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Abstract

We study a generalization of Kelly’s horse model to situations where
gambling on horses other than the winning horse does not lead to a
complete loss of the investment. In such cases, the odds matrix is
non-diagonal, which is particularly interesting for biological applications.
We examine the trade-off between the mean growth rate and its
asymptotic variance, an approximation for risk. Because the consequences
of fluctuations around the average growth rate are asymmetric, we further
explore a better alternative definition of risk: the extinction probability
and its implications for Kelly gambling and the risk-return trade-off. We
discuss some applications of these concepts in biology and ecology.
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Introduction 1

In his seminal work from 1948, Shannon founded information theory [1]. 2

A pivotal contribution of Shannon’s theory was an existence proof he 3

provided for a code that can allow signals to pass through a noisy channel 4

with a negligible loss of information as long as the rate is smaller than the 5

channel capacity. This was a big surprise back in the day since the belief 6

up to that point was that noise monotonically reduces the information rate. 7

Hence, from its outset, information theory involved coding. Enter J. R. 8

Kelly, Shannon’s friend and colleague. In 1956, Kelly found a surprising 9

example that hinted at a deep connection between information theory and 10

gambling in horse races. With Shannon’s support, he published a paper, 11

which is by now well-known and highly influential, titled ”A new 12

interpretation of information rate” [2]. In his article, Kelly showed, 13
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surprisingly, that the channel capacity also appears in the context of 14

repeated bet-hedging on stationary horse races as the growth rate of the 15

bettor’s capital. 16

A horse race is said to be stationary if both the odds and winning 17

probabilities for each horse are constant in time. It can be shown that if 18

one is trying to optimize the expected capital, one has to bet all the capital 19

on the horse with the maximal distribution of winning. However, this will 20

lead to the complete ruin of all the bettor’s capital in the long run. Kelly 21

offered an alternative optimization criterion, which is by no means unique, 22

namely, to optimize the growth rate of the capital. It then proceeded to 23

show that in scenarios where partial information regarding the winning 24

probability is provided by an insider (”side information”), the optimal 25

strategy using his criterion can be calculated; it depends on the conditional 26

probability of winning each horse and leads to a growth rate that is equal 27

to the channel capacity of the insider-bettor information channel (where 28

the information is the uncertain identity of the winning horse). As 29

mentioned, there is no apparent coding involved in the scheme. Later, 30

Cover et al. devised a coding scheme similar to arithmetic coding that uses 31

two identical bettors to code and decode messages (see [3], chapter 6). 32

Over the years, Kelly’s idea grew into a whole branch of information 33

theory [3] with theoretical and practical implications for portfolio 34

management [4] and more generally for investment strategies in finance [5]. 35

Kelly’s model can also be formulated as a non-linear control problem with 36

fruitful implications in finance and applied mathematics [6]. 37

In biology, Kelly’s work is important because it connects information 38

and fitness [7, 8], a central question in evolutionary biology. This 39

connection is made through bet-hedging—a strategy that spreads risks 40

among various phenotypes within a population, increasing the overall 41

chance of survival under uncertain conditions [9, 10, 11]. Such a strategy is 42

employed, for instance, by cells to cope with antibiotics [12], by phages to 43

optimize their infection strategy against bacteria [13], or by plants to 44

adapt to a fluctuating climate [14]. The latter three examples, in 45

particular, involve a dormant state that protects individuals from harsh 46

environmental conditions while preserving biodiversity [15]. 47

In the context of gambling, Kelly’s strategy is known to be risky, and 48

for this reason, most gamblers use fractional Kelly’s strategies, with 49

reduced risk and growth rate [4]. This observation hints at a trade-off 50

between the risk the gambler is ready to take and the average long-term 51

growth rate of his capital, which is known in finance under the name of the 52

risk-return trade-off. In previous work, we have studied this trade-off in a 53

version of the Kelly model with a risk constraint [16]. In subsequent work, 54

we found a similar trade-off in the context of a biological population with 55

phenotypic switching in a fluctuating environment [17] by building on a 56

November 20, 2024 2/24



piece-wise Markov model introduced earlier [18]. We have also proposed an 57

adaptive version of Kelly’s gambling based on Bayesian inference [19]. 58

In section 1, we introduce Kelly’s gambling model, then in section 2 we 59

present the game theoretical formulation of the model building on Ref. 60

[20]. A generalization of Kelly’s model is presented with non-diagonal 61

odds, in which the gambling on horses other than the winning horse does 62

not lead to a complete investment loss [7, 21, 22]. Such an extension was 63

not considered in the classic paper on phenotypic adaptation in varying 64

environments by Kussel and Leibler [8] which instead relied on diagonal 65

odds. In fact, this extension of Kelly’s model to non-diagonal odds is 66

particularly important for applications to biology because a given 67

phenotype is never only adapted to one specific state of the environment; 68

instead, there is a distribution of environment states that correspond to a 69

given phenotype—the equivalent of the bets. 70

In section 3, we derive inequalities that characterize the risk-return 71

trade-off for Kelly’s model and for its generalization with non-diagonal 72

odds. Finally, in section 4, we explore an alternate measure of risk, based 73

on the capital drawdown [23] rather than the volatility. We explore the 74

consequences of this alternate definition of risk for a formulation of 75

risk-constrained Kelly gambling [24] and for the risk-return trade-off. 76

1. Definition of Kelly’s model 77

Let us recall Kelly’s horse race model [2]. A race involves M horses and 78

is described by a normalized vector of winning probabilities p, an 79

inverse-odds vector r (or equivalently an odds vector o) and a vector of 80

bets which defines the gambler strategy b. The latter corresponds to a 81

specific allocation of the gambler’s capital on the M horses: if we denote by 82

Ct the gambler’s capital at time t, the amount of capital invested on horse 83

x reads bxCt. We further assume that, after each race, the gambler invests 84

his whole capital, i.e.,
∑M

x=1 bx = 1, always betting a non-zero amount on 85

all horses, i.e., ∀x ∈ [1,M ] : bx ̸= 0. The inverse-odds vector r is set by 86

the bookmaker. When
∑

x rx = 1, the odds are fair, when
∑

x rx > 1 the 87

odds are unfair and when
∑

x rx < 1 the odds are superfair. To define a 88

probability distribution from the vector r which is normalized in all cases, 89

an obvious choice is to introduce the distribution r̃x = rx/
∑

x rx. 90

The evolution of the gambler’s capital after one race reads: 91

Ct+1 =
bx

rx
Ct, with a probability px, (1)

which implies that the log of the capital, log-cap(t) ≡ logCt, evolves 92

additively: 93

log-cap(t) =
t∑

τ=1

log

(
bxτ

rxτ

)
, (2)
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where xτ denotes the index of the winner of the τ -th race and we assumed 94

log-cap(0) = 0 (i.e. C0 = 1). Since the races are assumed to be 95

independent, the terms log(bxτ/rxτ ) in (2) are independent and identically 96

distributed, and we can use the weak law of the large numbers: 97

log-cap(t)

t
−−−→
t→∞

E
[
log

(
bx

rx

)]
(3)

in probability. It follows from this relation that under multiplicative 98

dynamics, the rate of change of the logarithm of the capital is an ergodic 99

observable [25, 26], a key point related to the differences between 100

arithmetic and geometric averages [27]. Then, we define the growth rate as 101

the long-term increase of the log-capital: 102

⟨W (p,b)⟩ = E
[
log

(
bx

rx

)]
≡
∑
x

px log

(
bx

rx

)
(4)

= DKL (p||̃r)−DKL (p||b)− ln(
∑
x

rx), (5)

where DKL stands for the Kullback-Leibler divergence between two 103

probability distributions [3, sec. 2.3]. From an information-theoretic point 104

of view, (3) and (4) imply that the capital of the gambler increases in the 105

long term only if the gambler has a better knowledge of p than the 106

bookmaker; otherwise, it decreases. 107

It also follows from this analysis that when the odds are fair, the 108

optimal strategy bKELLY = p, called Kelly’s strategy [2], overtakes any other 109

strategies in the long-term. The corresponding optimum growth rate is the 110

positive quantity DKL (p∥r), and the strategy bNULL = r also plays an 111

specific role. We have called this strategy the null strategy [16] because it 112

yields asymptotically a constant capital as can be seen from Eqs. (3)-(4). 113

Risk can be estimated using volatility, which is the asymptotic variance 114

of fluctuations in the capital growth rate. This measure is known to be 115

imperfect and less appropriate than methods that account for asymmetry 116

in fluctuation directions because positive fluctuations of gain relative to the 117

mean are not considered risk, while negative fluctuations are. In section 4, 118

we will explore an alternative risk measure for this reason. Nevertheless, 119

we first use volatility because it allows for tractable calculations. 120

Since we have considered independent races, by the central limit 121

theorem, the rescaled log-capital converges in law towards a centered 122

Gaussian distribution of unit variance: 123

1

σW

√
t

(
log

Ct

C0

− t⟨W ⟩
)

−−−→
t→∞

N (0, 1), (6)

where 124

σ2
W = Var

[
log

(
bx

rx

)]
, (7)
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is the volatility. From this definition, one can see that the null strategy has 125

a zero volatility, i.e. it is risk free. Note also that for an arbitrary strategy, 126

risk is relevant at intermediate times, t ≪ (σW/⟨W ⟩)2, long-enough for the 127

central limit theorem to apply but not too long for deviations from 128

exponential growth to become negligible. 129

2. Game-theoretic formulation of the asymptotic growth rate 130

We start by asking a simple question: What is the maximum average 131

growth rate that can be secured by a bettor who has no prior knowledge of 132

the winning probabilities of the horses? To secure this value of the growth 133

rate V , the bettor will play a specific strategy b = r, which we will look 134

for. The value V and the betting strategy r will then serve us as a 135

benchmark to judge other betting strategies. Clearly, we expect strategies 136

that correctly employ information about the winning probabilities to yield 137

higher growth rates. 138

First, let us define the value V , which is the largest possible growth rate 139

that can be secured by the bettor if there is no information regarding the 140

horses’ winning probabilities. By definition this will be the maximal 141

growth rate that can be obtained against the worst possible winning 142

probability vector p∗, given the odds, because the probability of winning 143

will increase for any probability vector that differs from p∗: 144

V = max
b

min
p

⟨W (p,b)⟩, (8)

145

p∗ = argmaxp argminb⟨W (p,b)⟩. (9)

b∗ = argmaxb argminp⟨W (p,b)⟩. (10)

Clearly, for any p, we have that ⟨W (p,b∗)⟩ ≥ V , which shows this is 146

indeed a guarantee for the expected growth. There are three possibilities. 147

The first is known as a sub-fair game which occurs when V < 0. In this 148

case, the bettor cannot secure a gain, just secure a loss with a minimal rate 149

of loss. This might or might not turn to gain for certain p’s. The second 150

case is V = 0, i.e., the bettor can guarantee a minimal amount of growth of 151

the investment by investing in a way that will keep the average growth rate 152

to zero. And finally, super-fair case—-also known as a Dutch book—where 153

V > 0 in which case the bettor has a secured minimum strategy. 154

In game theory, the strategy that guarantees maximal growth, assuming 155

the worst possible probability of winning for the horses, is known as the 156

min-max solution to the game, or more generally, a Nash equilibrium [28]. 157

The game under consideration is rather untypical; it is a zero-sum game 158

where the expected growth rate is the payoff. The first player is the bettor 159

who attempts to place the bets b to maximize the growth rate, while the 160
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second player, quite unusually, controls the horses’ probability of winning 161

p, and his payoff is minus the payoff of the bettor. In biological 162

applications, the second player could represent a fluctuating environment. 163

In the following, we apply these concepts to the cases of diagonal and 164

non-diagonal odds in Kelly’s model. 165

2.1. Kelly’s case (diagonal odds) 166

For Kelly’s optimal strategy bKELLY = p, the growth rate is 167

⟨W (p,bKELLY)⟩ =
∑
x

px ln(oxpx), (11)

with ox = 1/rx. Let us now evaluate the worst possible scenario with the 168

given odds ox, i.e. the value of p such that his/her growth rate is minimal. 169

This can be done by minimizing the function 170

Ψ(p) = ⟨W (p,bKELLY)⟩ − λ
∑

x px with respect to p, where the Lagrange 171

multiplier enforces the normalization of p. One obtains that the worst 172

scenario occurs when 173

px = p∗
x =

rx∑
x rx

. (12)

One can then write 174

⟨W (p,b)⟩ =
∑
x

px ln(oxbx), (13)

=
∑
x

px ln

 bx

rx/
∑

x rx
·
(∑

x

rx

)−1
 ,

=
∑
x

px ln

 px

rx/
∑

x rx
·
(∑

x

rx

)−1

· bx

px

 ,

= DKL(p||p∗)−DKL(p||b) + V. (14)

These three terms have the following interpretations: 175

• DKL(p||p∗) is the ‘pessimist’s surprise,’ which measures by how 176

much the growth rate is larger than the worst expected growth rate 177

the bettor can guarantee under the worst conditions. 178

• −DKL(p||b) is the ‘bettor’s regret’, the loss in expected growth 179

caused by playing sub-optimally. 180

• V = − ln
∑

x rx is the value of the game, the minimal growth rate 181

that the gambler can expect irrespective of how p is chosen. In 182

practice, this minimum is attained for the null strategy where b = p∗. 183

Further, when the odds are unfair, V < 0, whereas when the odds 184

are super-fair, V > 0. This definition of the null strategy generalizes 185

the previous one when the odds are not fair. 186
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We also use the following two concepts from game theory namely, 187

dominance and mixing. Zero sum games in strategic form are represented 188

by a payoff matrix, whose rows and columns represent players’ pure 189

strategies and the value of the matrix represent the payoff for the first 190

players, and the payoff for the second players is minus the payoff to the 191

first. A zero-sum game either has a min-max solution which is a pure 192

strategy, or a mixed strategy solution, where the action is chosen at 193

random with different probabilities. A fully mixing game is a game for 194

which the min-max solutions take the form of probability vectors such that 195

every possible pure strategy has a finite probability. 196

In Kelly’s model, this corresponds to all elements in b ̸= 0 and p ̸= 0. 197

Later we will state the conditions for the odd matrix such that the optimal 198

solution is fully mixing and we refer to that game as a fully mixing game. 199

Finally, a related concept is strategy dominance. If the game is not fully 200

mixing, then the optimal solution has some zero bet or zero probability 201

element, for instance, “never bet on horse number 2” in words. The pure 202

strategies that bet some quantity on horse 2 become irrelevant and are 203

usually referred to as being dominated by other more performing strategies. 204

The dominated strategies can be removed and the game reduced to its 205

essential part. We provide an example of game reduction in section 2.3. 206

2.2. Non-diagonal odds 207

In the general case, the matrix of the odds oxy that gives the reward to 208

a bet y when the winning horse is x, is non-diagonal, and the 209

corresponding growth rate may be written as : 210

⟨W (p,b)⟩ =
∑
x

px ln

(∑
y

oxyby

)
. (15)

A particular case of non-diagonal odds corresponds to the situation 211

described in the original Kelly’s paper has a ’track take’, where the 212

gambler has the option to not bet a fraction of his/her capital. In that 213

case the growth rate is 214

⟨W (p,b)⟩TT =
∑
x

px ln (b0 + oxbx) , (16)

where b0 is the fraction of the capital which is not bet. This case 215

corresponds to a non-diagonal matrix of odds which contains a diagonal 216

part and an isolated full column filled with ones. The optimal solution for 217

the bets has been considered in the original Kelly’s paper. This solution 218

can be recovered with the Karush-Kuhn-Tücker (KKT) method as shown 219

explicitly in Ref. [29]. 220

An explicit optimization solution with respect to the bets can be 221

obtained provided two conditions (i) and (ii) are met for the odds matrix. 222
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The first condition (i) requires that this matrix is invertible and simplex 223

preserving. Simplex preserving implies multiplying any probability vector 224

by the inverse matrix will keep the vector inside the simplex. This means 225

that the odds matrix, viewed as a game, is fully mixing [28]. An equivalent 226

mathematical condition is that the inverse-odds matrix r = o−1 has no zero 227

in it. When this condition is satisfied, we can build the following 228

game-theoretic solution: 229

Ωxy =
rxy∑
l rly

, (17)

which is such that 230∑
x

Ωxy =

∑
x rxy∑
l rly

= 1. (18)

Then, one can show that the optimal bets are given by 231

b∗
x =

∑
y

Ωxypy. (19)

To proceed with the game-theoretic analysis, we need to look for the 232

worst-case scenario, i.e., for the value p∗ of p yielding the minimal growth 233

rate for the optimal strategy of the gambler. Using again the method of 234

Lagrange multiplier, one finds 235

p∗
x =

∑
l rlx∑

xy rxy
, (20)

which is acceptable, provided all the components of px are non-negative. 236

This requires that for all x,
∑

l rlx > 0, which is our second condition (ii). 237

When both conditions hold, the matrix Ω is stochastic (or more precisely, 238

pseudo-stochastic because it can contain negative elements), and there is 239

unique pair (p∗,b∗), which represents a Nash equilibrium for the matrix 240

game defined by the odds matrix o. 241

To obtain the equivalent of the decomposition of Eq. (13) for the case 242

of non-diagonal odds, we start by evaluating the optimal growth rate when 243

the bets are optimal and given by Eq. (19): 244

⟨W (p,b∗)⟩ =
∑
x

px ln

(∑
y

oxy
∑
z

Ωyzpz

)
, (21)

= DKL(p||p∗) + V,

where p∗ is the one of Eq. (20) and now the value of the game is 245

V = − ln(
∑

xy rxy). In a second step, one can then check that the growth 246

rate for non-optimal bet b is less or equal than ⟨W (p,b∗)⟩ and that the 247

difference is the term associated to the better’s regret. Thus, the general 248
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decomposition of the asymptotic growth rate for non-diagonal odds takes a 249

form similar to Eq. (13): 250

⟨W (p,b)⟩ = W (p,b∗)−DKL(p||b), (22)

= DKL(p||p∗)−DKL(p||b) + V.

Note that the value of the game has the same interpretation as before and 251

the minimum of the growth rate is still attained for the null strategy. 252

2.3. Illustration with a three horses example 253

Let us illustrate this game-theoretic framework for a simple case of 254

three horses in which only the gambler can play optimally. Let’s consider 255

specifically a diagonal and a non-diagonal odds matrix given by: 256

Od =

6 0 0
0 2 0
0 0 3

 , Ond =

2 2
3 1

5
6

5
3

5
6

1 2
3 2

 , (23)

and an environment characterized by the vector p = (p0, p1, p2) where p0 is 257

varied in (0, 1), p1 =
p[1]

p[1]+p[2]
(1− p0) and p2 =

p[2]
p[1]+p[2]

(1− p0), and 258

(p[1], p[2]) = (0.5, 0.3). 259

When the game is fully mixing, there is an analytical solution for the 260

optimal solution namely (17)-(20). When it is not, we need to resort to 261

numerical optimization. Simulated annealing and KKT optimization are 262

two possible methods to do this. We have found empirically that the later 263

gives better results than the former for low dimensions problems, which is 264

the case here, since we only consider three horses. Below, we only use the 265

KKT method. The optimization problem we want to solve is : 266

max
b

⟨W ⟩ = max
b

E

(
log

(∑
y

bx
rxy

))
, (24)

subject to 267∑
x

bx = 1, and ∀x, bx ≥ 0 (25)

To solve it with KKT method, one introduces the functional : 268

L(b, λ, µ) = E

(
log

(∑
y

bx
rxy

))
+
∑
x

λxbx + µ

(∑
x

bx − 1

)
(26)

where λx and µ are Lagrange multipliers. Since the problem is concave for 269

b, we set the first derivative to zero to obtain the point of maximum, i.e. 270

the optimal strategy b∗. 271

∂L
∂bx

=
∑
k

pk
okx∑
y okyby

+ λx + µ = 0.
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The KKT solution is built by combining the solution of that equation for 272

three mutually exclusive cases : (i) one bet bi is zero while the other two bj 273

for j ̸= i are strictly positive. In that case, we have λi > 0. (ii) two bets 274

are zero bi = bj = 0 while the last one is strictly positive. In that case, 275

similarly λi > 0 and λj > 0, and (iii) none of the bets is zero, which is the 276

same solution as that of (17)-(20). 277

A comparison between the result of KKT optimization (symbols) with 278

the game-theoretical solution of equation (17)-(20) is shown in Fig. (1) 279

which shows the optimal strategies b∗0, b
∗
1, b

∗
2 as a function of p0 ∈ (0, 1), for 280

the case of diagonal odds (a) and non-diagonal odds (b). It is interesting 281

to notice that, as the environment probability vector varies, only in a 282

certain interval of values of p0 the game is fully mixing and (17)-(20) apply. 283

Outside of this interval, one or more bi = 0, the game is non-fully mixing 284

and the game-theoretical solution is no longer correct. This explains the 285

deviation with the correct result obtained from the KKT maximization for 286

small value of p0.

Fig 1. KKT solution vs. game theoretic solution. Optimal bets b∗i on the three
horses from KKT optimization (symbols) and game-theoretical solution deduced from
(17)-(20) (solid lines) as function of the probability on the first horse p0. Figure (a)
corresponds to the diagonal odd matrix Od, figure (b) to the non-diagonal odd matrix
Ond, the green color corresponds to first horse, red color for the second one, blue for the
third one. The colored intensity represents the average growth rate ⟨W ⟩.

287

The figures also show the average growth rate as a color plot, projected 288

along the plane (p0, b0) for the diagonal and non-diagonal cases. Note that 289

in this color plot, a particular choice is made for varying the parameters 290

p1, p2, b1, b2 as p0 and b0 vary while satisfying normalization constraints. In 291

the diagonal case, one can see that the growth rate is the highest for a 292

fixed p0, i.e. along the green line where b0 = p0 as expected from Kelly’s 293

gambling. Moreover, in the non-diagonal case, the game-theoretical 294

solution takes instead the form of piece-wise linear functions. The colored 295

intensity representing the average growth rate takes the form of a saddle 296

point, which is visible here only in projection. 297

November 20, 2024 10/24



2.4. Illustration of the reduction of a game 298

The derivation of the game-theoretical solution of equation (17)-(20) 299

assumes (i) a fully mixing game, (ii) an odd matrix which is invertible and 300

simplex preserving. In the previous section, we have seen what happens 301

when the game is not fully mixed. In that case, the strategies 302

corresponding to zero bets or zero probability pi become in a sense 303

irrelevant because they are dominated by other strategies corresponding to 304

non-zero bi or pi. These irrelevant strategies can be removed, and when 305

doing so, one transforms the game into what is called the essential part of 306

the game [28]. Let us illustrate this reduction procedure by starting with 307

the 3x3 game defined by Ond, which we will reduce to a 2x2 game. The 308

reason that we do not consider a reduction to a 3x2 game for instance, is 309

because we need the reduced game to be a square matrix so that it can be 310

invertible and (17)-(20) can apply. 311

Let us consider an input strategy vector for the environment given by 312

(p[1], p[2]) = (0.8, 0), so that while p0 varies, p2 = 0 always, and one can 313

check that in that case one also has b∗2 = 0 ∀p0. As a result, the last horse 314

should never be played and the odd matrix can be reduced by removing 315

the last row and last column in Ond. The odd matrix of the essential part 316

of the game is then: 317

Ored =

(
2 2

3
5
6

5
3

)
. (27)

Fig 2. Illustration of the reduction of the game to its essential part.
Comparison between the result of KKT optimization (symbols) and the
game-theoretical solution (solid lines) for the reduced odds matrix Ored, which is the
essential part of the game defined by Ond.

0.0 0.2 0.4 0.6 0.8 1.0

p0

0.0

0.2

0.4

0.6

0.8

1.0

b∗

318

Now, since the essential part of the game is fully mixing, and fulfills the 319

assumptions under which relations (17)-(20) have been derived, one can 320
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use these equations to obtain the optimal solution and check that they 321

agree with the KKT solution as shown in Fig. 2. 322

3. Risk-return inequalities and their associated trade-off 323

3.1. Non-fair but diagonal odds 324

In recent work, we have studied the trade-off between the mean growth 325

rate and the risk, measured by the volatility in the case of Kelly’s original 326

model with fair (and diagonal) odds [16]. This trade-off is embodied in the 327

following mean-variance inequality : 328

σW ≥ ⟨W ⟩
σq

, (28)

where σW is the volatility, ⟨W ⟩ the average growth rate and σq is the 329

standard deviation of the ratio qx = rx/px, which compares the probability 330

of races outcomes with the bets of the risk-free strategy (namely bx = rx). 331

Inequality (28) holds for any ⟨W ⟩ > 0. In the negative growth region, it 332

only applies near the null strategy where D(r||b) ≈ 0. This inequality 333

means in practice that a capital growing exponentially with a rate ⟨W ⟩ > 0 334

necessarily has a non-zero risk measured by the volatility. Recently, a 335

similar bound has been derived for a wide class of models including the 336

Black-Scholes and the Heston models [30]. In fact, bounds of this type are 337

related to the Chapman-Robbins bound and to the thermodynamic 338

uncertainty relations studied in Stochastic Thermodynamics. 339

Let us first generalize this result to the case where the odds are not fair 340

but still diagonal. Note that the strategy bx = r̃x corresponds to the null 341

strategy introduced previously. For such a strategy, the asymptotic growth 342

rate ⟨W ⟩ is equal to V , independently of the choice of the bets and of the 343

horse winning probabilities. 344

The definition of the quantity q is unchanged with respect to the case of 345

fair odds, the only difference is that now ⟨q⟩ ≠ 1. Thus, q itself is no 346

longer a distribution since it is not normalized. Let us now go through the 347

same steps which lead previously to Eq.(28). We start with 348

⟨qW ⟩ =
∑
x

rx ln
bx

rx
= ⟨q⟩

∑
x

r̃x ln
bx

rx
= ⟨q⟩ (−DKL(r̃||b) + V ) . (29)

Now, we write the covariance between q and W as : 349

Cov(q,W ) = ⟨qW ⟩ − ⟨q⟩⟨W ⟩ = ⟨q⟩ (−DKL(r̃||b) + V − ⟨W ⟩) . (30)

Using Cauchy-Schwartz inequality, namely Cov(q,W )2 ≤ σ2
qσ

2
W and the 350

positivity of the Kullback-Leibler divergence, we obtain the generalization 351

of Eq. (28) for non-fair odds as : 352

σW ≥ |⟨W ⟩ − V |
σq

⟨q⟩. (31)
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valid for any ⟨W ⟩ − V > 0 and only close to the null strategy for 353

⟨W ⟩ − V < 0. 354

From the inequality of Eq. (31), we find that any strategy different 355

from the null strategy which is risk free will have a non-zero volatility σW . 356

Note also that the inequality is saturated for the risk free strategy for 357

which σW = 0 and ⟨W ⟩ = V . A numerical illustration of that inequality is 358

provided in Fig. 3 for a case where V = 0 and a case where V > 0. 359

3.2. Non-diagonal odds 360

The mean-variance trade-off for non-diagonal odds can be derived 361

similarly to the diagonal case, provided the same conditions denoted (i) 362

and (ii) hold. Condition (i) is the regularity and simplex preserving 363

character of the odds matrix. 364

Now, the relevant probability ratio q has the form qx =
∑

y ryx/px so 365

that ⟨q⟩ =∑xy rxy = exp(−V ) in terms of the value of the game 366

V = − ln(
∑

xy rxy). 367

We start again with 368

⟨qW ⟩ =
∑
x

px
1

px

∑
y

ryx ln

(∑
z

oxybz

)
. (32)

In order to write this term as a KL divergence, we introduce two new 369

normalized distributions : 370

rx =

∑
y ryx∑
xy ryx

, (33)

which is acceptable as a distribution provided condition (ii) holds. 371

Similarly, we introduce 372

tx =
∑
y

oxyby

∑
l

rlx. (34)

It is easy to see then that 373

⟨qW ⟩ = −⟨q⟩DKL(r||t) + ⟨q⟩V. (35)

In the end, we obtain the same relation as in Eq. (31), provided one takes 374

into account the new definitions of the distribution q, ⟨W ⟩ and V , and 375

conditions (i)+(ii) hold. 376

3.3. Further consequences of the risk-return trade-off 377

When the odds are fixed, the clouds of points of Figs. 3 change when 378

the probability vector of the horses to win (the p vector) changes as shown 379

in Fig. 4. Each choice of this vector generates a separate cloud of points, 380
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Fig 3. Pareto plots for fair and super-fair odds in the variables volatility σW

versus growth rate ⟨W ⟩. The cloud of points displays an ensemble of feasible
random strategies for non-diagonal (a) fair and (b) super-fair odds, where V > 0. The
solid lines test the inequality of Eq. (31), which is globally valid to the right of the
risk-free strategy (where both lines meet) but just locally valid to the left of the
risk-free strategy.
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and all these clouds of points have the same lowest point in common, 381

namely the risk free strategy, where ⟨W ⟩ = V and σW = 0 independently 382

of the p vector. Each cloud of points admits a tangent vector near this risk 383

free strategy with a slope determined by an inequality of the form (31). 384

There is a different slope for each tangent since the slope depends on the p 385

vector. Now, if some information is known about the family of distributions 386

of (the p vector), one can combine all these bounds to obtain a general 387

bound on all the possible values of the slopes. Such a global bound would 388

then inform on the minimum level of risk irrespective of the distribution p. 389

4. Risk quantification beyond volatility 390

4.1. Extinction probability for geometric brownian motion 391

Alternative measures of risk beyond volatility are needed because the 392

volatility is symmetric, i.e. it describes positive or negative fluctuations. 393

Therefore, it does not conform to the intuitive notion of risk, which is 394

asymmetric since it is only related to negative fluctuations [23, 31]. To 395

build a more appropriate measure of risk, we turn to a continuous 396

approximation of the trajectory of the log-capital as a geometric Brownian 397

motion. 398

This corresponds to the asymptotic regime for the central limit theorem 399

of Eq. (6), in which the log-capital is distributed according to a normal 400

law with ⟨W ⟩ as mean and σW as standard deviation. Assuming the 401

log-capital y(t) = logCt starts from an initial value y0, the probability that 402
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Fig 4. Clouds of points from Kelly’s horse race model in the plane (σW ,⟨W ⟩)
for various probability p vectors. The value of the game is unchanged as it is
independent of the p vector, here it is V = 0.36. The solid lines have the same meaning
as in Fig.3.
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it reaches the value y at time t, namely ϕy0(y, t) is: 403

ϕy0(y, t) =
e
− (y−⟨W ⟩t−y0)

2

2σ2
W

t√
2πσ2

W t
. (36)

Then, the extinction probability is defined as the probability that the 404

log-capital reaches a certain low threshold at any time t′ < t for the first 405

time. Further, P(t) = 1− S(t), where S(t) denotes a survival probability, 406

defined as the probability that the log-capital y(t) did not ever reach the 407

low threshold l at any time t′ < t assuming that it started with the value 408

y0 at time 0 with y0 > l. 409

The survival probability S(t) can be evaluated from the classic image 410

method. According to this method, one writes the probability P (y, t) for 411

the random walker to reach y at time t as a linear combination of ϕy0(y, t) 412

and ϕm(y, t) where m is the position of the image. By enforcing the 413

condition P (y = l) = 0 at all times, one finds m and an explicit form for 414

P (y, t). Then, the survival probability is S(t) =
∫∞
l

P (y, t)dy. One obtains 415

S(t) = −e
2⟨W ⟩(l−y0)

σ2
W +

1

2
erfc

(⟨W ⟩t+ l − y0√
2tσW

)
e

2⟨W ⟩(l−y0)

σ2
W +

1

2
erfc

(−⟨W ⟩t+ l − y0√
2tσW

)
,

(37)
where erfc(x) denotes the complementary error function (i.e. 416

erfc(x) = 1− erf(x), where erf(x) is the error function). It is 417

straightforward to check that S(0) = 1. One also finds that 418

S(t → ∞) = 1− e2⟨W ⟩(l−y0)/σ2
W . Therefore, it is a meaningful survival 419

probability provided ⟨W ⟩ > 0 if l < y0 or ⟨W ⟩ < 0 if l > y0. Let us focus 420
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on the case ⟨W ⟩ > 0, for which the capital is growing exponentially on 421

long times. The larger ⟨W ⟩ > 0 or the higher the distance between the 422

starting point y0 and the threshold l, the less likely the log-capital reaches 423

the low threshold, as one would expect. Since a negative fluctuation of the 424

capital is needed to reach this low threshold, such an event can only occur 425

at rather short times because at long times the capital is growing 426

exponentially as illustrated in Fig 5a. Further, it can be shown that the 427

event is guaranteed to occur when ⟨W ⟩ ∼ σ2
W/(2(l − y0)). 428

From these considerations, an inequality similar to that of Eq. (28) can 429

be derived to describe the mean growth rate-risk trade-off using the 430

extinction probability Pext = P(t → ∞) as a proxy of risk instead of the 431

volatility. From the expression of S(t → ∞) above, it is straightforward to 432

obtain in the case of fair odds and when ⟨W ⟩ > 0: 433

Pext ≥ e
2σ2

q (l−y0)

⟨W ⟩ , (38)

which shows that in order to reduce risk (as measured by extinction 434

probability), one needs to bring the threshold further away from the initial 435

capital as one would expect or reduce the growth rate, rather 436

counter-intuitively. 437

Further characterizations of risk could be considered. For instance, the 438

distribution of first passage times for the log-capital to reach the threshold 439

can be obtained from the opposite of the time derivative of S; and using 440

more advanced arguments, one can also compute analytically the 441

distribution of the time where the log-capital reaches its maximum for an 442

arbitrary value of the drift. This question has been studied in finance 443

because it is related to the optimization of the time to sell/buy a stock [31]. 444

In Fig. 5b, we compare the extinction probability P(t) for a fixed final 445

time t as function of the threshold value l, for Kelly’s horse race and for its 446

approximation using geometric Brownian motion. In the case of Kelly’s 447

model, many stochastic trajectories are simulated from the model in the 448

same conditions and from the statistics of these trajectories an empirical 449

estimation of the extinction probability P(t) is obtained. The simulation 450

results of Kelly’s model displays steps, which follow the trend given by the 451

continuous model. The presence of these steps can be traced back to the 452

fact that in Kelly’s model the log-capital changes by discrete increments at 453

discrete time intervals. In Fig. 5b, one sees a comparison between the 454

extinction probability evaluated from Eq. (37) using geometric brownian 455

motion with a simulation of that quantity evaluated using Kelly’s model. 456

As shown in the figure, the prediction of geometric brownian motion is 457

very close to that of Kelly’s model in the left part of the figure where the 458

threshold takes its minimum value. This is expected because in this regime 459

the trajectory contains a large number of steps to reach the threshold and 460

therefore the continuum approximation is well verified. In contrast, this 461
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Fig 5. (a) Trajectories of Kelly’s horse race model and (b) comparison
between the extinction probability in Kelly’s model and in the geometric
Brownian motion that matches the parameters of Kelly’s model. For figure
(a), trajectories either never reach the target (blue solid curves) or do reach it (green
solid curves), typically at short times. The threshold is set at l = −0.5 (red dashed line).
For figure (b), the extinction probability is computed for Kelly’s model vs. position of
the threshold after 100 races, and in the long time limit for geometric Brownian motion.
In both figures, horse probabilities and returns are p = (0.36, 0.15, 0.49) and
r = (0.63, 0.31, 0.06).
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does not happen on the right part of the figure, where the discreteness of 462

Kelly’s model is quite apparent. 463

4.2. Risk-constrained Kelly gambling 464

In our first study of risk-constrained Kelly gambling [16], we have 465

introduced a penalization proportional to the volatility in the optimization 466

of Kelly’s growth rate with respect to the bet vector. This was done with 467

the following objective function, which interpolates between the 468

maximization of the growth rate and the minimization of the variance of 469

the growth rate : 470

J̃ = ρ⟨W ⟩ − (1− ρ)σW , (39)

with 0 ≤ ρ ≤ 1. In this approach, the parameter ρ plays the role of a risk 471

aversion parameter, and the optimal bets are parameterized by it. From 472

these optimal bets, one can build Pareto diagrams that represent the 473

minimum amount of fluctuations for a given growth rate. An example of 474

these Pareto diagrams is shown in Fig. 6a. 475

Instead of using the volatility to constrain the growth rate in Kelly’s 476

gambling, another approach is to introduce a constraint into the 477

optimization of the growth rate to enforce that the extinction probability 478

does not go beyond a certain threshold [24]. As usual, the constraint is 479

taken into account with a Lagrange multiplier. To properly define that 480

approach, it is convenient to introduce: 481

Cmin = min
t=1,2..

Ct, (40)
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which represents the lowest value reached by the capital Ct during the 482

observed time before it goes on increasing. The drawdown risk is 483

quantified by the probability that this minimum goes below a target value, 484

P (Cmin < α), where α is the target value for the capital. Then the 485

constraint on the probability of drawdown has the form P (Cmin < α) < β 486

with β ∈ (0, 1). For example, we might take α = 0.7 and β = 0.1, meaning 487

that we require the probability of a drawdown of more than 30% to be less 488

than 10%. This drawdown risk does not have in general a simple form as 489

function of the bet vector, it can only be obtained numerically by solving a 490

non-linear optimization problem with non-linear constraints. While this 491

optimization problem is difficult, Boyd et al. introduced a bound on the 492

drawdown risk that results in a tractable convex constraint [24]. This 493

bound reads as follows: 494

E
(
bx

rx

)−λ

≤ 1 =⇒ P (Cmin < α) < β, (41)

where λ is defined as λ = ln β/ lnα. This means that, by varying the 495

maximum extinction probability allowed, hence varying λ, our 496

optimization is more or less sensitive to risk. For instance, when β → 1 or 497

α → 0, then λ → 0 and we have an unconstrained optimization problem. 498

In the following, we fix the value of α. We consider the case of three 499

horses, with an initial capital C0 = 1, and we use p = (0.1, 0.2, 0.7) and 500

r = (0.7, 0.1, 0.2). With these values, we obtain the optimal strategy b∗ for 501

different β ∈ (0, 1). Once the optimal strategy is obtained for a fixed β, we 502

can compute the growth rate ⟨W ⟩ and the variance σW for that particular 503

strategy. Hence, we obtain the diagram in the coordinates (⟨W ⟩ − σW ) 504

shown in Fig. 6a. 505

In this figure, we observe that the two measures of risk lead to 506

comparable plots. Further, the blue line is always below the red line, which 507

is expected since the blue plot represents the set of points where variance 508

is minimized for a given growth rate. At Kelly’s point, both curves meet 509

since this corresponds to the case β = 1 for which Boyd’s approach reduces 510

to the simple optimization of the growth rate as done in Kelly’s approach. 511

We have observed that these features are robust with respect to the choice 512

of α. Note that the red curve from Boyd’s approach does not reach 513

arbitrary low values of the growth rate because of the choice of the lowest 514

value of β. In Boyd’s approach, the null strategy is only reached 515

asymptotically as β approaches zero. 516

In Fig. 6b we analyze the bound β on the actual extinction probability. 517

Using simulations, we computed the probability of extinction for the 518

optimal bets b∗ obtained by Boyd’s maximization. These simulations were 519

run for the same parameters considered in Fig. 6a and for two other sets of 520

horse probabilities and returns chosen at random. Finally, we show both 521
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the probability of extinction and the corresponding bound β (in matching 522

color) as a function of average growth rate. As apparent from the figure, 523

the probability of extinction is always below its bound, but depending on 524

the parameters chosen, it may be tighter or looser. Although these curves 525

do not represent a Pareto front for the probability of extinction and 526

growth rate, they show that, in general, the probability of extinction 527

increases with growth rate, making Kelly’s the riskiest strategy. 528

We observe sudden increases in the extinction probability as a function 529

of the growth rate at some points. This may be related again to the 530

discreteness of the log-capital as in Fig. 5, where we see steps in 531

probability of extinction when the threshold is modified. In fact, through 532

the optimization procedure, the average gain and the threshold are 533

connected so that one can parametrize the optimal solution with the 534

threshold or the gain as in Fig. 6b. 535

It is interesting to notice that above a certain value of β = β∗, the curve 536

for the bound becomes vertical in Fig. 6b: Kelly’ s strategy is always the 537

optimal strategy when the bound imposed on the probability of extinction 538

becomes high enough. This behavior is akin to a phase transition 539

separating an optimal solution which is Kelly’s like from a non-Kelly 540

strategy. Indeed, when the constraint E
(
bx

rx

)−λ

≤ 1 is inactive for 541

specific values of p and r, the solution of the optimization is the one 542

without the constraint, i.e. Kelly’s solution. 543

It is easy to check that in the region β ∈ (β∗, 1), E

((
b∗x
rx

)−λ
)

< 1, for 544

the values of p and r chosen above. There, Kelly’s strategy is always 545

optimal in this interval of β values where the probability of extinction is 546

high. Note that the lower end of the vertical line corresponds to the case 547

where the constraint becomes active and Kelly’s strategy no longer fulfills 548

the condition, so the optimal strategy then becomes different to Kelly’s 549

betting in order to lower the risk. 550

In some specific cases, the vertical line does not exists (ri > pi ∀i) which 551

corresponds to unfair odds, or the plot shows only the vertical line 552

corresponding to Kelly’s regime for all β when ri < pi ∀i. 553

In the case where the vertical line does not exist, odds are unfair for the 554

gambler, who should avoid Kelly’s strategy because it leads to a high 555

extinction probability (which means a high probability of bankruptcy for 556

the gambler). In other words, when conditions are not favorable (in terms 557

of the odds or of the distribution of the probabilities of the environment, 558

gamblers (respectively, biological systems) cannot maintain themselves at 559

Kelly’s point except at the cost of a large extinction probability of the 560

population (respectively bankruptcy probability). Instead, in good 561

conditions for growth, Kelly’s strategy is optimal. 562
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Fig 6. (a) Pareto front of the volatility versus the average growth rate, and
(b) extinction probability as a function of (normalized) growth rate for
Boyd’s optimization (solid lines). In figure (a), curves are calculated according to
the mean-volatility trade-off approach (solid blue line) and volatility vs growth rate line
for Boyd’s optimization of growth rate with extinction probability constraint (solid red
line). Kelly’s strategy is shown with a square symbol and the null strategy with the
circle in this diagram. In figure (b), the three different sets of parameters are: blue line
is computed with the same horse probabilities and returns as in (a), red and green show
two other different combinations taken at random. Dashed lines correspond to Boyd’s
method bound β for extinction probability (P (Cmin < α) < β). Each extinction
probability curve is bound by the dashed line of matching color. Extinction probability
is computed from 40000 simulations of 100 races for each value of the growth rate
shown. For both plots α = exp (l) = 0.6
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Conclusion 563

In this article, we have explored an extension of Kelly’s gambling model 564

to the case non-diagonal odds, an extension that is particularly relevant for 565

finance or biological applications. For example, in the stock market, the 566

odds matrix that codes for the daily returns from a list of stocks is 567

non-diagonal, and the challenge is to deal with the day-to-day randomness 568

in the daily returns themselves. 569

We also found that when the game is not fully mixing for certain 570

environmental probabilities, it can be reduced to a smaller game, known as 571

the ‘essential part of the game’ [28], which is fully mixing. This method is 572

broadly interesting because it allows us to break the complexity of the 573

initial problem into the study of an issue of reduced complexity without 574

affecting the optimal strategies. 575

For a generalized Kelly gambling model, we have studied the trade-off 576

between the average growth rate and volatility, which is known in the 577

financial literature as a risk-return trade-off. We have also explored an 578

alternate measure of risk beyond volatility, namely the extinction 579

probability, which can easily be calculated if the races are uncorrelated as 580

a realization of geometric Brownian motion. 581

Our main result is that this measure of risk leads to comparable results 582
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as obtained with the volatility as far as the risk-return trade-off is 583

concerned. In particular, the inequality that embodies the trade-off 584

between average growth rate and volatility can be expressed similarly as an 585

inequality in which the extinction probability replaces the volatility. Given 586

the derivation of these inequalities, we expect that they should hold in a 587

broader context whenever a multiplicative process can characterize growth. 588

In fact, it is indeed the case, Cohen and Gillespie [27, 32] both used a 589

multiplicative process to describe population growth in random 590

environments and observed that adding a random element to the number 591

of offsprings of a particular genotype leads to a lower fitness as measured 592

by a geometrical average. Their conclusions thus fully agree with the 593

predictions from Kelly’s model, although they fail to capture the beneficial 594

side to fluctuations, which requires the alternate measures of risk 595

mentioned above. 596

One area of application of our paper is evolutionary games in ecology, in 597

which various forms of bet-hedging strategies have been considered 598

together with their associated trade-offs: one example is the trade-off 599

between egg size and number for birds [33] and another one is the 600

emergence of cooperative breeding [34], which arise as consequences of the 601

need to cope with environmental variations. Another central question in 602

ecology is what determines the diversity of species and the coexistence 603

between species. Biodiversity is regarded as a form of biological insurance 604

against disruptive effects of the environment because biodiversity reduces 605

the variability in ecosystem properties that arise due to differential 606

responses of species to environmental variations [35]. This work again 607

supports the idea of an ecological trade-off similar to the trade-off between 608

growth and risk in economy and finance. 609

This trade-off shows that species persistence cannot be decided solely 610

based on growth rate, because fluctuations matter in coexistence theory 611

models. These observations have been confirmed by comprehensive studies 612

in ecology, which underlined the role of the fluctuations of species 613

abundances [36] and of fluctuations of the population growth rate [37]. In 614

the end, we note that in all these works including ours, the ratio between 615

the growth rate and the standard deviation of the fluctuations of the 616

growth rate emerges as a central quantity both in the ecological context 617

and in the finance field, where it is known under the name of Sharpe ratio. 618

Acknowledgments 619

DL acknowledges support from (ANR-11-LABX-0038, 620

ANR-10-IDEX-0001-02). LD acknowledges support from Spanish 621

Ministerio de Ciencia e Innovación through Grants PID2020-113455GB-I00 622

and PID2023-147067NB-I00 and Universidad Complutense de Madrid 623

through ”Convocatoria plurianual para la recualificación del Sistema 624

November 20, 2024 21/24
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15. A. Măgălie, D. A. Schwartz, J. T. Lennon, J. S. Weitz, Optimal
dormancy strategies in fluctuating environments given delays in
phenotypic switching, Journal of Theoretical Biology 561 (2023)
111413.

16. L. Dinis, J. Unterberger, D. Lacoste, Phase transitions in optimal
betting strategies, EPL (Europhysics Letters) 131 (6) (2020) 1–23.

17. L. Dinis, J. Unterberger, D. Lacoste, Pareto-optimal trade-off for
phenotypic switching of populations in a stochastic environment,
Journal of Statistical Mechanics: Theory and Experiment 2022 (5)
(2022) 053503.

18. P. G. Hufton, Y. T. Lin, T. Galla, A. J. McKane, Intrinsic noise in
systems with switching environments, Phys. Rev. E 93 (5) (2016)
052119, publisher: American Physical Society.

19. L. P. A. Despons, D. Lacoste, Adaptive strategies in Kelly’s horse
races model, Journal of Statistical Mechanics: Theory and
Experiment 2022 (2022) 093405.

20. R. Pugatch, N. Barkai, T. Tlusty, Asymptotic Cellular Growth Rate
as the Effective Information Utilization Rate (2013).

21. O. Rivoire, S. Leibler, The Value of Information for Populations in
Varying Environments, Journal of Statistical Physics 142 (6) (2011)
1124–1166.

22. O. Tal, T. D. Tran, Adaptive Bet-Hedging Revisited: Considerations
of Risk and Time Horizon, Bull Math Biol 82 (4) (2020) 50.

23. S. Maslov, Y.-C. Zhang, Probability distribution of drawdowns in
risky investments, Physica A: Statistical Mechanics and its
Applications 262 (1) (1999) 232–241.

24. R. E. K. Busseti, Enzo, S. Boyd, Risk-constrained Kelly gambling,
The Journal of Investing 25 (3) (2016) 118–134.

25. O. Peters, M. Gell-Mann, Evaluating gambles using dynamics,
Chaos: An Interdisciplinary Journal of Nonlinear Science 26 (2)
(2016) 023103.

November 20, 2024 23/24



26. O. Peters, The ergodicity problem in economics, Nature Physics
15 (12) (2019) 1216–1221.

27. D. Cohen, Optimizing reproduction in a randomly varying
environment, Journal of Theoretical Biology 12 (1) (1966) 119–129.

28. E. N. Barron, Game Theory, an introduction, 2nd Edition, Wiley.
Loyola University, Chicago, January 2010.

29. P. Smoczynski, D. Tomkins, An explicit solution to the problem of
optimizing the allocations of a bettor’s wealth when wagering on
horse races, The Mathematical Scientist 35 (01 2010).

30. L. Ziyin, M. Ueda, Universal thermodynamic uncertainty relation in
nonequilibrium dynamics, Phys. Rev. Res. 5 (2023) 013039.

31. S. N. Majumdar, J.-P. Bouchaud, Optimal time to sell a stock in the
black–scholes model: comment on ‘thou shalt buy and hold’, by A.
Shiryaev, Z. Xu and X.Y. Zhou, Quantitative Finance 8 (8) (2008)
753–760.

32. J. H. Gillespie, Natural selection for variances in offspring numbers:
A new evolutionary principle, The American Naturalist 111 (981)
(1977) 1010–1014.

33. M. Rees, C. Jessica, E. Metcalf, D. Z. Childs, Bet-hedging as an
evolutionary game: the trade-off between egg size and number,
Proceedings of the Royal Society B: Biological Sciences 277 (1685)
(2010) 1149–1151.

34. D. R. Rubenstein, Spatiotemporal environmental variation, risk
aversion, and the evolution of cooperative breeding as a bet-hedging
strategy, Proceedings of the National Academy of Sciences
108 (supplement 2) (2011) 10816–10822.

35. M. Loreau, M. Barbier, E. Filotas, D. Gravel, F. Isbell, S. J. Miller,
J. M. Montoya, S. Wang, R. Aussenac, R. Germain, P. L.
Thompson, A. Gonzalez, L. E. Dee, Biodiversity as insurance: from
concept to measurement and application, Biological Reviews 96 (5)
(2021) 2333–2354.

36. J. Pande, T. Fung, R. Chisholm, N. M. Shnerb, Mean growth rate
when rare is not a reliable metric for persistence of species, Ecology
Letters 23 (2) (2020) 274–282.

37. J. Pande, Y. Tsubery, N. M. Shnerb, Quantifying invasibility,
Ecology Letters 25 (8) (2022) 1783–1794.

November 20, 2024 24/24


	Definition of Kelly's model
	Game-theoretic formulation of the asymptotic growth rate
	Kelly's case (diagonal odds)
	Non-diagonal odds
	Illustration with a three horses example 
	Illustration of the reduction of a game

	Risk-return inequalities and their associated trade-off
	Non-fair but diagonal odds
	Non-diagonal odds
	Further consequences of the risk-return trade-off

	Risk quantification beyond volatility
	Extinction probability for geometric brownian motion
	Risk-constrained Kelly gambling


