows a theoretical computation of the average capital for
these history-dependent paradoxical games.

The paradox is reproduced because there are bad coins in game B’ which are
played more often than in a completely random game, i.e., a quarter of the time.
For the above choices of p;, i = 1,2, 3, 4, the bad coins are B, and Bj. The other
two coins, B} and Bj, are good coins.

Due to the fact that game B’ rules depend on the history of wins and losses, the
capital X (¢) is no longer a Markovian process. However, the random vector

X () — X(t - 1)
Y = ( X(t—1) - X(t —2) ) ®

can take on four different values and is indeed a Markov chain. The transition
probabilities are again easily obtained from the rules of game B’ and an analytical
solution can be obtained (see [21] for details).
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Figure 5: Average capital as a function of the number of turns in the capital inde-
pendent games, for e = 0.003.

We see that the mechanism that we have called a reorganization of trends can
be used to extend the paradox to other gambling games. It is also noteworthy that
the price we must pay to eliminate the dependence on the capital in the original
paradox is to consider history-dependent rules, i.e., games where the capital is no
longer Markovian.

4 Collective games

In this section we analyze three different versions of paradoxical games played by
a large number of individuals. The three share the feature that it can sometimes be
better for the players to sacrifice short term benefits for higher returns in the future.

4.1 Capital redistribution brings wealth.

Reorganization of trends tells us that the essential role of game A in the paradox is
to randomize the capital and make its distribution more uniform. Toral has found
that a redistribution of the capital in an ensemble of players has the same effect
[11].

In the new paradoxical games introduced by Toral in [11], there are N players
and one of them is randomly selected in each turn. With probability 1/2, the se-
lected individual plays game B against the casino; and with probability 1/2 he plays
a new game A’ which consists of giving a unit of his capital to another randomly
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Figure 6: Average capital per player in game B, game A’ (redistribution of cap-
ital), and the random combination, with ¢ = 0.01. The plot depicts the average
capital per player as a function of time from a simulation of 10 players and 500
realizations.

chosen player in the ensemble. That is, game B is played in half of the turns and
game A’, which is nothing but a redistribution of the total capital, in the other half.
The latter obviously does not change the total capital. On the other hand, game B
is a losing game and, therefore, playing B without redistribution yields systematic
loses. The striking result is that the redistribution of capital turns the losing game
into a winning one, actually increasing the total capital available. Thus, the redis-
tribution of capital turns out to be beneficial for everybody. This effect is shown
in Fig. 6 where the average total capital in a simulation with 10 players and 500
realizations is depicted for games B and A’, and for their random combination. It is
remarkable that the effect is still present when the capital is required to flow from
richer to poorer players (see [11] for details).

The explanation to this phenomenon follows the same lines as in the original
paradox.

4.2 The voting paradox

Consider now a set of IV players who play game A or B against a casino. In each
turn, all of them play the same game. Therefore, they have to make a collective
decision, choosing between game A or B in each turn. We will firstly use a majority
rule (MR) to select the game, that is, the game which receives more votes is played

10



by all the players simultaneously.

The interesting feature of this system is that, if the number of players is suffi-
ciently large, it is better for them to vote at random than to vote according to their
own benefit in one turn [13]. Voting at random yields a winning tendency while
voting for the game that gives the player the highest average return leads to a steady
loss, as can be seen in Fig. 7. We will see that, with the MR, selfish voting selects
game B most of the time, causing a systematic decrease of the total capital.

In order to explain this behavior, we will focus again on the evolution of 7 (),
the fraction of players whose capital is a multiple of three. The selection of the
game by voting can be rephrased in terms of 7y(¢). Every player votes for the
game which offers him the higher probability of winning according to his own
state. Then, every player whose capital is a multiple of three will vote for game A
in order to avoid the bad coin in B. That accounts for a fraction mo(t) of the votes.
The remaining fraction 1 — mo(¢) of the players will vote for game B to play with
the good coin. Since the MR establishes that the game which receives more votes
is selected, game A will be played if mo(t) > 1/2. Conversely, the whole set of
players will play game B when 7((¢) is below 1/2.

On the other hand, as we have seen in section 3.2, playing game B makes 7 (t)
tend to a stationary value given by Eq. (4), namely, 755 ~ 0.38 — 0.2¢ < 1/2
for e > 0, whereas playing game A makes 7 tend to 1/3. This is still valid for
the present model, since the IV players only interact when they make the collective
decision, otherwise they are completely independent.

If mo(t) > 1/2, then the ensemble of players will select game A. The fraction
mo(t) will decrease until it crosses this critical value 1/2. At that turn, B is the
selected game and it will remain so as long as 7 does not exceed 1/2. However,
this can never happen, since game B drives 7 closer and closer to 75t which is
below 1/2. Hence, after a number of turns, the system gets trapped playing game
B forever with 7 asymptotically approaching 7. But, since e is positive, game B
is a losing game (c.f. section 3.2) and, therefore, the MR yields systematic losses,
as can be seen in Fig. 7. We have also plotted in Fig. 8 the fraction 7((¢), to check
that, once o (t) crosses 1/2, game B is always chosen and 7 (t) approaches mg,
staying far below 1/2.

On the other hand, if, instead of using the MR, we select the game at random
or following a periodic sequence, game A will be chosen even though 7y < 1/2.
This is a bad choice for the majority of the players, since playing B would make
them toss the good coin. That is, the random or periodic selection will contradict
from time to time the will of the majority. Nevertheless, choosing the game at
random keeps 7y away from )}, as shown in Fig. 8, i.e., in a region where game
B is winning (mp < 7). Therefore, the random choice yields systematic gains,
as shown in Fig. 7.

11
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Figure 7: Average capital per player for the random and the voting (MR) choice,
for ¢ = 0.005 and an infinite number of players.

It is worth noting that choosing the game at random is exactly the same as if
every player voted at random. Therefore, the players get a winning tendency when
they vote at random whereas they lose their capital when they vote according to
their own benefit in each run.

4.3 The risks of short-range optimization

Yet another “losing now to win later” effect can be observed in the paradoxical
games. As in the previous example, we consider a large set of players, but now
only a randomly selected fraction « of them play the game in each turn. Suppose
we know the capital of every player so we can compute which game, A or B, will
give the larger average payoff in the next turn. Again, and even more strikingly,
selecting the “most favorable game” results in systematic losses whereas choosing
the game at random or following a periodic sequence steadily increases the average
capital [12].

The knowledge of the capital of every player allows us to choose the game with
the highest average payoff in the next turn, since this optimal game can easily be
obtained from the fraction mo(¢) of players whose capital is a multiple of three.
These individuals will play the bad coin if game B is chosen and the remaining
fraction 1 — mo(¢) will play the good coin. Hence, the probability of winning for
game B reads

PwinB = ToPbad + (1 — 70)Pgood- ©)

12
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Figure 8: The fraction of players, mo(t), with capital multiple of three under the
MR and the random choice (¢ = 0.005 and N = oco). The horizontal lines indicate
the threshold value for the MR choice (1/2), and the stationary values for games A
and B, m3Yy and 7, , respectively.

In case game A is selected, the probability to win is pyina = pa = 1/2 — € for all
time ¢. Therefore, to choose the game with the larger payoff (X (t+1)) — (X (¢)) =
2pwin — 1 in every turn ¢, we must

play A if pwina > Pwins(70)
play B if pyina < Pwine(70) (10)

or equivalently

play A if mo(t) > moc
play B if mo(t) < moe (11

with Toe. = (PA —Pgood)/ (PA —Poad) = 5/13. We will call this way of selecting the
game the short-range (SR) optimal strategy. We will also consider that the game
is selected following either a random or periodic sequence. These are both blind
strategies, since they do not make any use of the information about the state of the
system. However, and surprisingly enough, they turn out to be much better that the
SR optimal strategy, as shown in Fig. 9.

Notice that (11) is similar to the way the game is selected by the MR of the
previous section, but replacing 1/2 by the new critical value mo. = 5/13. There-
fore, the explanation of this model goes quite along the same lines as for the voting

13
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Figure 9: Average capital in function of time for the three different strategies ex-
plained in the text, with N = oo, v = 0.5, and € = 0.005.

paradox, although with some differences. Unlike 1/2, 7. equals the stationary
value of mo(¢) for game B when € = 0. As in the voting paradox, game A drives 7
below 7. because game A makes 7 tend to 1/3. If mo(t) < mo., then game B is
played, but 7o (¢ + 1) will be still below 7. only for v sufficiently small. For exam-
ple, if v = 1/2 and € = 0, game B is chosen forty times in a row before switching
back to game A, making 7 become approximately equal to 75 at almost every
turn. This behavior is shown in Fig. 10. As long as g is close to 75, the average
capital remains approximately constant, as shown in Fig. 11.

In contrast, the periodic and random strategies choose game A with g < ..
Although this does not produce earnings in that turn, it keeps my away from ;.
When game B is chosen again, it has a large expected payoff since 7 is not close
to w3 By keeping 7o not too close to 7, the blind strategies perform better than
the short-range optimal prescription, as can be seen in Fig. 11.

The introduction of € > 0 has two effects. First of all, it makes 7jj;, decrease by
a small amount, as indicated in Eq. (4). This makes it even more difficult for the SR
strategy to choose game A, and after a few runs game B is always selected. Since
game B is now a losing game, the SR optimal strategy is also losing whereas peri-
odic and random strategies keep their winning tendency, as can be seen in Fig. 9.

To summarize, the SR optimal strategy chooses B most of the times, since it is
the game which gives the highest returns in each turn. However, this choice drives
mo(t) to a region in which B is no longer a winning game. On the other hand, the
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Figure 10: 7mo(t) for e = 0, N = oo, and v = 0.5. The horizontal lines show
the stationary values for game A and game B (which coincides with the critical
fraction g, for the SR optimal strategy).
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Figure 11: Average capital as a function of time, for the three different strategies
explained in the text, e = 0, N = oo and v = 0.5.
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random strategy from time to time sacrifices the short term returns by selecting
game A, but this choice keeps the system in a “productive region”. We could say
that the SR optimal strategy is “killing the goose that laid the golden eggs”, an
effect that is also present in simple deterministic systems [12].

5 Patterns

The original paradox illustrates how simple switching between dynamics, each of
which produces an “undesirable” state, may lead to a “desirable” outcome. In this
section we show that this idea can be generalized to other topics in the context of
spatially extended systems. Spatiotemporal pattern formation in nonequilibrium
extended systems plays a relevant role in a number of phenomena, and in the past
few decades there has been continued progress in the understanding of different
mechanisms that lead to such patterns [22]. Following the ideas of the games, we
show herein that the alternation of dynamics, neither of which exhibits patterns,
constitutes a striking mechanism for pattern formation [14, 15, 16].

5.1 Recipe for pattern formation

To illustrate the mechanism, we consider a simple family of models that exhibit
patterns. In general, the overdamped Langevin dynamics for a scalar field o(r,t)
reads:

p(r,t) = =V (o(r, 1) + Lo(r, 1) + £(x, 1) (12)

The temporal evolution of the field is driven by a local force that can be derived
from a local potential, V' (), by its coupling with other locations, indicated by the
operator £, and by fluctuations (for example, thermal fluctuations) modelled by the
random term £(r, t). We assume that £(r, t) is Gaussian, has zero mean value, and
correlation function

(E(r, )X ) = a25(r — 1)) 6(t — ). (13)

A system such as (12) must satisfy two requirements for pattern formation:
the local potential must have at least two stable equilibrium points, and the cou-
pling must induce a morphological instability [22], i.e., k| = 0 can not be the
most unstable Fourier mode. A paradigmatic example is the Swift-Hohenberg (SH)
model [23], a phenomenological model for the Rayleigh-Benard system near the
convection threshold.

For the SH model the coupling term reads Lgg = — (1 + VQ) ?. Note that this
coupling operator determines a morphological instability with |k*| = 1 as the most
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unstable Fourier mode. Throughout this section we will consider the coupling in
Eq. (12) to be Lgp1.

If V() is monostable no patterns appear, and the steady state of the system is
spatially homogeneous. The homogeneous state is then determined by the equilib-
rium point, @, of the effective local potential

Vie) = Vi) + 5 (14)

The term 2 /2 arises from the “1” in the coupling term acting on the field. Thus,
¢ is the solution of

V(@) +¢=0. (15)

Note that although V() is monostable, V(¢) may not be, and one may wonder
about the possibility of generating a pattern despite the fact that the local potential
has only one equilibrium point. However, this does not occur. Considering small
fluctuations around the homogeneous state, ¢ = ¢ + ¢, and linearizing Eq. (12),
leads to the following evolution equation for the Fourier component (indicated by
a hat) of the field for the most unstable modes k*:

S(k*, 1) = —V"(2)d(K*, t). (16)
This leads to unstable behavior only if V”(g) < 0. Since V(¢) has only one
equilibrium point, it follows that V”($) > 0 and thus no pattern arises even if
V (¢) is not monostable. Moreover, it may happen that V (¢) and V (¢) are not
monostable and yet no structure develops because V(@) > 0. Hence we arrive at
the following conditions:

but V”($) > 0, then no pattern develops.
ifV'(@)+¢=0 (17)
and V" (p) < 0, then a pattern develops.
5.2 Global Switching

Consider now a global switching mechanism between two local potentials V()
and Va(p):

Sb(rv t) = _A(t)vll (gp(r, t)) - (1 - A(t)) V2/ (90(1'7 t)) + E(p(l‘, t) + f(I‘, t)' (18)

Here A(t) is a dichotomous function of time that takes on the values 0 and 1. In
this way, either V() or Va(yp) acts on the system at every site at a given time. It
is easy to check that (18) can be rewritten as

pr,t) = =V (p(r,1) = p(t)V (o, 1) + Lo(r,t) +£(x,1), (19
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where p(t) = 2A(t) — 1 = £1, and

Vi(p) £ Valyp)

Vi(p) 5

(20)

Suppose that V; 2(¢) and 171,2(<p) are monostable potentials. It is then clear,
according to conditions (17), that neither of the two dynamics by itself will lead
to patterns. Using the language of the games, at any time and at all sites we are
“playing” a “losing” game: no pattern formation. However, we will show that the
nonequilibrium process of alternation in time, either periodically or randomly, may
lead to a “winning outcome”: different kinds of oscillatory and stationary patterns.
The reason is now the stabilization of transient states mentioned in the introduction.

Let ¢ denote the average time that the system spends in each dynamics. We
then expect that if t; — oo, that is, if switching is slow, every site will reach
the equilibrium point @; appropriate to the potential V;(¢) that drives the sys-
tem. Therefore, the field will oscillate between homogeneous structures. How-
ever if the switching process is sufficiently fast (later we will state the condi-
tion quantitatively), the fast variable u(t) can be replaced by its average value,
w(t) ~ (u(t)) = 0. Therefore, in that limit the system is effectively driven by the
potential V. (). We stress that, although V; 2() are monostable and satisfy the
condition (17) associated with no pattern formation, V. () may in general satisfy
either condition. In particular, if V; 2(¢) are such that

VI @)+ @ =0 and V/(3;) >0, (21)
Vi(@)+o =0 and V/(2}) <0, (22)

pattern formation will occur due to the global temporal alternation of two dynamics
neither of which alone leads to patterns.

5.3 Relaxation transients between dynamics

Given any particular choice of V} 2(y) satisfying Egs. (21) and (22), the formation
of spatial structures can be understood in terms of the ratio r of the two character-
istic times of the system: the time that the system spends in each dynamics, ¢, and
the relaxation time to equilibrium states, ,:

r= .
tr

(23)

The time ¢, is the smaller of £1_,5 and ¢2_.1, where ¢;_.; is the relaxation time, un-
der the action of V;, of the homogeneous state associated with V;. We can estimate
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ti—; by focusing only on the |k| = 0 mode and assuming that, when the potential
switches from V; to Vj, the mode amplitude behaves as a Brownian particle ini-
tially equilibrated in the effective local potential Vi (¢). When the local potential is
switched, this point, which up to that moment was stable, becomes unstable. The
relaxation time to the new homogeneous state associated with V; is the time that it
takes the Brownian particle to roll down the potential hill to the new equilibrium
point [24]:

92 [P 2 Yy 9 -
tij = ﬁ/ dy exp <§Vj(y)> [ dzexp <—§V](z)> . (24)

Pi Pi

On the other hand, the time that the system spends in one of the two dynamics,
ts, reads as follows. If the dichotomous switching is periodic, s is clearly the
semi-period of the signal, t; = 7'/2. If the switching is random, we take A(t) to be
a dichotomous exponentially correlated random variable with correlation time 7.
The correlation function of the associated random dichotomous variable () then
is

(u(Ou(t) = e 01, (25)

The time that the system spends in each dynamics on average is then t; = 27.

If r > 1 the system will alternate between homogeneous states and if r < 1
a stationary pattern will be obtained. The case » ~ 1 is the most striking: when
the switching is periodic, a resonance phenomenon between the two characteristic
times of the system may produce oscillatory patterns. These patterns only occur
under periodic switching, that is, random switching even with a ratio » ~ 1 does
not produce sustained oscillatory patterns [15].

5.4 A Particular Case

Let us now focus on the following particular family of local potentials that satisfy
the conditions (21) and (22):

4 3 2
V(o) = T+ 5 - 2o (26)

Then the potentials V1 (p) are

4 3 2
Vi(go):a%—i-a;%—a%—a;cp, 27)
where ay = 1 and a_ = 0. In Fig. 12 we show the effective monostable potentials

Vi2(p).
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0
¢
Figure 12: Effective local potentials V; () (solid curve) and Va(¢) (dotted curve).

We first compute the relaxation time ¢,.. Using Eq. (24) with 02 = 10~2 we ob-
tain ¢, ~ 2.2. This value is in agreement with that found in numerical experiments,
ty =249 £ 1072

We now show the results of one-dimensional (1-d) simulations. The values
of the relevant parameters are At = 1073, Az = 0.5, L = 64, and 0 = 1072,
We expect the typical wavelength of the pattern to be A = 27/ |k*| ~ 27 and
the aspect ratio L/\ ~ 10, that is, when a pattern develops we expect to find 10
wavelengths inside the lattice. In order to avoid possible instabilities arising from
boundary effects we implement periodic boundary conditions. The initial condition
is taken to be random according to a Gaussian distribution. As for the effect of the
additive fluctuations in the dynamics, only if the initial condition were chosen to be
uniform, ¢(r,0) = const. for all r, are they relevant since in all other cases small
fluctuations do not play a significant dynamical role. Clearly, a uniform initial
condition does not produce patterns in the deterministic problem regardless of the
value of the control parameter 7.

In Fig. 13 we show the results of 1-d simulations with random switching. We
present a density plot of the field as a function of space and time for » = 4.5
(left panel) and » = 0.045 (central panel). In the first case a clear alternation
between homogeneous states is obtained, and in the second we see the formation
of a stationary pattern.
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Figure 13: Spatiotemporal density plot of the field with slow random switching
(left), fast random switching (center) and periodic resonant switching (right): r =
4.5, r = 0.045, and r = 1.15 respectively. A clear alternation of homogeneous
states is observed in the first case, while stationary (center) and oscillatory (right)
patterns develop in the other cases.
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Deterministic periodic switching leads to results similar to those of random
switching when r > 1 (alternation of homogeneous states) and r < 1 (stationary
patterns). In addition, when r ~ 1 an oscillatory pattern develops. The right panel
of Fig. 13 shows, again by means of a density plot of the field as a function of space
and time, the oscillatory structure that arises when r = 1.15. Such a spatiotemporal
structure resembles the so-called oscillons found in granular materials [25]. It is
also worth pointing out that for 2-d systems different symmetries determine the
spatial arrangements and shapes of patterns [14, 15].

6 Conclusions

We have presented the original Parrondo’s paradox and several examples showing
how the basic mechanisms underlying the paradox can yield other counter-intuitive
phenomena in collective games and in spatially extended systems.

The first mechanism, the ratchet effect, occurs when fluctuations can help to
surmount a potential barrier or a “losing streak”. These fluctuation can either come
from another losing game, such as in the original paradox, from a redistribution of
the capital, such as in Toral’s collective games, or from a purely diffusive motion,
such as in the flashing ratchet.

A second mechanism is the reorganization of trends, which occurs when game
A reinforces a positive trend already present in game B. The same mechanism can
be observed in the games with capital independent rules and it helps to understand
the counter-intuitive behavior of the collective games presented in section 4.2 and
4.3, where random choices perform better than the choice preferred by the majority
or the one optimizing short term returns. These models also prompt the question
of how information can be used to design a strategy. It is a relevant question for
control theory and also for statistical mechanics, since the paradox is a purely col-
lective effect that goes away for a single player, i.e., the SR optimal strategy and
the MR choices perform much better than the random or periodic ones.

Finally, the outcome of an alternation of dynamics can always be interpreted
as a stabilization of transient states. This interpretation allowed us to extend the
basic message of the paradox to pattern formation in spatially extended systems.
Drawing parallels with the games, we have shown how the global alternation of two
dynamics, each of which leads to a homogeneous steady state (“losing” dynamics),
can produce stationary or oscillatory patterns (“winning” dynamics) upon alterna-
tion. The appearance of spatial or spatiotemporal patterns depends on the ratio r
of the alternation time to the relaxation time of the system in the slower of the two
dynamics. Random alternation leads to stationary spatial patterns, while periodic
alternation may lead to stationary or oscillatory spatial patterns [14, 15, 16]. The

22



alternation mechanism has been presented for certain classes of models based on
the Swift-Hohenberg equation. One can envision many other situations in which
global alternation between homogeneous or even chaotic dynamics may lead to
spatiotemporal pattern formation [26]. Moreover, the generalization to other sit-
uations of the underlying idea, namely, that the averaged dynamics may behave
differently than its dynamical components, is straightforward and may lead to fur-
ther striking results in the behavior of dynamical systems [27].

One of these extensions concerns quantum systems. Lee ef al. have devised a
toy model in which the alternation of two decoherence dynamics can significantly
decrease the decoherence rate of each separate dynamics [28]. Also in the quan-
tum domain, the paradox has received some attention and has been reproduced in
the contexts of quantum lattice gases [29], quantum games [30, 31], and quantum
algorithms [32].

To finish this partial account of the existing literature on the paradox, we men-
tion the work by Arena et al [33], who analyze the performance of the games using
chaotic instead of random sequences of choices; that of Chang and Tsong [34],
who study the hidden coupling between the two games in the paradox and present
several extensions even for deterministic dynamics; and the paper by Kocarev and
Tasev [35], relating the paradox with Lyapunov exponents and stochastic synchro-
nization.

In summary, Parrondo’s paradox has drawn the attention of many researchers
to non-trivial phenomena associated with switching between two dynamics. In
this paper, we have tried to reveal some of the basic mechanisms that can yield an
unexpected behavior when switching between two dynamics, and how these mech-
anisms work in several versions of the paradox. We believe that the paradox and
its extensions are contributing to a deeper understanding of stochastic dynamical
systems. In the case of statistical mechanics, switching is in fact a source of non-
equilibrium which is ubiquitous in nature, due to day-night or seasonal variations
[27]. Nevertheless, it has not been studied in depth until the recent introduction of
ratchets and paradoxical games. As the paradox suggests, we will probably see in
the future new models and applications confirming that noise and switching, even
between equilibrium dynamics, can be a powerful combination to create order and
complexity.
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