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The hair bundle of sensory cells in the vertebrate ear provides an example of a noisy oscillator close to a

Hopf bifurcation. The analysis of the data from both spontaneous and forced oscillations shows a strong

violation of the fluctuation-dissipation theorem, revealing the presence of an underlying active process

that keeps the system out of equilibrium. Nevertheless, we show that a generalized fluctuation-dissipation

theorem, valid for nonequilibrium steady states, is fulfilled within the limits of our experimental accuracy

and computational approximations, when the adequate conjugate degrees of freedom are chosen.
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The fluctuation-dissipation theorem (FDT) is the corner-
stone of linear response theory for systems at thermal
equilibrium [1]: it relates the response to small perturba-
tions to the correlations of spontaneous fluctuations and
connects the microscopic dynamics of the system to the
macroscopic transport coefficients, such as diffusion con-
stant, conductivity, absorption rates, etc.

Many systems operate far from thermodynamic equilib-
rium and therefore, do not obey the FDT. One illustrative
example is given by the hair-cell bundle. The hair bundle
operates as a mechanical antenna that protrudes from the
apical surface of each hair cell in the inner ear of vertebrates
[2,3]. Hearing starts when sound evoked deflections of this
organelle are transduced into electrical signals that then
travel to the brain. Composed of cylindrical protrusions—
the stereocilia—that are arranged in rows of increasing
heights, the hair bundle displays a staircase pattern.
Stereocilia are interlinked near their tips by fine oblique
filaments. Tip-link tension controls the open probability of
mechanosensitive ion channels. The hair cell can power
noisy spontaneous oscillations of its hair bundle that display
a spectacular violation of the FDT [4]. The behavior of the
hair bundle has been described by the generic normal form
of a dynamical system that operates on the stable side of a
Hopf bifurcation [5]. In this Letter, we focus on this par-
ticular class of out-of-equilibrium systems.

Several generalizations of the FDT to nonequilibrium
systems have been proposed [6–9]. The generalized
fluctuation-dissipation theorem (GFDT) of Prost et al.
[10] applies to systems with Markovian dynamics in a
nonequilibrium steady state. Applying the GFDT to ex-
perimental measurements on the hair bundle, we show here
that a proper choice of variables restores a relation between
spontaneous fluctuations and linear response.

Details of the experiment are found in Refs. [4,11,12].
The oscillatory movement of a hair bundle was monitored
with a glass fiber attached to its tip (Fig. 1(a)). The fiber was
used both to exert sinusoidal forces and to report

hair-bundle noisy oscillations. The power spectrum
~Cxxð!Þ ¼ R

CxxðtÞei!tdt of spontaneous hair-bundle posi-
tion x, which is the Fourier transform of the correlation
function CxxðtÞ ¼ hxðtÞxð0Þi, displays a broad peak cen-
tered at a characteristic frequency �0 ¼ !0=2� ’ 6 Hz
(Fig. 1(b)). For stimulation by external sinusoidal forces
fðtÞ, the linear response function ~� ¼ ~�0 þ i~�00 is defined at
each angular frequency ! by h~xð!Þi ¼ ~�ð!Þ~fð!Þ, where
tildes denote Fourier components. Its imaginary part ~�00ð!Þ
is proportional to the work received by the system from the
external force for stimulation at a frequency ! [13]. At
thermal equilibrium, with our definition of the Fourier
transform, ~�00ð!Þ must always be positive (for ! � 0).
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FIG. 1 (color online). Experimental data from a hair bundle:
(a) Spontaneous hair-bundle oscillation. (b) Power spectral den-
sity ~Cxxð�Þ averaged from 15 different trajectories as a function
of frequency �. (c) Imaginary part of the response function
~�00
xxð�Þ. Thin red lines (b–c) correspond to a simultaneous fit

of ~Cxxð�Þ and ~�00
xxð�Þ to theoretical expressions derived from

Eq. (4). (d) Fluctuation-response ratio � as defined in Eq. (2)
fitted to theoretical expression given in Ref. [4].
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Remarkably, in the case of the oscillatory bundle, ~�00ð!Þ
changes sign near �0, as shown in Fig. 1(c). At low frequen-
cies, the work received by the bundle is negative, meaning
that energy is transferred from the hair bundle to the fiber.
An energy consuming or active process must, thus, be at
work to power hair-bundle movements.

At thermal equilibrium, the FDT relates the imaginary
part of the response function to the power spectrum of
spontaneous fluctuations for a degree of freedom x

~C xxð!Þ ¼ 2kT
~�00
xxð!Þ
!

; (1)

where T is the temperature and k the Boltzmann constant.
Departure from equilibrium can be characterized by the
fluctuation-response ratio

� ¼ ! ~Cxxð!Þ
2kT ~�00

xxð!Þ ; (2)

sometimes called the effective temperature (in units of the
room temperature T). This ratio equals one when the
system is at equilibrium. In an out-of-equilibrium system,
� might depend on frequency and be either positive or
negative. For the hair bundle, the fluctuation-response ratio
� shown in Fig. 1(d) depends on frequency and presents a
striking divergence in the vicinity of �0 ¼ !0=2�, corre-
sponding to the sign change of ~�00

xxð�Þ. However, if the
GFDT applies, a fluctuation-response relation is restored
with an appropriate choice of the conjugate variable X to
the external force [14]

~� XXð!Þ � ~�XXð�!Þ ¼ i! ~CXXð!Þ: (3)

The behavior of the hair bundle for small deflections has
been described as a two variable dynamical system:

d

dt

x

y

 !
¼ �r !0

�!0 �r

 !
x

y

 !
þ fx

0

 !
þ �x

�y

 !
: (4)

The variable x is the deflection of the hair bundle, r ¼ k=�
is a damping rate, where � and k are, respectively, the
effective drag coefficient and the stiffness of the bundle,
fx ¼ fext=�, where fext is the external force on the hair
bundle. The second degree of freedom y is related to the
force exerted by the active process within the hair bundle
and couples to the displacement x. The noises �x and �y

describe fluctuations in the system. We treat the two
Langevin forces as white noises so that the dynamical
system is Markovian. At the low frequencies of the experi-
ment (� 10 Hz), we expect noise correlation times to be
sufficiently short that the noises can be considered as delta-
correlated. Non-Markovian effects are expected at higher
frequencies only, as discussed below. Equation (4) is to be
understood as a renormalized expression, valid for provid-
ing two point correlation functions and linear responses, of
a more complex nonlinear problem [5,12,15]. As a result,
the noises �x and �y are, in general, correlated. However,

experimentally, the cross correlation turned out to be very
small and the two noises are effectively independent.
The noise correlations are written as h�xðtÞ�xðt0Þi ¼
��x

�ðt� t0Þ, h�yðtÞ�yðt0Þi ¼ ��y
�ðt� t0Þ.

The dynamical system described by Eq. (4) is the ca-
nonical form of a system close to a Hopf bifurcation [16]. If
r > 0, it displays damped spontaneous oscillations of fre-
quency !0. The expressions for the power spectrum and
the complex response function to an external force fx can
be readily computed from this model and were used for a
global fit of the experimental data with a unique set of
parameters r,!0,��x

, and��y
in Fig. 1 (the real part of the

response function is not shown).
With the choice of x as conjugate variable of the external

force fx, the FDT is violated (Fig. 1(c)). This is a strong
signature of a nonequilibrium behavior. Nevertheless, the
dynamics of Eq. (4) being Markovian, the GFDT of Prost
et al. [10] holds for the correct conjugate variable X of the
external force. In the case of the two-dimensional linear
system at hand, Eq. 5 in Ref. [10] yields:

X

Y

 !
¼ ½A�1�T��1

A

x

y

 !
(5)

with

A ¼ � �r !0

�!0 �r

 !
; �A ¼ hx2iss hxyiss

hxyiss hy2iss

 !
; (6)

where the averages in the matrix �A are calculated in the
steady state. A direct test of the GFDTwould thus, require
a measurement of the internal degree of freedom y, which
is not experimentally accessible.
To circumvent this limitation, we propose three different

approaches. On the one hand, using the measured x value,
we estimate the hidden variable either by computing the
linear combination z ¼ y!0 � rx of x and y using a denois-
ing procedure, or by an optimization technique. On the
other hand, we directly evaluate the correlations involving
zwhich are sufficient to test the validity of the GFDT. Using
the variable z, we write the dynamical system as

d

dt

x

z

 !
¼ 0 1

�ðr2 þ!2
0Þ �2r

 !
x

z

 !
þ fx þ �x

fz þ �z

 !

� �R
x

z

 !
þ fx þ �x

fz þ �z

 !
; (7)

where the noise and force in the z equation are �z ¼
�r�x þ!0�y and fz ¼ �rfx.

In the absence of external force, dx
dt ¼ zþ �x. We can,

therefore, estimate the value of z by filtering the time series
of the speed data, eliminating the high-frequency noise: at
each point of the trajectory, the value of the speed is
calculated by averaging over theN preceding points, where
N is such that the averaging effectively filters signals faster
than 60 Hz. This frequency is several times higher than the
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spontaneous oscillation frequency of the bundle �0 ’ 6 Hz
and could be varied without much effect on the final results
as long as it is high enough (� 30 Hz) to preserve the
waveform of hair-bundle oscillation and low enough
(� 90 Hz) to get rid of most of the high-frequency noise.
Denoising implicitly relies on the assumption that the
velocity _x can be split into a variable z with exponentially
decaying correlations plus white noise. As can be checked
at very low frequencies, it only gives an approximation ze
of the actual variable z.

Once the variables x and ze are obtained, we apply the
GFDT to the system described by Eq. (7), which is also
Markovian. The correlation matrix for the x and z variables
in Fourier space is then approximated by

~C~x ~xð!Þ ’ h~xð!Þ~x�ð!Þi h~xð!Þ~z�eð!Þi
h~ze!Þ~x�ð!Þi h~zeð!Þ~z�eð!Þi

 !
; (8)

where the star denotes a complex conjugate.
We compute ~xð!Þ and ~zeð!Þ using the FFT algorithm on

the experimental data. The matrix R is obtained from the
values of r and !0 and then used to perform the change of
variables

~X � X

Ze

 !
¼ ½R�1�T��1

x

ze

 !
(9)

where

� ¼ hx2iss hxzeiss
hzexiss hz2eiss

� �
:

In the new variables, the power spectrum reads

~C ~X ~Xð!Þ ¼ ½R�1�T��1 ~C~x ~xð!Þ½��1�TR�1 (10)

and the response function

~� ~X ~Xð!Þ ¼ ½R�1�T��1 ~�~x ~xð!Þ ¼ ½R�1�T��1½R� i!��1:

(11)

The GFDT [10] then imposes a relation between fluctu-
ations and the response given by Eq. (3). In particular, for
the first diagonal element, we expect the fluctuation-
response ratio:

� ¼ ! ~CXXð!Þ
2~�00

XXð!Þ ¼ 1: (12)

In Fig. 2 (black circles), we plot the fluctuation-response
ratio � evaluated from the experimental data. We find that �
wiggles about the value 1, within a range that stretches
from 0.5 to 2. This is a remarkable behavior considering
that, when fluctuations and response were evaluated with
the hair-bundle position x as the relevant degree of free-
dom, the fluctuation-response ratio changed sign and di-
verged near the characteristic frequency of spontaneous
oscillations (Fig. 1(d)). Although the GFDT imposes that �
be precisely equal to 1, numerical simulations shown be-
low demonstrate that the experimental data are compatible
with the GFDT.

We then used an inference method to estimate the vari-
able y from the measured trajectories. The assumption of
Gaussian white noises for �x and �y in Eq. (4) implies that

the combinations _xþ rx�!0y and _yþ!0yþ rx are
Gaussian variables for spontaneous oscillations (fx ¼ 0).
Discretizing the evolution [Eq. (4)] in N time steps �t,
we find

xnþ1 � xn þ �tðrxn �!0ynÞ �N ð0; ��x
�tÞ;

ynþ1 � yn þ �tðrxn �!0ynÞ �N ð0; ��x
�tÞ; (13)

where N ð	;�2Þ denotes the normal distribution of aver-
age 	 and variance �2. The probability 
ðfxn; yngÞ of
observing a discrete full trajectory fxn; yngn¼N

n¼1 is then a
product of 2N Gaussian distributions. Maximizing this
probability with respect to the yn variables (@
=@yn ¼ 0,
8 n) gives a linear system of equations for the most likely
trajectory fyng in terms of the measured variable fxng and
the parameters r, !0, ��x

and ��y
. We use this estimated

trajectory to perform the change of variables [Eq. (5)]
required for the GFDT. The resulting � is depicted in Fig. 2.
Our third approach to test the GFDT avoids any y

estimation by directly calculating the correlation matrix
from the measured data. Only the first element of the

matrix ~Cxxð!Þ can be directly obtained from the experi-
mental data. To estimate the elements involving z,
we proceed as follows. Fourier transforming Eq. (7) for
fx ¼ 0, we get ~zð!Þ ¼ �i!~xð!Þ � ~�xð!Þ, which we use
to calculate the cross correlation

~C xzð!Þ ¼ i! ~Cxxð!Þ � h~xð!Þ~�xð�!Þi: (14)

The second term in Eq. (14) is evaluated by means of the
evolution equation [Eq. (7)] giving
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FIG. 2 (color online). The fluctuation-response ratio � vs.
stimulation frequency � using the three different methods ex-
plained in the text. Black open circle: denoising of z, red open
square: estimation of ~C~x ~zð!Þ, blue asterisk: y estimation by
maximization of probability. Note that the power spectra were
smoothed out to eliminate some of the noise by a moving
average algorithm. Lines are just guides for the eye.
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~C xzð!Þ ¼ i! ~Cxxð!Þ ���x

r� i!

r2 þ!2
0 �!2 � 2ri!

; (15)

where the only unknown parameter is the noise intensity
��x

. However, from Eq. (7), one can show that ��x
¼

�2�12. Following the same lines, both ~Czxð!Þ and
~Czzð!Þ are expressed in terms of ~Cxxð!Þ, r, !0, and �12.
Finally, we estimate � from the data by noting that �11 ¼
hxð0Þ2i ¼ Cxxðt ¼ 0Þ, �12 ¼ hxð0Þzð0Þi ¼ dCxxðtÞ

dt jt¼0 or al-

ternatively by fitting the power spectrum expressed as a
function of �11 and �12, noting that �22 ¼ ðr2 þ!2

0Þ�11.

Once �, R, and ~C~x ~xð!Þ are known, we insert them into
Eq. (10) and compute the fluctuation-response ratio � as in
Eq. (12) (Fig. 2).

In order to asses the impact of the three different esti-
mation methods, we performed numerical simulations with
parameters similar to those of the experiment and repeated
the procedure using both our estimates and the actual y
value, which is available in simulations. The simulations
were performed using the Euler–Mayurama method [17] to
solve Eq. (4). As expected, results in Fig. 3 show that the
agreement with the theorem is best when the actual vari-
able y is used. However, even then, we still observe devia-
tions of � by about 25% due to a lack of averaging. In
addition, both the moving-average procedure and the in-
ference method imply a dependence on past history, and
thus, introduce some degree of non-Markovianity that
might explain further departure from the GFDT. Because
experiments and simulations show similar deviations of the
fluctuation-response ratio from 1, we consider that it is as
close to 1 as possible, in view of the inherent limitations

associated with the methods that we used to estimate this
ratio.
In conclusion, we showed that the GFDT [10] applies to

oscillatory hair-cell bundles. Although the hair bundle
provides a compelling example of a complex biological
system that operates away from thermal equilibrium, its
linear mechanical response is related to steady-state fluc-
tuations with the appropriate choice of a conjugate variable
to the external force. This relation holds for frequencies
close to the frequency of spontaneous oscillation, at which
the hair bundle can be described by a two-dimensional
dynamical system operating near a Hopf bifurcation. This
property affords a means to estimate the hidden variable
that underlies the activity of the hair bundle. Because the
hair bundle must satisfy the hypotheses of the GFDT, our
results support the description of the hair bundle as a single
noisy oscillator governed by Markovian dynamics and
therefore, go against a viscoelasticity of the hair bundle
in the range of frequencies that we studied. At higher
frequencies, however, the hair bundle could become non-
Markovian, due mainly to memory resulting from visco-
elasticity [18] or from colored fluctuations in the opening
and closing of the transduction channels [15]. Channel
clatter is only expected at frequencies above �1 kHz
[15], where a departure from the GFDT could be observed.
Our work relates to the experiments of Ref. [19] which

test the same GFDT for an experimental system consisting
of a Brownian particle in a toroidal optical trap. In contrast
to our study where we have to assume a Hopf bifurcation
dynamics with noise, in the optical trap experiment the
evolution equation is known, as the potential felt by the
particle is also applied using the trap.
We have provided three methods for the estimation of

correlations involving the nonmeasured degree of freedom.
Both the denoising and the inference methods can be
directly applied to other noisy systems. It would be, how-
ever, desirable to perform experiments where, in addition
to the displacement, the dynamics of the active term can be
controlled and measured. A good candidate for an addi-
tional measurement is the ionic current that flows through
the bundle, which is known to influence either the myosin
motors that generate the force inside the bundle or the
transduction channel to which the motors are attached [20].
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Natl. Acad. Sci. U.S.A. 109, 2896 (2012).

[19] J. R. Gomez-Solano, A. Petrosyan, and S. Ciliberto,
J. Phys. Conf. Ser. 297, 012 006 (2011).

[20] T. Duke, J. Phys. Condens. Matter 15, S1747 (2003).

PRL 109, 160602 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

19 OCTOBER 2012

160602-5

http://dx.doi.org/10.1073/pnas.251530598
http://dx.doi.org/10.1073/pnas.251530598
http://dx.doi.org/10.1140/epje/i2009-10487-5
http://dx.doi.org/10.1007/BF01391621
http://dx.doi.org/10.1088/1742-5468/2008/08/P08005
http://dx.doi.org/10.1088/1742-5468/2008/08/P08005
http://dx.doi.org/10.1209/epl/i2005-10549-4
http://dx.doi.org/10.1209/epl/i2005-10549-4
http://dx.doi.org/10.1103/PhysRevLett.103.010602
http://dx.doi.org/10.1103/PhysRevLett.103.010602
http://dx.doi.org/10.1103/PhysRevLett.103.090601
http://dx.doi.org/10.1103/PhysRevLett.103.090601
http://dx.doi.org/10.1073/pnas.96.25.14306
http://dx.doi.org/10.1073/pnas.96.25.14306
http://dx.doi.org/10.1529/biophysj.107.108498
http://dx.doi.org/10.1529/biophysj.107.108498
http://dx.doi.org/10.1073/pnas.0403020101
http://dx.doi.org/10.1073/pnas.0403020101
http://dx.doi.org/10.1073/pnas.1121389109
http://dx.doi.org/10.1073/pnas.1121389109
http://dx.doi.org/10.1088/1742-6596/297/1/012006
http://dx.doi.org/10.1088/0953-8984/15/18/308

