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The role of symmetry breaking phase transitions in the Szilard engine is analyzed. It is shown that
symmetry breaking is the only necessary ingredient for the engine to work. To support this idea, we
show that the Ising model behaves exactly as the Szilard engine. We design a purely macroscopic
Maxwell demon from an Ising model, demonstrating that a demon can operate with information
about the macrostate of the system. We finally discuss some aspects of the definition of entropy and
how thermodynamics should be modified to account for the variations of entropy in second-order
phase transitions. @001 American Institute of Physic§DOI: 10.1063/1.1388006

The Maxwell demon and the Szilard engine arggedanken %
experiments that are crucial to the search for a micro- W= szdVI kTIn2. @
scopic explanation of the second law of thermodynamics
and to the elucidation of how entropy and information  This work can be used, for instance, to lift a weight and store
are related. Here we show that one of the key ingredients kTIn2 as potential energy. The energy is taken from the
of the Szilard engine is a symmetry breaking phase tran- thermal bath, since the internal energy of the gas is constant.
sition. Following this idea, we design a purely macro- Therefore, the Szilard engine extracts energy from a single
scopic Maxwell demon from an Ising model, demonstrat- thermal bath and performs work, in contradiction with the
ing that a demon can operate with information about the  second law of thermodynamics.
macrostate of the system, without violation of the Notice that, for the engine to work properly, it is abso-
Kelvin —Planck statement of the second law. lutely necessary to know in which side the particle gets
trapped. In this way, we can exert a pressure on the piston
equal and opposite to the pressure of the gas and let it ex-
I. INTRODUCTION pand quasistatically. On the other hand, if the direction of the
pressure were not correct, the gas would expand irreversibly
The Szilard engine is one of the most relevant sequels ofind Eq.(1) would not hold. As in the original Maxwell de-
the well-known Maxwell demof? Maxwell devised his de- mon, the Szilard engine can beat the second law of thermo-
mon to show the probabilistic nature of the second law ofdynamics only if some information about the state of the
thermodynamics: a being capable of measuring the positiogystem is available.
and velocity of the molecules of a gas could in principle ~ The literature on the Szilard engine, as well as on the
violate the second law. Operating a door in an adiabatic walMaxwell demon, has focused mainly on the heat dissipation
between two gases at different temperatures, the dema¥ecompanying the measurement, i.e., the acquisition of infor-
could induce a flow of energy from the cold to the hot gas.mation, and/or accompanying the erasure of this infor-
The conclusion is that information about the microscopic™ation: >As an exception, Magnasco presented in Ref. 6 an
details of a system allows one to beat the second law. interesting analysis of the topology of the phase space of the
The Szilard engine? exhibits the relevant features of the €NgiNe.
Maxwell demon, i.e., the trade-off between entropy and in-  Nevertheless, none of these papers has analyzed one of
formation, but its setup is simpler to analyze. The reason i§he obscurg points _Of the Szilard engine, namely, that it con-
that the information needed to operate the engine is ver Ists Of. microscopic and macroscopic degregs of freedom
precise. The engine consists of a box with a single-particl nteracting with each other. This mixture of micfthe par-

gas, i.e., a particle that thermalizes in any collision with the'de) anpl _macro(the pisto) makes the Szilard engine a
. . . rather difficult and unclear problem for many physicists,
walls. A piston can be introduce@r removed either at the . o .
middle of the box or at two opposite wallsee Fig. 1 even for those working on statistical mechanics.
. bp . 9- . . In this paper | address this question, by giving a novel
The engine operates as follows. We insert the piston L

: _ . . X rpretation to one of the steps of the Szilard engine. The
the middle of the box antheasuren which side the particle - jyqerion of the piston in the middle of the box can be inter-

gets trapped. Then we let the gas expand reversibly and r%’reted as a spontaneous symmetry breaking. The Hamil-
move the piston. In the expansion the gas performs work: (gnian of the particle is symmetric under the permutation of
the two sides of the box. However, the particle gets trapped
dElectronic mail: parr@seneca.fis.ucm.es in only one of the sides. This is equivalent to what happens
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FIG. 2. ProcesseA andC in the Szilard engine.

FIG. 1. The Szilard engine.

tems: the thermal bath, and someernal agenthat handles
in an Ising model when it is driven from a paramagnetic to athe piston, exerting pressure when it is needed. As in ther-
ferromagnetic phase in the absence of external magnetigodynamics, | calheat Q, the energy transferred from the
field. thermal bath to the particle in a given process amak, W,

We will see in the following that all the astounding facts the energy transferred from the system to the external agent.
of the Szilard engine are reproduced in the Ising model angtinally, if ¢/ is the internal energy of the particle, the first law
in any system exhibiting second-order phase transitions.  of thermodynamics

The benefit of this new interpretation is twofold. On the
one hand, it helps us to understand better the Szilard engine AU=Q-W 2
and the relationship between entropy and information, sincéolds for any process.
we will reach the same conclusions without the use of single-  In our particular case, proce3 does not require any
particle gases interacting with pistons. We will show, forwork, or at least the work can be arbitrarily small. On the
instance, that a Szilard engine can be operated with informasther hand, process involves a compression of the single-
tion about the macrostate of the system: The necessary iparticle gas to half of its volume and in this compression, if
gredient is information, but it is not relevant if this informa- carried out quasistatically, a wokT In 2 is done by the ex-
tion is microscopic or macroscopic. On the other hand, outernal agent. Therefore, as defined previously, work in each
interpretation reveals that the consequences of the relatioprocess is given by
ship between entropy and information and the intriguing as-
pe(F:)ts of the SzilardF:engine are not restricted to acagem?c and Wa=—kTIn2, Wc=0. @)
artificial constructions, such as the Maxwell demon and thélhe internal energy of the particle remains constant since the
Szilard engine itself, but they are present in any spontaneous/o processes are isothermal. Thus, the heat in each process
symmetry breaking, that is to say, almost everywhere in nais
ture.

The paper is organized as follows. In Sec. Il, the ener- Qa=—kTIn2, Qc=0, @
getics of two processes in the Szilard engine are analyzedie., alongA, energy is transferred from the system to the
Section Il is a brief review of the concept of spontaneousthermal bath.
symmetry breaking and the Ising model. In Sec. IV, two  The difference in the energetics &f and C is the key
processes in the Ising model which are equivalent to theoint of the Szilard engine. The engine is nothing but the
processes studied in Sec. Il are introduced. Section V dissycle CA™%, whereA™! is the inverse of procesa. The
cusses the implications of the above-mentioned results on thenergetics oA~ is Wa-1= —W, andQa-1=—Q,, if and
definition of entropy and on the general validity of the Sec-only if A~1 is the true inversion ofA, i.e., if the external
ond Law. Finally, in Sec. VI, some conclusions and a list ofagent exerts a pressure equal to the pressure of the gas and
open problems are presented. thus the expansion is done adiabatically. In this case, we
haveWc,-1=KkTIn 2. However, notice that, after proceSs
the system can end with the particle on any of the two sides
of the box, whereas aftek the particle is certainly on the

Consider the Szilard gas and the procegsesidC de- left-hand side. Therefore, the cyo®A ™! cannot be imple-
scribed in Fig. 2. IrC, the piston is inserted in the middle of mented reversibly in the cases where the particle is on the
the box and the particle gets trapped in one of the sides. Inght-hand side afte€C. In these cases, if the external agent
A, the piston is introduced in the rightmost wall and movedinsists in conducting procegs  and consequently exerts a
slowly to the middle of the box. Thel is the first step of pressure to the right, then the piston will not move. There-
the Szilard cycle and\ is the inversion of the rest of the fore, the Szilard engine consists @ffollowed by A~ if the
cycle (cf. Figs. 1 and 2 particle gets trapped on the left-hand side and followed by

Let us investigate the energetics of these two processethe mirror image ofA™?! if the particle gets trapped on the
i.e., the energy transfer between the particle and its surroundight-hand side. A measurement is then necessary bet@een
ings. The particle exchanges energy with two external sysandA™1.

IIl. TWO PROCESSES IN THE SZILARD ENGINE
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Notice that so far the discussion has been restricted to The globally coupled Ising model is one of the simplest
energy. The consequences of the above-mentioned results epstems exhibiting coexistence of macroscopic phases.

the definition of entropy will be explored in Sec. V. Hamiltonian is
J N-1 N N
H({s}dB)=—5 2 2 ss-BX s, (™
i=1 j=i+1 i=1

I1l. SYMMETRY BREAKING TRANSITIONS
where the spins take values=+1, withi=1,2,... ,N. It

I'have split the Szilard cycle into procesgeandC, and  gepends on two parameters: the couplihdpetween spins
showed that the paradoxical nature of the engine lies in thgng the external fiel®. It is calledglobally couplecbecause
energetics of these two processes. every spin interacts with all the others.

As mentioned in Sec. I, process can be seen as a The system exhibits coexistence of two macroscopic
spontaneous symmetry breaking and progess a forced or  phases whel8B=0 andJ/kT>1. One of the phases is re-
nonspontaneous symmetry breaking. In fact, symmetrgiricted tol', , the set of configurationés;} with positive
breaking is the only necessary ingredient to reproduce all thgjopal magnetizatioM ==, s,>0, and the other is restricted
relevant features of the Szilard engine. toI'_, the set of configurations with negative magnetization.

Let us recall first what a spontaneous symmetry breakingsach phase breaks the symmetfg;}—{—s;} that the
is. If H(x) is the Hamiltonian of a systers,being a pointin  Hamiltonian possesses f&=0.
the phase spackE, statistical mechanics prescribes that the  \ynhen temperature is lowered, keepiBg=0, from an
probability density for the equilibrium state of the system atinjtial value above the critical temperaturg,=J/k, a

temperatureT is given by the Gibbs distribution: second-order phase transition occur3 atT,.. Below T, the
o BHX) system is in one of the two macroscopic phases. None of the
pr(x)= 7 (5) phases is favored along the process, siBee0. Therefore,

the system chooses the macroscopic phase at random or,
more precisely, undergoes a spontaneous symmetry breaking.

where B=1/kT, k is the Boltzmann constant, and ; Sy =
The globally coupled Ising model also exhibits first-

= [re A s the partition function. From Ed5) we see that -~ :
p-(x) has the same symmetries 2§x). Nevertheless, in order phase transitions when the field crosBesO below

some cases, a macroscopic system is not described by tfle- 1€ external field breaks the symmefs/}—{—s} of
Gibbs distribution. The phase space splits imtopieces, the Hamiltonian and, if for instance the coexistence region is

r,r, I',CT and the macroscopic system is confineq€ached decreasing a positive field, the macroscopic phase is
, y» o9l g . . . . N

within one of thent. The distribution that describes the sys- € One with positive magnetization. This is a forced or non-
tem is (see Appendix A for a discussion of the meaning of SPONtaneous symmetry breaking.

these distributions To reproduce in the Ising model the two proces&emd
C discussed in Sec. Il for the Szilard engine, we need to
e AHX) induce a spontaneous symmetry breaking at constant tem-

pi(X)= Z—iXFi(X)’ (6) perature(remember that processésand C in the Szilard

engine are isothermalThis can be achieved if we tune the
where X,(x) is the indicator function of the s&CTI’, i.e.,  couplingJ at constant temperatuile The spontaneous sym-
Xa(x)=1 if xe A andX,(x)=0 if x¢ A, andZ; is the par- metry breaking occurs then for a critical coupling
tition function restricted tol’;. The distributionsp;(x), =1/kT, and forB=0 andJ>J. the system exhibits coex-
called macroscopic phasefiave fewer symmetries than the istence of phases. Notice that the Ising model is commonly
Hamiltonian. The partition of the phase space, calledx- used as a model for ferromagnetic materials, where the cou-
istence of macroscopic phaseecurs for some values of the pling cannot be tuned and the symmetry breaking is achieved
temperature and the parameters of the Hamiltoniasp@n- by decreasing the temperature. On the other hand, here we
taneous symmetry breaking transitioscurs when the sys- need isothermal symmetry breaking transitions and then we
tem is driven to a region of coexistence of phases along are forced to modify the coupling at constant temperature.
process which does not favor any of the macroscopic phase$his makes the system less realistic. However, we are not
The phase is then chosen by thermal fluctuations. The séaterested at this point in providing a physically realizable
lected phase can be interpreted as an amplification of micranodel of the Szilard engine, but only in showing the role of
scopic fluctuations. One could say that it is a transfer olsymmetry breaking transitions in the problem.
randomness from the microscopic to the macroscopic world
resultlng in an emergence _ufacroscop_lc randomnesk the V. TWO PROCESSES IN THE ISING MODEL
system is driven to the region of coexistence of phases along
a process which favors one of the phases, we say that the Consider the following two processes on the plahd]
system undergoes aonspontaneou®r forced symmetry (see Fig. 3.
breaking transition In this case, the chosen macroscopic  Process A Starting at(0,0), the field is increased up to

phase depends on the past of the system. B¢>0, then the coupling is increased upXo>J., then the
The reader could immediately recognize proc€sas a field is decreased down to zero.

spontaneous symmetry breaking transition and prodeas Process C starting at(0,0), the coupling is increased up

a forced symmetry breaking. to J;>J., keepingB=_0.
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FIG. 4. Hysteresis cycle in the Ising model.
. > : . where Ay is the area of the hysteresis cycleJat J;, as
J J shown in Fig. 4.
¢ f

The hysteresis phenomenon is not present in the Szilard
engine. However, it has similar consequences to exerting the
pressure in the wrong direction along the expansion, since in
both cases the system evolves irreversibly doing less work.

Consider now the equivalent to the Szilard engine,
i.e., the cycleCA™! on an ensemble of Ising models. Its

The two processes are quasistatic in the following sensenergetics(per system is immediately obtained from Egs.
They are slow enough for the system to relax witkgch  (8)—(10):
possible macroscopic phaseut fast enough for the system A
to remain in one of the two phasésee Appendix A for a Wep 1=We+W, 1=kTIn2—a hysl (12)
detailed explanation 2

Applying to processA the formalism described in Ap- wherea is the fraction of systems with magnetization of the
pendix B, one finds the following energetics, up to ol&r  same sign as the field 8~ *. There are two consequences of

Wa=—A(T,3:,0)+ AT,0,0—kTIn2, (g  this expression. _

First, if instead of an ensemble we take a single system
where F(T,J,B)=—kTInZ(8,J,B) and Z(B;J,B)=2e #"  and measure its magnetization af@ro decide the sign of
is the partition function of the systenZ(5;J,B) and the field, thena=0 andWca-1=kTIn2>0, i.e., the system
F(T,J,B) must be considered here as mere mathematicak extracting energy from the thermal bath and converting it
definitions and we should refrain from attributing any physi-into work. We recover the same result as in the Szilard en-
cal meaning to them at this stage of the discussion. For pragine but now with a genuine macroscopic system. Thus, we
cessC one has have a Maxwell demon with the important novelty that he

We=— A(T,J;,0)+ F(T,0,0). 9) needs to measureraacroscopic quantity _

Second, for an ensemble=1/2, and we still can beat

Therefore, W,— W= —KkTIn2, i.e., the external agent the second law unless
has to do more work to complete procésshan to complete
C, exactly as in the Szilard engine. Anys=4KTIn 2. (12)

The whole discussion on the Szilard engine in Secs. |  This inequality is a by-product of this theory and clari-
and Il can be applied to the Ising model. For instance, ondying its origin is one of the open problems of the present
can design a cyclic engine &A L. work.

Let us first analyze the inverse processes andC ™!
in detail. The inversion o€ does not present any difficulty. v. ENTROPY AND MACROSCOPIC UNCERTAINTY
The energetics oC~ ! is simply We-1=—Wc and Q¢-1
=-Qc.

On the other hand, if we try to inveA, the sign of the
field must be the same as the sign of the initial magnetizatioH .
of the systemlf we start to increase a positive field on a The ghange of entropy in the thermal bath along a pro-
system with negative magnetization, the system becomesSS IS gIven by_ASbam= —QIT, Wherea}s the entrc_>py of_the
metastable, it runs along one of the branches of a hysteres?é(temal_ agent Is constan_t because its interaction with the
cycle and eventually relaxes irreversibly to the stable statgYStem 1s purely mechanical. Then the change of the total

Process C

FIG. 3. Processea andC in the Ising model. The two closed circles are the
initial and final states of both processes.

The above discussion has focused on energy. In this Sec-
tion the consequences of the previous results on the defini-
on of entropy will be explored.

for some value of the fiel@ (see Fig. 4. entropy is
The most general case is when we have an ensemble of Q
systems. If initially a fractionv of them have negative mag- ASta= ~ 7 T ASyst (13

netization, the energetics & ! is given by ] ]
The second law of thermodynamics tells us that, if a process

is reversible AS,,;,=0, and, if it is irreversible A S 0.
In particular, for a cyclic processdS =0 henceQ=0.

Ahys
2 ’

WAfiI.: _WA_ o (10)
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This is the Kelvin—Planck statement of the second l&ws
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of the system. It is evaluate@n a unit callednatg using

not possible to extract energy from a single thermal bath in aShannon formul&:H=—3, p; Inp,, wherep; is the prob-

cyclic process

However, Eq(13) and the second law lead to contradic-

tions when applied to processAsandC. Let us recall first

ability of having an instance (in the Szilard and Ising case,
afterC, H=1In2).
Moreover, in this interpretation not only entropy is sub-

some properties of the heat transferred from the thermal baflective but also the concept of reversibility. Consi@er! on
to the system in each process, as calculated in Sec. IV and asingle system: It is reversible if we do not know the initial

Appendix B:

Qc=—-Qc-1, Qa=—0Qa-1,

(14)

QC_ QA: kTIn 2.

In any cycleASy,=0. Then, using13) and (14), A cc

=Asﬁ,g_,1=0. Therefore,AA™* and CC™* are reversible
and so are their componens, A%, C, andC™1. On the

other handAS2C, "=k In 2, henceAC L is irreversible. No-

macroscopic magnetization and it is irreversible if we do
know it. This was already pointed out by Bennett in Ref. 4.

A few words are in order about the objectivity of the
invariant measureginge. FOr an ergodic system, this invari-
ant measure is the fraction of time the system spends in a
given region of the phase space. Therefore, it is an objective
distribution for a single system and does not depend on the
information at our disposal. In particular, it does not change
under a measurement. However, the invariant measure has
some well-known limitations: it does not describe the instan-
taneous state of the system and it can be considered as a
description of the system only for periods of time long
enough to ensure the validity of the ergodic property. In our

tice that no measurement is necessary in any of the previoygesent discussion, we are dealing with equilibrium systems

cycles.
Moreover, if A and C are reversible, themASg .,
=ASL,=0, and from (13) and (14), we obtain ASg

or systems undergoing quasistatic processes. In both cases,
the ergodic theorem holds and we can consjdgfy. as a
fully objective description of a single system at any stage of

=AS’S*yst+kIn 2. On the other hand, whenever the systemthese processgsee Appendix A for further details

ends with positive magnetization aft€r the initial and final
states of both processésandC are the same from a physi-
cal point of view.

Here a simpler interpretation of the above-mentioned re-
sults is proposed, using the invariant measwyige. In this
new interpretation, entropy is an objective magnitude for

These contradictions are usually explained with the fol-single systems, but we are forced to admit that it decreases

lowing definition for the thermodynamic entropy of the sys-

tem:

o

- k<|n Penga (15

where pqns IS the probability distribution describing an en-
semble of systems. After process, pens=(p.+p_)/2
wherep, andp_ are the probability distribution of the two
macroscopic phasgsee Sec. ). On the other hand, after
A, pens=p+ - Then,SE is k In 2 bigger afterC than after
A.

along certain processes, in contradiction wattmeformula-

tions of the second law. However, the main limitation im-
posed by the second law, namely, the Kelvin—Planck state-
ment, remains valid, since these processes cannot be used to
construct cycles. Ishioka and Fuchikami, in Ref. 9, have
reached similar conclusions. The assumptions for this inter-
pretation are the following.

(1) The thermodynamic entropy of a system is given by

SsystE - k<|n psingl&- (17)

(2) If an external agent induces, in a quasistatic and iso-
thermal way, a spontaneous symmetry breaking with

This picture is, however, rather unsatisfactory if we dea'phases, the total entropighe sum of the entropies of the

with single systems instead with ensembles, sipgg be-

system, thermal bath, and external ageiecreases biInn.

comes a subjective quantity. For instance, the physical statfese processes will be calladti-irreversible(in Ref. 9 the

of an Ising model after procegsis the same as aft€? if the

term partitioning processess used instegdand they corre-

final magnetization is positive. The only difference betweenspond to thecreation of macroscopic randomness

these two situations is that we ignore the magnetization after

C. ThenSe™

syst » as defined in Eq(15), is a subjective quan-

(3) Along the inverse of an anti-irreversible process, the
total entropy increases blgInn. These processes will be

tity for single systems. Mathematically, this can be eXpressegalledquasi-irreversibleor simply irreversible.

as

St

_k<|n psingl&+kH- (16)

Here, psingie is the invariant measure that gives the tem-

ProcessC is anti-irreversible and€C ™! is quasi-irreversible.
The reason for the names is the followin@: ! cannot be
truly reversed because, after 1C, the initial magnetization
could be opposite to the final one due to the emergence of
macroscopic randomness aloBg Processe# andA™ ! are
reversible in the standard sense, i.e., total entropy does not

poral average of any magnitude and it is a fully objectivechange. The reader can check that every combination of pro-

distribution for a single systertsee Appendix A H is the

cessed\, C, and their inversions are explained with the three

ignorance or uncertainty that we have about the macrostatelles previously mentioned. Moreover, entropy and revers-
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ibility become fully objective concepts. Notice also that theVl. CONCLUSIONS AND OPEN PROBLEMS
proposed modification only affects entropy by a quantity of

orderk, which vanishes in the thermodynamic limit. Never-
theless, the order of magnitude of the energy involved in th

It has been shown here that spontaneous symmetry
dreaking is the key ingredient in the Szilard engine, and a
Maxwell demon or in any of its variants kST, andk for the similar engine can be devised with any system exhibiting

second-order phase transitions. As an example the Ising

entropy(see Sec. VI for a comment on this point k
The measurement process can also be explained witfodel has been used. The example has revealed that in the

this new thermodynamics. Consider, as a model of a systeffade-Off between entropy and information, the latter does
and a measurement device. the Hamiltonian: not need to be information about the microscopic state of a

system.
| have proposed a modification of thermodynamics to
H({S-(l)},{s-(z)}'Jl,Jz, ) a_lchieve a fully pbjective_definition of entropy. '_I'wo objec_—
tions can be raised against this thermodynamics. The first
J J one is that energy is an extensive property, i.e., of order
ngl 5(1)3(1) 22 5(2) (2) = 2 (1)5(2) NkT, and terms of ordekTIn2 are negligible and even
much smaller than the energy fluctuations. This objection
applies to any Maxwell demon but it is not sufficient to
exorcize it. The reason is that the demon can repeat the cycle
as many times as he wants, converting a macroscopic
amount of heat into work.
The second objection is that the increase of entropy can
e derived from nonequilibrium theories, such as the
okker—Planck formalism. Ify are the(overdamped de-
grees of freedom of a system, the probability distribution

N

which corresponds to two coupled Ising modelgs{stem
and 2 (measurement device or “pointer” The following
table shows the behavior of the total entroBy,, as de-
fined by (13) and (17), and the macroscopic uncertairity
(in natg, along two isothermal and quasistatic processes. |
the table,S2,, is the total entropy in the initial state:

Step Seu- 2. H Step Sea- 2. H obeys the Fokker—Planck equatidFPB:

1) J;:0-J —klIn2 In2  J;:0-J —klIn2 In2 ap(q,t)=—-V-J(q,1), (18)

2 J:0—3  —kln2  In2  J;,:0-J3 —kln2  In2

9 3:0=J —kin2 2 J:0-J, —kin2 - In2 - where the current is)(q,t)=[—Vu(q,t)]p(q,t) and the

2-3 jl'-JJﬁoo 7::::2 :2; j”fﬁoo gk'” 2 'I:E chemical potential is defined asu(q,t)=V(q,t)
12957 - 19— ; ;

6 1,00 0 0 3,30 Kin2 0 +kTInp(q,t). Eggm these equations one can derive the fol-

lowing identity:

Both processes involve a spontaneous symmetry break-
ing (step 1, copying the outcomésteps 2 and )3 and erase
the copy and the origindkteps 4—& _katf dap(a,0lnp(q.t)

The first procesdleft-hand columincan be interpreted as
a reversible measurement. Measurement can be defined ina = J dqV(q,t)dp(q,t)+ = J dq
rather general way as any procedure which allows one to
drive a system from the region of coexistence of phases to a
region of noncoexistence along a reversible process, i.e.,
avoiding the critical point as well as the possibility of hys-
teresis. This is done in step 4 of the first column, whirés ) o )
decreased down to zero along a reversible process. As a re- If the left-hand side of Eq(19) is interpreted asS;,
sult, the total entropy is lowered ByIn 2 in the first five the change of the entropy of the system per unit of time, then
steps. Notice also that, to drive the whole system2lto its  the total change of entropfga=—Q/T+ Sy, is always
initial state, we have toesetthe measurement devica by  positive. A similar result can be obtained for underdamped
crossing again a critical point, i.e., along a quasi-irreversiblelegrees of freedort. How then have we obtainefl,, <0
processstep 6. We thus recover Bennett's interpretation of for some processes involving phase transitions? The answer
the Szilard enginé. is that the distribution that appears in the F@B) is p.,sand

I have included the other procegbe right-hand column  not pgj,ge. Then, the FPE is not appropriate to describe
in the table to show how subtle the measurement and thesingle macroscopic systems in the region of coexistence of
erasure processes can be. If subsystem 1 is uncoupled befqreases.
driven to its initial state, then it crosses a critical point and  One of the open problems of the present work is to char-
the entropy increases. Step 5 in the right-hand column iscterizepingeand derive an evolution equation similar to the
quasi-irreversible, because initially the magnetizations of JFPE. Other open problems af@) analyzing the role of hys-
and 2 have the same sign, and, if step 5 were reversed, theresis and the origin of inequalit}12); (b) extending the
final magnetizations would be uncorrelated. A similar effectabove-given discussion to the breaking of a continuous sym-
of the correlation between the particle and the measurememtetry, where an infinite number of macroscopic phases co-
device in the Szilard engine was pointed out by Fahn inexist;(c) including the external agent in the Hamiltonian as a
Ref. 5. set of macroscopic degrees of freedom; édexploring the

[3(aq.0[?
p(a,t)

2
Q 1Jd 19(a.b)| 19

T p(at) -
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implications of the decrease of entropy along anti-system isin contact with a thermal bath at temperaiuaad

irreversible processes, especially in cosmology. the parameters are changed by an external ageR{tasvith
te[0,7].
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APPENDIX A: PROBABILITY DISTRIBUTIONS AND . IH(X;R(t)) (B1)
MACROSCOPIC STATES W=— Lpr(x;t) —

In this appendix, the meaning of the probability distribu-

. . . i . herel is the ph f th ;t) th
tions penps and pgjnge Used in the text is explained in some wherel is the phase space of the system arfd;t) the

probability density for the state. Heat and work, as given

detail. ) o
Suppose a classical system with Hamiltoniigx; @) by'Eq. (B1), obey the first law of thermodynamict=Q

and a process where the parametds changed fronug to —W. . o B

ap+Aa, at constant velocity, during a time interja t;]. If the process is quasistati@;—, the probability den-

Thena(t) = ag+tAalt; is the value of the parameter at time Sity at timet depends only on the value of the external pa-
te[0t;]. If x(t) is the trajectory of the microstate of the rameters at, i.e., p(x;t)=p(x;R(t)). In this case, the heat
system, then the energy transfer between the system and tB8d the work in the whole process are given by

external agent which modifies, i.e., the work done by the

system along the process, is Q= fA5Q(R), W= JA(SVV(R), (B2
t IH(X(1); . .
SW=— f fdt d(t)M whereA is the path thaR(t) describes along the process and
0 da a=a(t) the infinitesimal work and heat are given by
Aa [t IH(X(1);a) dp(X;R)
=—— | dt—— +0(Aa?). (Al - : )
t o a . (Aef). (A1) 5Q(R) frdxH(x,R) & dR,
0
The first term iné6W is Aa times a time average @fH/da. JH(X;R) B3)
If t; is large enough to apply the ergodic theorem to this time ~ SW(R)=— frdXP(X?R) IR -dR

average?? we obtain
TH(x: @) Notice that the expression for the work coincides with Eqg.
SW= _<—’ >Aa+O(Aa2), (A2) (A2) if the probability distribution ispgjnge. This is the dis-
tribution that we will take in the following.
The most familiar implementation of the above-

where the average is taken oyef,qdx), the ir)varian;cj]irgnea- mentioned expressions is obtained when the state of the sys-
sure on the subregion &f where the system is ergoditln tem is the Gibbs distributiom1(x:R)=e F**xR/z(8,R).

the text, we distinguish this distribution from the distribution For this particular case, EB3) reduces to

Jda

a=a0

pendX) followed by an ensamble of systerasla Gibbs!*3

Both coincide except in the region of coexistence of phases, _ _dS(T,R) _ dAT,R)

i.e., when the system is no longer ergodic in the whole phase Q(R)=T JR "R, SW(R)=~— JR dR,
spacel’, but only in a certain regio’; . This distinction is (B4)

crucial for the arguments presented in the paper. where
It is remarkable that the ergodic theorem, up to the best
of the author’s knowledge, has never been applied to pro- B ] )
cesses. Since Boltzmann, the ergodic theorem has been in- S(1:R)=~K rdXPT(X:R)m[PT(X.R)]
voked to prove irreversibility, either as the relaxation of a (B5)
system to equilibrium or as the increase of entr(gse Refs. HT,R)=—-kTInZ(B,R)

12, 13’ and references ther)3|h10wever., the second law, at are, respectively, the free energy and the entropy of the sys-
least in the Kelvin—Planck statement, is about processes aqé

their energetics and, as we have seen here, the ergodic theo- i:or isothermal processe®V(R) is an exact differential
rem arises in a very natural way when dealing with Slowand therefore the integral ifB2) reduces to

processes.
W= —HT,R(7)) +FHT,R(0)), (B6)
QZBEEDIX B: ENERGETICS OF PROCESSES A i.e., the difference between the initial and the final free en-
ergy.
Consider a system whose Hamiltoniaf{x; R) depends Although processeé and C considered in the text are

on a set of external parameters collected in a veRlowe  isothermal and quasistatic, the stalec;R) is not equal to
are interested in the energetics of a process along which ther(x;R) in the region of coexistence of macroscopic phases,
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due to(6). Consequently their energetics, up to terms of or-
der kT, differ from the one prescribed by standard equilib-
rium thermodynamics.

Let us consider the energetics of the procésintro-
duced in Sec. IV. We will split the process in three steps:
along step 1 the field is increased from zeroBtpkeeping
J=0; along step 2, the coupling is increased from zerd;to
keepingB=B;; along step 3, the field is decreased fr&n
to zero keeping=J; . We will apply (B2) and(B3) with the
following choice for the state({s;};J,B) along the three
steps:

Magnetization

pr({s):3,B) if J=0 or B=B; 0
(steps 1 and Q2
p+({s};3,B) if J=
(step 3

B

FIG. 5. MagnetizatiorM as a function of the fiel@. The narrower line is
the result of averaging over the staie. The gray area is the difference
(B7) between the work along step 3 usipg andp, .
This choice implies that the system is in the phase of positive
magnetization during the third step. The energetics, up to
order kT, does not depend on where precisely the system
changes fornp; to p, . The above-given prescription has Wa= = AT.J,0 + A(T.0,0 —kTln2, (B14)
been chosen for simplicity. The replacementpgfby p, is  which is Eq.(8) in Sec. IV.
only significant at the end of step 3, i.e., whéa J; andB Notice that the work in Eq(B14) is the one given by
=0 and the system is close to the region of coexistence oéquilibrium thermodynamics, E4B6), minusan extra term
macroscopic phases. In the rest of the plah®]) the ener- kTIn 2. This term is the novelty of this calculation and the

p({si};J,B)=

getics is the same whether one uggsor p . key point of the analysis along the paper. It will be instruc-
Along steps 1 and 2, EqB6) can be applied, since the tive to see in more detail how it arises.

state ispy: Along the third step, is kept constant. Therefore, the
W= — F(T,3;,B))+ F(T,0,0). (Bg) ~ Workisgiven by

To evaluate the work performed along the third step it is W(s):_J'O<3H({Si};J,B)>dB
convenient to define the partition function restricted to con- B¢ B
figurations with positive magnetization:

0
:—f dB M(T,J,B)dB, (B15)
Z.(BI,B)=2, O(3;s))e s, (BY) B
tsit where(-) is the average ovei({s;};J,B) andM(T,J,B) is
and the corresponding free energy: the magnetization of the system:
F(T,3,B)=—kTInZ,(B,J,B). (B10)

N
M(T,J,B)E<Zl si>. (B16)

The work performed along the third step can be evaluated in

a similar way as for the Gibbs state: Observe that the magnetization is different if one ysges

W)= — F (T,3;,00+ F,(T,J;,By). (B11)  instead ofp. In Fig. 5, these two values of the magnetiza-
tion are plotted against the fieBl The magnetization fop+
vanishes forB=0, sincep1({s;},J,0) is a symmetric state.
Wp= W12+ W) On the other handp, ({s;},J,0) is nonsymmetric and the

_ —CN corresponding magnetization at zero field is positive. As a

== 7 (TJ:0+ AT.0,0 +o(e”™5), consequence, the work calculated uspgdiffers from the
where we have used the fact tha#. (T,J;,B;)  one calculated witlp, . The former is bigger than the latter
— F(T,J;,By) is of ordere” N, C being a positive number, and the difference is equal to the gray area in Fig. 5. This
for sufficiently largeB; (see Appendix € On the other area, as has been shown previoushkTdn 2.

The total amount of work is

hand, forB=0 the restricted partition function verifies Let us turn to the energetics of process In this case,
2(8,3,0 the system crosses the critical point and chooses between one
Z,(B,J,0= — (B12)  of the two possible macroscopic phases,or p_ . Assum-
ing that the system choosps , the state of the system along
and then the process is given by
= . si};J,B if J<J

Fo(T,3;,0=HT,3,0+kTIn2 (B13) p((S1:3,0)= pr({ .}. ) | 3 (817

Therefore, the work along processbecomes: p+({si};3,B)  if I=J;
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As in the calculation for procesA, the precise location of
the replacement op; by p. does not affect the final con-

clusions. This replacement can be done even smoothly wit
the same results. In fact, the energetics is the same as if z_(3,J,B)

calculated usingt, for symmetry reasons.
Along the process, the field is constaBt: 0. Therefore,

e [(Z0S139)

=3 (B18)
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Z.(B,J,B)>exd BN(B+J/2—J/(2N))]. (Co
M\/e finally have
———<ePlZ%exg — BN(B+J/12—In 2/
Z.(B1B) A AN P
< ePI2g=CN (C5)

with C>0. The above boundary is very rough, since there
are other terms iZ . exponentially larger than the one with

The partial derivative is clearly symmetric under the trans-S=N.

formationss,— —s; .

Consequently, the average is the same

Summarizing, ifB; and J; in the cycle of section IV

for pr andp.. and the workW¢ is equal to the one given by verify B;>J;/2>J./2 andC=B(B;+J./2)—In 2=8B;+1/2

the Gibbs statécf. Eq. (B6)], i.e.,
We=—FAT,J:,0+ FT,0,0),
which is Eqg.(9) in Sec. IV.

(B19)

APPENDIX C: BOUNDS FOR THE DIFFERENCE
BETWEEN FREE ENERGIES

To complete the derivation of EqB14), we have to
prove that, for strong enough fields,

Z(ﬁ,\],B) Z—(B,\],B) -
”m:'”( +m)=o(e Ny, (CY

whereC is a positive constant.

—In2>0, then
Z(B,J¢,By)
Fi(T,35,B) = AT, I; B =kTIno————~
+(T,3¢,Br) = A(T,3;,By) Z.(B.Jr.By)
—o(kTe V). (C6)
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