How to cheat a bad mathematician ${ }^{1}$

Game A: $\quad-I$ pay you one dollar with probability $1 / 2+\epsilon$ you pay me one dollar with probability $1 / 2-\epsilon$.

Game B:

- if my current capital is a multiple of 3:

I pay you one dollar with probability $9 / 10+\epsilon$ you pay me one dollar with probability $1 / 10-\epsilon$;

- if my current capital is not a multiple of 3: I pay you one dollar with probability $1 / 4+\epsilon$ you pay me one dollar with probability $3 / 4-\epsilon$.

One can prove that both games are fair for $\epsilon=0$ (detailed balance). Then, setting $\epsilon>0$ will give, in each game, advantage to the mathematician (i.e. his average gain grows in time).

I make to the mathematician either one of these two offers:

- Let's play twice game A , twice game B , and so on.
- (for sceptical but still bad - specially at Markov chains-mathematicians)

In each run, let's toss a coin to choose which game we play.

[^0]
[^0]: ${ }^{1}$ This slide was part of a presentation by Juan MR Parrondo, entitled "Efficiency of Brownian Motors", given in the Workshop of the EEC HC\&M Network on Complexity and Chaos (\#ERBCHRX-CT940546) at the Institute for Scientific Interchange (ISI) Foundation (Torino, Italy), July, 1996.

