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Abstract

We study a modification of the so-called Parrondo’s paradox where a large number of

individuals choose the game they want to play by voting. We show that it can be better for the

players to vote randomly than to vote according to their own benefit in one turn. The former

yields a winning tendency while the latter results in steady losses. An explanation of this

behaviour is given by noting that selfish voting prevents the switching between games that is

essential for the total capital to grow. Results for both finite and infinite number of players are

presented. It is shown that the extension of the model to the history-dependent Parrondo’s

paradox also displays the same effect.
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1. Introduction

The dynamics of a flashing ratchet [1–4] can be translated into a counterintuitive
phenomenon in gambling games which has recently attracted considerable attention.
It is the so-called Parrondo’s paradox [5–8] consisting of two losing games, A and B,
that yield, when alternated, a winning game.
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In game A, a player tosses a coin and makes a bet on the throw. He wins or loses 1
euro depending on whether the coin falls heads or tails. The probability p1 of
winning is p1 ¼

1
2
� � with 0p� � 1; so game A is fair when � ¼ 0 and losing when

�40. By losing, winning, and fair games here we mean that the average capital is a
decreasing, increasing, and a constant function of the number of turns, respectively.
The second game—or game B—consists of two coins. The player must throw coin

2 if his capital is not a multiple of three, and coin 3 otherwise. The probability of
winning with coin 2 is p2 ¼

3
4
� � and with coin 3 is p3 ¼

1
10
� �. They are called

‘‘good’’ and ‘‘bad’’ coins respectively. It can be shown that game B is also a losing
game if �40 and that � ¼ 0 makes B a fair game [7,8]. The rules of both games A and
B are depicted in Fig. 1.
Surprisingly, switching between games A and B in a random fashion or following

some periodic sequences produces a winning game, for �40 sufficiently small, i.e.,
the average of player earnings grows with the number of turns. Therefore, from two
losing games we actually get a winning game [5–7]. This indicates that the alternation
of stochastic dynamics can result in a new dynamics, which differs qualitatively from
the original ones.
Alternation is either periodic or random in the flashing rachet [1–4] and in the

paradoxical games [5–7]. On the other hand, we have recently studied the case of a
controlled alternation of games, where information about the state of the system can
be used to select the game to be played with the goal of maximising the capital [9].
This problem is trivial for a single player: the best strategy is to select game A when
his capital is a multiple of three and B otherwise. This yields higher returns than any
periodic or random alternation. Therefore, choosing the game as a function of the
current capital presents a considerable advantage with respect to ‘‘blind’’ strategies,
i.e., strategies that do not make use of any information about the state of the system,
as it is the case of the periodic and random alternation. Analogously, in a flashing
ratchet, switching on and off the ratchet potential depending on the location of the
Brownian particle allows one to extract energy from a single thermal bath, in
apparent contradiction with the second law of thermodynamics [10]. This is nothing
No Yes

Game A Game B

  win  lose

1/2-�

Is X(t) a multiple of three ?

  win  lose

1/2+�

  win  lose

3/4-� 1/4+� 1/10-� 9/10+�

Fig. 1. Rules of the two Parrondo games.
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but a Maxwell demon, who operates having at his disposal information about the
position of the particle; and it is the acquisition or the subsequent erasure of this
information what has an unavoidable entropy cost [11], preventing any violation of
the second law.
Whereas a controlled alternation of games is trivial for a single player, interesting

and counter-intuitive phenomena can be found in collective games. In Ref. [9], we
considered a collective version of the original Parrondo’s paradox. In this model, the
game—A or B—that a large number N of individuals play can be selected at every
turn. It turns out that blind strategies are winning whereas a strategy which chooses
the game with the highest average return is losing [9].
In the present paper, we extend our investigation of controlled collective games

considering a new strategy based on a majority rule, i.e., on voting. This type of rule
differs from the one considered in Ref. [9] and has been proved to be relevant in
several situations, such as the modelling of public opinion [12,13] or the design of
multi-layer neural networks by means of committee machines [14,15]. We will show
that, in controlled games, the rule is very inefficient: if every player votes for the
game that gives him the highest return, then the total capital decreases, whereas blind
strategies generate a steady gain. As mentioned above, for a single player, the
majority rule does defeats the blind strategies. The inefficiency of voting is
consequently a purely collective effect.
In contrast with the short range optimisation strategy in Ref. [9] where the

average returns are maximised, the players now choose the game according to their
own benefit in the next coin toss and never care about how bad is that decision for
the rest of the community. Hence, the inefficiency of the control is now stronger: the
short-range optimisation is only worse than the blind strategies if just a random
selected set of the players are allowed to play the games at each turn whereas
the majority rule is losing no matter how many of the players are allowed to vote
and play.
Finally, the same effect can be found for the capital-independent games

introduced in Ref. [8], showing that the mechanism underlying the inefficiency of
voting is general and can be extended to other systems while retaining its main
features.
The paper is organised as follows. In Section 2, we present the model and the

counter-intuitive performance of the different strategies. In Section 3, we discuss and
provide an intuitive explanation of this behaviour. In Section 4, we analyse how the
effect depends on the number of players. In Section 5, we extend these ideas to the
capital-independent games introduced in Ref. [8]. Finally, in Section 6 we present our
main conclusions.
2. The model

The model consists of a large number N of players. In every turn, they have to
choose one of the two original Parrondo games, described in the Introduction and in
Fig. 1. Then every individual plays the selected game against the casino.
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Fig. 2. Evolution of the capital per player in an infinite ensemble for � ¼ 0:005 and the three strategies
discussed in the text.
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We will consider three strategies to achieve the collective decision. (a) The random

strategy, where the game is chosen randomly with equal probability. (b) The periodic

strategy, where the game is chosen following a given periodic sequence. The sequence
that we will use throughout the paper is ABBABB::: since it is the one giving the
highest returns. (c) The majority rule (MR) strategy, where every player votes for the
game giving her the highest probability of winning, with the game obtaining the most
votes being selected.
The model is related to other extensions of the original Parrondo games played by

an ensemble of players, such as those considered by Toral [16,17]. However, in our
model the only interaction among players can occur when the collective decision is
made. Once the game has been selected, each individual plays, in a completely
independent way, against the casino. Moreover, in the periodic and random
strategies there is no interaction at all among the players, the model being equivalent
to the original Parrondo’s paradox with a single player.
The MR makes use of the information about the state of the system, whereas the

periodic and random strategies are blind, in the sense defined above. One should
then expect a better performance of the MR strategy. However, it turns out that, for
large N, these blind strategies produce a systematic winning whereas the MR strategy
is losing. This is shown in Fig. 2, where the capital per player as a function of the
number of turns is depicted for the three strategies and an infinite number of players
(see Appendix A for details on how to obtain Fig. 2).
3. Analysis

How many players vote for each game? The key magnitude to answer this question
and to explain the system’s behaviour is p0ðtÞ, the fraction of players whose money is
a multiple of three at turn t. This fraction p0ðtÞ of players vote for game A in order to
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avoid the bad coin in game B. On the other hand, the remaining fraction 1� p0ðtÞ
vote for game B to play with the good coin. Therefore, if p0ðtÞX1=2, there are more
votes for game A and, if p0ðtÞo1=2, then game B is preferred by the majority of the
players.
Let us focus now on the behaviour of p0ðtÞ for � ¼ 0 when playing both games

separately. If game A is played a large number of times, p0ðtÞ tends to 1/3 because the
capital is a symmetric and homogenous random walk under the rules of game A. On
the other hand, if B is played repeatedly, p0ðtÞ tends to 5/13. This can be proved by
analyzing game B as a Markov chain [7,8]. It is also remarkable that, for
p0ðtÞ ¼ 5=13, the average return when game B is played is zero.
Fig. 3 represents schematically the evolution of p0ðtÞ under the action of each

game, as well as the prescription of the MR strategy explained above. Now we are
ready to explain why the MR strategy yields worse results than the periodic and
random sequences.
We see that, as long as p0ðtÞ does not exceed 1=2, the MR strategy chooses game B.

However, playing B takes p0 closer to 5=13, well below 1=2, and thus more than half
of the players vote for game B again. After a number of runs, the MR strategy gets
trapped playing game B forever. Then p0 asymptotically approaches 5/13, and as this
happens, game B turns into a fair game when � ¼ 0. As a consequence, the MR will
not produce earnings any more, as can be seen in Fig. 4.
The introduction of �40 turns game B into a losing game if played repeatedly.

Consequently, the MR strategy becomes a losing one as in Fig. 2. To overcome this
losing tendency, the players must sacrifice their short-range profits, not only for the
benefit of the whole community but also for their own returns in the future. Hence,
some kind of cooperation among the players is needed to prevent them from losing
their capital. A similar effect has been found by Toral in another version of collective
Parrondo’s games. There, sharing the capital among players induces a steady gain
[16]. In our case, the striking result is that no complex cooperation is necessary. It is
enough that the players agree to vote at random.
We would like to stress the differences with the short-range optimisation

considered in Ref. [9]. In that paper, the critical value of p0ðtÞ was 5/13 instead of
1/2. As a consequence, the voting strategy is even less efficient than the short-range
optimisation. For instance, the short-range optimisation is winning if the whole
A B

Play APlay BMajority Rule:
1/2

1/3 5/13

Fig. 3. Schematic representation of the evolution of p0ðtÞ under the action of games A and B. The

prescription of the MR is also represented.
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Fig. 4. Evolution of p0ðtÞ (left) and the capital per player (right) for N ¼ 1, � ¼ 0 for the MR and
random strategies. The MR chooses game B when p0 is below the straight line depicted at 1/2 and game A
otherwise.
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ensemble plays in each turn. To achieve the counterintuitive phenomena that blind
strategies perform better than the short-range optimisation, in Ref. [9] we were
forced to include the following rule: in each turn only a fraction g of the individuals
in the ensemble play the game. For the voting strategy, the inclusion of this rule is
not necessary.
4. Finite number of players

In the previous analysis an infinite number of players has been considered.
Remarkably, for just one player the MR strategy trivially performs better than any
periodic or random sequence, since it completely avoids the use of the bad coin. In
this section, we analyse the crossover between the winning behaviour for a small
number of players and the losing behaviour when this number is large.
Fig. 5 shows numerical results of the average capital per player for an increasing

number of players ranging from 10 to 1000. One can observe that, the larger the
number of players, the worse the results for the MR strategy, becoming losing for a
number of players between 50 and 100.
The above discussion for an infinite ensemble allows us to give a qualitative

explanation. The difference between large and small N is the magnitude of the
fluctuations of p0ðtÞ around its expected value. If game B is chosen a large number of
times in a row, then the expected value of p0ðtÞ is 5/13. On the other hand, the MR
selects B unless p0ðtÞ is above 1/2. Therefore, for the MR to select A, fluctuations
must be of order 1=2� 5=13 ¼ 3=26 ’ 0:115. For N players, the fraction of players
with capital multiple of three, p0ðtÞ, will be a random variable following a binomial
distribution, at least if B has been played a large number of times in a row. If the
expected value of p0ðtÞ is 5/13, fluctuations of p0ðtÞ around this value are of orderffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5=13� 8=13� 1=N

p
. Then, fluctuations will allow the MR strategy to choose A if

N ’ 20. Far above this value, fluctuations that drive p0ðtÞ above 1/2 are very rare,
and MR chooses B at almost every turn, as can be seen in Fig. 6. On the other hand,
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Fig. 5. Simulation results for the average capital per player for N ¼ 10, 50, 100, and 1000 players,

� ¼ 0:005, and the three different strategies. The simulations have been made over a variable number of
realizations, ranging from 10 000 realizations for N ¼ 1 to 10 realizations for N ¼ 1000. Simulations for

the random and periodic strategies have been made with N ¼ 100 players and averaging over 100

realizations. For these blind strategies, the result does not depend on the number of players N.
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Fig. 6. Simulation showing the evolution of p0 for N ¼ 70. Fluctuations that drive p0 above 0.5 are very
rare, i.e., game A is seldom chosen.
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for N around or below 20, there is an alternation of the games that can even beat the
optimal periodic strategy.
We see that the MR strategy can take profit of fluctuations much better than blind

strategies, but it loses all its efficiency when these fluctuations are small. We believe
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that this is closely related to the second law of thermodynamics. The law prohibits
any decrease of entropy only in the thermodynamic limit or for average values. On
the other hand, when fluctuations are present, entropy can indeed decrease
momentarily and this decrease can be exploited by a Maxwell demon.
5. History dependent games

A similar phenomenon is exhibited by the games introduced in Ref. [8], whose
rules depend on the history rather than on the capital of each player. Game A is still
the same as above, whereas game B is played with three coins according to the
following Table 1.
Introducing a large number of players but allowing just a randomly selected

fraction g of them to vote and play, the same ‘‘voting paradox’’ is recovered for
sufficiently small g. Again, blind strategies achieve a constant growth of the average
capital with the number of turns while the MR strategy returns a decreasing average
capital, as is shown in Fig. 7. The explanation of the phenomenon goes quite along
Table 1

Before last Last Prob. of win Prob. of loss

t � 2 t � 1 at t at t

Loss Loss p1 1� p1
Loss Win p2 1� p2
Win Loss p2 1� p2
Win Win p3 1� p3

p1 ¼
9
10
� �, p2 ¼

1
4
� �, and p3 ¼

7
10
� �.
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Fig. 7. Evolution of the average money of the players in the history-dependent games for g ¼ 0:5, � ¼
0:005 and three different strategies.
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the same lines as for the original games. The selfish voting prevents the necessary
alternation of games, although now is game A which is selected too many times in a
row.
6. Conclusions

We have shown that the paradoxical games based on the flashing ratchet
exhibit a counterintuitive phenomenon when a large number of players are
considered. A majority rule based on selfish voting turns to be very inefficient
for large ensembles of players. We have also discussed how the rule only works
for a small number of players, since in that case it is able to exploit capital
fluctuations.
The inefficiency of voting encountered in our model could be rather general.

The mechanism behind this inefficiency is the following. Those individuals with a
capital non-multiple of three votes for game B, ensuring their own benefit in the
present turn. However, even if these players conform the majority, their selfish vote
is harmful for the whole ensemble. They should sacrifice their short-term profits to
help the others to avoid the use of the bad coin of game B (coin 3). The blind
strategy (either random or periodic) forces this sacrifice, yielding a steady gain for
the ensemble. The same mechanism operates in the capital-independent games,
as shown in Section 5. A similar behaviour is found in the so-called Braess
paradox, where the maximization of individual profit yields overall losses for the
community [18,19].
As in the Braess paradox, the model presented here shows that cooperation

among individuals via a collective decision can be beneficial for everybody.
In this sense, the model is also related to that presented by Toral in Ref. [17].
Since John Maynard Smith first applied game theory to biological problems [20],
games have been used in ecology and social sciences as models to explain social
behaviour of individuals inside a group. Some generalizations of the voting
model might be useful for this purpose. For instance, it could be interesting to
analyse the effect of mixing selfish and cooperative players or the introduction of
players who could change their behaviour depending on the fraction of selfish voters
in previous turns.
The model can also be relevant in random decision theory or the theory of

stochastic control [21] since it shows how periodic or random strategies can be better
than some kind of optimisation. In this sense, there has been some work on general
adaptive strategies in games related with Parrondo’s paradox [9,22,23].
Finally, this model and, in particular, the analysis for N finite, prompts the

problem of how information can be used to improve the performance of a system.
In the models presented here, information about the fluctuations of the
capital is useful only for a small number of players, that is, when these fluctuations
are significant. It will be interesting to analyse this crossover in further detail,
not only in the case of the games but also for Brownian ratchets. Work in this
direction is in progress.
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Appendix A. Evolution equations

In this section, we describe the semi-analytical solution of the model for an infinite
number of players, used to depict Fig. 2. Let piðtÞ, be the fraction of players whose
capital at turn t is of the form 3n þ i with i ¼ 0; 1; 2 and n an integer number.
If game A is played in turn t, these fractions change following the expression [8]:

p0ðt þ 1Þ

p1ðt þ 1Þ

p2ðt þ 1Þ

0
B@

1
CA ¼

0 1=2þ � 1=2� �

1=2� � 0 1=2þ �

1=2þ � 1=2� � 0

0
B@

1
CA

p0ðtÞ

p1ðtÞ

p2ðtÞ

0
B@

1
CA ðA:1Þ

which can be written in a vector notation as

p!ðt þ 1Þ ¼ PA p!ðtÞ : ðA:2Þ

Similarly, when B is played, the evolution is given by

p!ðt þ 1Þ ¼ PB p!ðtÞ ðA:3Þ

with

PB ¼

0 1=4þ � 3=4� �

1=10� � 0 1=4þ �

9=10þ � 3=4� � 0

0
B@

1
CA : ðA:4Þ

Now we can write the evolution equation for each strategy. For the random strategy

p!ðt þ 1Þ ¼ 1
2
½PA þPB� p

!
ðtÞ : ðA:5Þ

For the periodic strategy (ABBABB..)

p!ð3ðt þ 1ÞÞ ¼ P2BPA p!ð3tÞ : ðA:6Þ

Finally, with the MR strategy the ensemble plays game A if p0ðtÞX1=2 and B
otherwise. Therefore,

p!ðt þ 1Þ ¼
PA p!ðtÞ if p0ðtÞX1=2 ;

PB p!ðtÞ if p0ðtÞo1=2 :

(
ðA:7Þ

Notice that the MR strategy is the only one inducing a nonlinear evolution in the
population fractions. To calculate the evolution of the capital, we compute the
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winning probability in each game

pA
winðtÞ ¼

1

2
� �

pB
winðtÞ ¼

1

10
p0ðtÞ þ

3

4
ð1� p0ðtÞÞ � � : ðA:8Þ

Finally, the average capital hX ðtÞi per player evolves as

hX ðt þ 1Þi ¼ hX ðtÞi þ 2pwinðtÞ � 1 ðA:9Þ

and pwinðtÞ is replaced by pA
winðtÞ or pB

winðtÞ, depending on the game played at turn t in
each strategy.
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