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The Szilard engine revisited: Entropy, macroscopic randomness,
and symmetry breaking phase transitions
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The role of symmetry breaking phase transitions in the Szilard engine is analyzed. It is shown that
symmetry breaking is the only necessary ingredient for the engine to work. To support this idea, we
show that the Ising model behaves exactly as the Szilard engine. We design a purely macroscopic
Maxwell demon from an Ising model, demonstrating that a demon can operate with information
about the macrostate of the system. We finally discuss some aspects of the definition of entropy and
how thermodynamics should be modified to account for the variations of entropy in second-order
phase transitions. ©2001 American Institute of Physics.@DOI: 10.1063/1.1388006#
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The Maxwell demon and the Szilard engine aregedanken
experiments that are crucial to the search for a micro-
scopic explanation of the second law of thermodynamics
and to the elucidation of how entropy and information
are related. Here we show that one of the key ingredients
of the Szilard engine is a symmetry breaking phase tran-
sition. Following this idea, we design a purely macro-
scopic Maxwell demon from an Ising model, demonstrat-
ing that a demon can operate with information about the
macrostate of the system, without violation of the
Kelvin –Planck statement of the second law.

I. INTRODUCTION

The Szilard engine is one of the most relevant sequel
the well-known Maxwell demon.1,2 Maxwell devised his de-
mon to show the probabilistic nature of the second law
thermodynamics: a being capable of measuring the pos
and velocity of the molecules of a gas could in princip
violate the second law. Operating a door in an adiabatic w
between two gases at different temperatures, the de
could induce a flow of energy from the cold to the hot g
The conclusion is that information about the microsco
details of a system allows one to beat the second law.

The Szilard engine1,2 exhibits the relevant features of th
Maxwell demon, i.e., the trade-off between entropy and
formation, but its setup is simpler to analyze. The reaso
that the information needed to operate the engine is v
precise. The engine consists of a box with a single-part
gas, i.e., a particle that thermalizes in any collision with
walls. A piston can be introduced~or removed! either at the
middle of the box or at two opposite walls~see Fig. 1!.

The engine operates as follows. We insert the piston
the middle of the box andmeasurein which side the particle
gets trapped. Then we let the gas expand reversibly and
move the piston. In the expansion the gas performs wor

a!Electronic mail: parr@seneca.fis.ucm.es
7251054-1500/2001/11(3)/725/9/$18.00
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PdV5kT ln 2. ~1!

This work can be used, for instance, to lift a weight and st
kT ln 2 as potential energy. The energy is taken from
thermal bath, since the internal energy of the gas is cons
Therefore, the Szilard engine extracts energy from a sin
thermal bath and performs work, in contradiction with t
second law of thermodynamics.

Notice that, for the engine to work properly, it is abs
lutely necessary to know in which side the particle g
trapped. In this way, we can exert a pressure on the pis
equal and opposite to the pressure of the gas and let it
pand quasistatically. On the other hand, if the direction of
pressure were not correct, the gas would expand irrevers
and Eq.~1! would not hold. As in the original Maxwell de
mon, the Szilard engine can beat the second law of ther
dynamics only if some information about the state of t
system is available.

The literature on the Szilard engine, as well as on
Maxwell demon, has focused mainly on the heat dissipat
accompanying the measurement, i.e., the acquisition of in
mation, and/or accompanying the erasure of this inf
mation.1–5As an exception, Magnasco presented in Ref. 6
interesting analysis of the topology of the phase space of
engine.

Nevertheless, none of these papers has analyzed on
the obscure points of the Szilard engine, namely, that it c
sists of microscopic and macroscopic degrees of freed
interacting with each other. This mixture of micro~the par-
ticle! and macro~the piston! makes the Szilard engine
rather difficult and unclear problem for many physicis
even for those working on statistical mechanics.

In this paper I address this question, by giving a no
interpretation to one of the steps of the Szilard engine. T
insertion of the piston in the middle of the box can be int
preted as a spontaneous symmetry breaking. The Ha
tonian of the particle is symmetric under the permutation
the two sides of the box. However, the particle gets trap
in only one of the sides. This is equivalent to what happe
© 2001 American Institute of Physics
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in an Ising model when it is driven from a paramagnetic t
ferromagnetic phase in the absence of external magn
field.

We will see in the following that all the astounding fac
of the Szilard engine are reproduced in the Ising model
in any system exhibiting second-order phase transitions.

The benefit of this new interpretation is twofold. On th
one hand, it helps us to understand better the Szilard en
and the relationship between entropy and information, si
we will reach the same conclusions without the use of sing
particle gases interacting with pistons. We will show, f
instance, that a Szilard engine can be operated with infor
tion about the macrostate of the system: The necessar
gredient is information, but it is not relevant if this informa
tion is microscopic or macroscopic. On the other hand,
interpretation reveals that the consequences of the rela
ship between entropy and information and the intriguing
pects of the Szilard engine are not restricted to academic
artificial constructions, such as the Maxwell demon and
Szilard engine itself, but they are present in any spontane
symmetry breaking, that is to say, almost everywhere in
ture.

The paper is organized as follows. In Sec. II, the en
getics of two processes in the Szilard engine are analy
Section III is a brief review of the concept of spontaneo
symmetry breaking and the Ising model. In Sec. IV, tw
processes in the Ising model which are equivalent to
processes studied in Sec. II are introduced. Section V
cusses the implications of the above-mentioned results on
definition of entropy and on the general validity of the Se
ond Law. Finally, in Sec. VI, some conclusions and a list
open problems are presented.

II. TWO PROCESSES IN THE SZILARD ENGINE

Consider the Szilard gas and the processesA andC de-
scribed in Fig. 2. InC, the piston is inserted in the middle o
the box and the particle gets trapped in one of the sides
A, the piston is introduced in the rightmost wall and mov
slowly to the middle of the box. Then,C is the first step of
the Szilard cycle andA is the inversion of the rest of th
cycle ~cf. Figs. 1 and 2!.

Let us investigate the energetics of these two proces
i.e., the energy transfer between the particle and its surrou
ings. The particle exchanges energy with two external s

FIG. 1. The Szilard engine.
Downloaded 04 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
a
tic

d

ne
e
-

a-
in-

r
n-
-
nd
e
us
-

r-
d.
s

e
s-
he
-
f

In

s,
d-
s-

tems: the thermal bath, and someexternal agentthat handles
the piston, exerting pressure when it is needed. As in th
modynamics, I callheat, Q, the energy transferred from th
thermal bath to the particle in a given process andwork, W,
the energy transferred from the system to the external ag
Finally, if U is the internal energy of the particle, the first la
of thermodynamics

DU5Q2W ~2!

holds for any process.
In our particular case, processC does not require any

work, or at least the work can be arbitrarily small. On t
other hand, processA involves a compression of the single
particle gas to half of its volume and in this compression
carried out quasistatically, a workkT ln 2 is done by the ex-
ternal agent. Therefore, as defined previously, work in e
process is given by

WA52kT ln 2, WC50. ~3!

The internal energy of the particle remains constant since
two processes are isothermal. Thus, the heat in each pro
is

QA52kT ln 2, QC50, ~4!

i.e., alongA, energy is transferred from the system to t
thermal bath.

The difference in the energetics ofA and C is the key
point of the Szilard engine. The engine is nothing but t
cycle CA21, whereA21 is the inverse of processA. The
energetics ofA21 is WA2152WA andQA2152QA , if and
only if A21 is the true inversion ofA, i.e., if the external
agent exerts a pressure equal to the pressure of the gas
thus the expansion is done adiabatically. In this case,
haveWCA215kT ln 2. However, notice that, after processC,
the system can end with the particle on any of the two si
of the box, whereas afterA the particle is certainly on the
left-hand side. Therefore, the cycleCA21 cannot be imple-
mented reversibly in the cases where the particle is on
right-hand side afterC. In these cases, if the external age
insists in conducting processA21 and consequently exerts
pressure to the right, then the piston will not move. The
fore, the Szilard engine consists ofC followed byA21 if the
particle gets trapped on the left-hand side and followed
the mirror image ofA21 if the particle gets trapped on th
right-hand side. A measurement is then necessary betweC
andA21.

FIG. 2. ProcessesA andC in the Szilard engine.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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727Chaos, Vol. 11, No. 3, 2001 The Szilard engine revisited
Notice that so far the discussion has been restricte
energy. The consequences of the above-mentioned resul
the definition of entropy will be explored in Sec. V.

III. SYMMETRY BREAKING TRANSITIONS

I have split the Szilard cycle into processesA andC, and
showed that the paradoxical nature of the engine lies in
energetics of these two processes.

As mentioned in Sec. I, processC can be seen as
spontaneous symmetry breaking and processA as a forced or
nonspontaneous symmetry breaking. In fact, symme
breaking is the only necessary ingredient to reproduce all
relevant features of the Szilard engine.

Let us recall first what a spontaneous symmetry break
is. If H(x) is the Hamiltonian of a system,x being a point in
the phase spaceG, statistical mechanics prescribes that t
probability density for the equilibrium state of the system
temperatureT is given by the Gibbs distribution:

rT~x!5
e2bH(x)

Z
, ~5!

where b51/kT, k is the Boltzmann constant, andZ
5*Ge2bH is the partition function. From Eq.~5! we see that
rT(x) has the same symmetries asH(x). Nevertheless, in
some cases, a macroscopic system is not described b
Gibbs distribution. The phase space splits inton pieces,
G1 ,G2 , . . . ,Gn,G and the macroscopic system is confin
within one of them.7 The distribution that describes the sy
tem is ~see Appendix A for a discussion of the meaning
these distributions!

r i~x!5
e2bH(x)

Zi
XG i

~x!, ~6!

whereXA(x) is the indicator function of the setA,G, i.e.,
XA(x)51 if xPA andXA(x)50 if x¹A, andZi is the par-
tition function restricted toG i . The distributionsr i(x),
calledmacroscopic phases, have fewer symmetries than th
Hamiltonian. The partition of the phase space, calledcoex-
istence of macroscopic phases, occurs for some values of th
temperature and the parameters of the Hamiltonian. Aspon-
taneous symmetry breaking transitionoccurs when the sys
tem is driven to a region of coexistence of phases alon
process which does not favor any of the macroscopic pha
The phase is then chosen by thermal fluctuations. The
lected phase can be interpreted as an amplification of mi
scopic fluctuations. One could say that it is a transfer
randomness from the microscopic to the macroscopic w
resulting in an emergence ofmacroscopic randomness. If the
system is driven to the region of coexistence of phases a
a process which favors one of the phases, we say tha
system undergoes anonspontaneousor forced symmetry
breaking transition. In this case, the chosen macroscop
phase depends on the past of the system.

The reader could immediately recognize processC as a
spontaneous symmetry breaking transition and processA as
a forced symmetry breaking.
Downloaded 04 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
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The globally coupled Ising model is one of the simple
systems exhibiting coexistence of macroscopic phases.7 Its
Hamiltonian is

H~$si%;J,B!52
J

N (
i 51

N21

(
j 5 i 11

N

sisj2B(
i 51

N

si , ~7!

where the spins take valuessi561, with i 51,2,. . . ,N. It
depends on two parameters: the couplingJ between spins
and the external fieldB. It is calledglobally coupledbecause
every spin interacts with all the others.

The system exhibits coexistence of two macrosco
phases whenB50 and J/kT.1. One of the phases is re
stricted toG1 , the set of configurations$si% with positive
global magnetizationM[( i si.0, and the other is restricte
to G2 , the set of configurations with negative magnetizatio
Each phase breaks the symmetry$si%→$2si% that the
Hamiltonian possesses forB50.

When temperature is lowered, keepingB50, from an
initial value above the critical temperatureTc[J/k, a
second-order phase transition occurs atT5Tc . BelowTc the
system is in one of the two macroscopic phases. None of
phases is favored along the process, sinceB50. Therefore,
the system chooses the macroscopic phase at random
more precisely, undergoes a spontaneous symmetry brea

The globally coupled Ising model also exhibits firs
order phase transitions when the field crossesB50 below
Tc . The external field breaks the symmetry$si%→$2si% of
the Hamiltonian and, if for instance the coexistence region
reached decreasing a positive field, the macroscopic pha
the one with positive magnetization. This is a forced or no
spontaneous symmetry breaking.

To reproduce in the Ising model the two processesA and
C discussed in Sec. II for the Szilard engine, we need
induce a spontaneous symmetry breaking at constant
perature~remember that processesA and C in the Szilard
engine are isothermal!. This can be achieved if we tune th
couplingJ at constant temperatureT. The spontaneous sym
metry breaking occurs then for a critical couplingJc

[1/kT, and forB50 andJ.Jc the system exhibits coex
istence of phases. Notice that the Ising model is commo
used as a model for ferromagnetic materials, where the c
pling cannot be tuned and the symmetry breaking is achie
by decreasing the temperature. On the other hand, here
need isothermal symmetry breaking transitions and then
are forced to modify the couplingJ at constant temperature
This makes the system less realistic. However, we are
interested at this point in providing a physically realizab
model of the Szilard engine, but only in showing the role
symmetry breaking transitions in the problem.

IV. TWO PROCESSES IN THE ISING MODEL

Consider the following two processes on the plane (J,B)
~see Fig. 3!.

Process A: Starting at~0,0!, the field is increased up to
Bf.0, then the coupling is increased up toJf.Jc , then the
field is decreased down to zero.

Process C: starting at~0,0!, the coupling is increased u
to Jf.Jc , keepingB50.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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The two processes are quasistatic in the following sen
They are slow enough for the system to relax withineach
possible macroscopic phase, but fast enough for the system
to remain in one of the two phases~see Appendix A for a
detailed explanation!.

Applying to processA the formalism described in Ap
pendix B, one finds the following energetics, up to orderkT:

WA52F~T,Jf ,0!1F~T,0,0!2kT ln 2, ~8!

whereF(T,J,B)52kT ln Z(b,J,B) and Z(b;J,B)5(e2bH

is the partition function of the system.Z(b;J,B) and
F(T,J,B) must be considered here as mere mathema
definitions and we should refrain from attributing any phy
cal meaning to them at this stage of the discussion. For
cessC one has

WC52F~T,Jf ,0!1F~T,0,0!. ~9!

Therefore,WA2WC52kT ln 2, i.e., the external agen
has to do more work to complete processA than to complete
C, exactly as in the Szilard engine.

The whole discussion on the Szilard engine in Sec
and II can be applied to the Ising model. For instance,
can design a cyclic engine asCA21.

Let us first analyze the inverse processesA21 andC21

in detail. The inversion ofC does not present any difficulty
The energetics ofC21 is simply WC2152WC and QC21

52QC .
On the other hand, if we try to invertA, the sign of the

field must be the same as the sign of the initial magnetiza
of the system. If we start to increase a positive field on
system with negative magnetization, the system beco
metastable, it runs along one of the branches of a hyste
cycle and eventually relaxes irreversibly to the stable s
for some value of the fieldB ~see Fig. 4!.

The most general case is when we have an ensemb
systems. If initially a fractiona of them have negative mag
netization, the energetics ofA21 is given by

WA2152WA2a
Ahys

2
, ~10!

FIG. 3. ProcessesA andC in the Ising model. The two closed circles are th
initial and final states of both processes.
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whereAhys is the area of the hysteresis cycle atJ5Jf , as
shown in Fig. 4.

The hysteresis phenomenon is not present in the Szi
engine. However, it has similar consequences to exerting
pressure in the wrong direction along the expansion, sinc
both cases the system evolves irreversibly doing less wo

Consider now the equivalent to the Szilard engin
i.e., the cycleCA21 on an ensemble of Ising models. I
energetics~per system! is immediately obtained from Eqs
~8!–~10!:

WCA215WC1WA215kT ln 22a
Ahys

2
, ~11!

wherea is the fraction of systems with magnetization of th
same sign as the field inA21. There are two consequences
this expression.

First, if instead of an ensemble we take a single syst
and measure its magnetization afterC to decide the sign of
the field, thena50 andWCA215kT ln 2.0, i.e., the system
is extracting energy from the thermal bath and convertin
into work. We recover the same result as in the Szilard
gine but now with a genuine macroscopic system. Thus,
have a Maxwell demon with the important novelty that
needs to measure amacroscopic quantity.

Second, for an ensemble,a51/2, and we still can bea
the second law unless

Ahys>4kT ln 2. ~12!

This inequality is a by-product of this theory and cla
fying its origin is one of the open problems of the prese
work.

V. ENTROPY AND MACROSCOPIC UNCERTAINTY

The above discussion has focused on energy. In this S
tion the consequences of the previous results on the de
tion of entropy will be explored.

The change of entropy in the thermal bath along a p
cess is given byDSbath52Q/T, whereas the entropy of th
external agent is constant because its interaction with
system is purely mechanical. Then the change of the t
entropy is

DStotal52
Q

T
1DSsyst. ~13!

The second law of thermodynamics tells us that, if a proc
is reversible,DStotal50, and, if it is irreversible,DStotal.0.
In particular, for a cyclic process,DSsyst50 henceQ<0.

FIG. 4. Hysteresis cycle in the Ising model.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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This is the Kelvin–Planck statement of the second law:it is
not possible to extract energy from a single thermal bath i
cyclic process.

However, Eq.~13! and the second law lead to contradi
tions when applied to processesA andC. Let us recall first
some properties of the heat transferred from the thermal
to the system in each process, as calculated in Sec. IV an
Appendix B:

QC52QC21, QA52QA21,
~14!

QC2QA5kT ln 2.

In any cycleDSsyst50. Then, using~13! and ~14!, DStotal
CC21

5DStotal
AA21

50. Therefore,AA21 and CC21 are reversible
and so are their components,A, A21, C, andC21. On the

other handDStotal
AC21

5k ln 2, henceAC21 is irreversible. No-
tice that no measurement is necessary in any of the prev
cycles.

Moreover, if A and C are reversible, thenDStotal
A

5DStotal
C 50, and from ~13! and ~14!, we obtain DSsyst

C

5DSsyst
A 1k ln 2. On the other hand, whenever the syst

ends with positive magnetization afterC, the initial and final
states of both processesA andC are the same from a phys
cal point of view.

These contradictions are usually explained with the f
lowing definition for the thermodynamic entropy of the sy
tem:

Ssyst
(ens)52k^ ln rens&, ~15!

where rens is the probability distribution describing an en
semble of systems. After processC, rens5(r11r2)/2
wherer1 andr2 are the probability distribution of the two
macroscopic phases~see Sec. III!. On the other hand, afte
A, rens5r1 . Then,Ssyst

(ens) is k ln 2 bigger afterC than after
A.

This picture is, however, rather unsatisfactory if we d
with single systems instead with ensembles, sincerens be-
comes a subjective quantity. For instance, the physical s
of an Ising model after processA is the same as afterC if the
final magnetization is positive. The only difference betwe
these two situations is that we ignore the magnetization a
C. ThenSsyst

(ens), as defined in Eq.~15!, is a subjective quan
tity for single systems. Mathematically, this can be expres
as

Ssyst
(ens)52k^ ln rsingle&1kH. ~16!

Here,rsingle is the invariant measure that gives the te
poral average of any magnitude and it is a fully object
distribution for a single system~see Appendix A!. H is the
ignorance or uncertainty that we have about the macros
Downloaded 04 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
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of the system. It is evaluated~in a unit callednats! using
Shannon formula:8 H52( i pi ln pi , where pi is the prob-
ability of having an instancei ~in the Szilard and Ising case
after C, H5 ln 2!.

Moreover, in this interpretation not only entropy is su
jective but also the concept of reversibility. ConsiderC21 on
a single system: It is reversible if we do not know the init
macroscopic magnetization and it is irreversible if we
know it. This was already pointed out by Bennett in Ref.

A few words are in order about the objectivity of th
invariant measurersingle. For an ergodic system, this invar
ant measure is the fraction of time the system spends
given region of the phase space. Therefore, it is an objec
distribution for a single system and does not depend on
information at our disposal. In particular, it does not chan
under a measurement. However, the invariant measure
some well-known limitations: it does not describe the insta
taneous state of the system and it can be considered
description of the system only for periods of time lon
enough to ensure the validity of the ergodic property. In o
present discussion, we are dealing with equilibrium syste
or systems undergoing quasistatic processes. In both c
the ergodic theorem holds and we can considerrsingle as a
fully objective description of a single system at any stage
these processes~see Appendix A for further details!.

Here a simpler interpretation of the above-mentioned
sults is proposed, using the invariant measurersingle. In this
new interpretation, entropy is an objective magnitude
single systems, but we are forced to admit that it decrea
along certain processes, in contradiction withsomeformula-
tions of the second law. However, the main limitation im
posed by the second law, namely, the Kelvin–Planck st
ment, remains valid, since these processes cannot be us
construct cycles. Ishioka and Fuchikami, in Ref. 9, ha
reached similar conclusions. The assumptions for this in
pretation are the following.

~1! The thermodynamic entropy of a system is given

Ssyst[2k^ ln rsingle&. ~17!

~2! If an external agent induces, in a quasistatic and i
thermal way, a spontaneous symmetry breaking withn
phases, the total entropy~the sum of the entropies of th
system, thermal bath, and external agent! decreases byk ln n.
These processes will be calledanti-irreversible~in Ref. 9 the
term partitioning processesis used instead! and they corre-
spond to thecreation of macroscopic randomness.

~3! Along the inverse of an anti-irreversible process, t
total entropy increases byk ln n. These processes will b
calledquasi-irreversibleor simply irreversible.

ProcessC is anti-irreversible andC21 is quasi-irreversible.
The reason for the names is the following:C21 cannot be
truly reversed because, afterC21C, the initial magnetization
could be opposite to the final one due to the emergenc
macroscopic randomness alongC. ProcessesA andA21 are
reversible in the standard sense, i.e., total entropy does
change. The reader can check that every combination of
cessesA, C, and their inversions are explained with the thr
rules previously mentioned. Moreover, entropy and reve
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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ibility become fully objective concepts. Notice also that t
proposed modification only affects entropy by a quantity
orderk, which vanishes in the thermodynamic limit. Neve
theless, the order of magnitude of the energy involved in
Maxwell demon or in any of its variants iskT, andk for the
entropy~see Sec. VI for a comment on this point!.

The measurement process can also be explained
this new thermodynamics. Consider, as a model of a sys
and a measurement device, the Hamiltonian:

H~$si
(1)%,$si

(2)%;J1 ,J2 ,J12!

52
J1

N (
j . i

N

si
(1)sj

(1)2
J2

N (
j . i

N

si
(2)sj

(2)2
J12

N (
i , j 51

N

si
(1)sj

(2) ,

which corresponds to two coupled Ising models, 1~system!
and 2 ~measurement device or ‘‘pointer’’!. The following
table shows the behavior of the total entropyStotal, as de-
fined by ~13! and ~17!, and the macroscopic uncertaintyH
~in nats!, along two isothermal and quasistatic processes
the table,Stotal

0 is the total entropy in the initial state:

Step Stotal2Stotal
0 H Step Stotal2Stotal

0 H

1! J1 :0→Jf 2k ln 2 ln 2 J1 :0→Jf 2k ln 2 ln 2
2! J12 :0→Jf 2k ln 2 ln 2 J12 :0→Jf 2k ln 2 ln 2
3! J2 :0→Jf 2k ln 2 ln 2 J2 :0→Jf 2k ln 2 ln 2
4! J1 :Jf→0 2k ln 2 ln 2 J12 :Jf→0 2k ln 2 ln 2
5! J12 :Jf→0 2k ln 2 ln 2 J1 :Jf→0 0 ln 2
6! J2 :Jf→0 0 0 J2 :Jf→0 k ln 2 0

Both processes involve a spontaneous symmetry br
ing ~step 1!, copying the outcome~steps 2 and 3!, and erase
the copy and the original~steps 4–6!.

The first process~left-hand column! can be interpreted a
a reversible measurement. Measurement can be defined
rather general way as any procedure which allows one
drive a system from the region of coexistence of phases
region of noncoexistence along a reversible process,
avoiding the critical point as well as the possibility of hy
teresis. This is done in step 4 of the first column, whereJ1 is
decreased down to zero along a reversible process. As
sult, the total entropy is lowered byk ln 2 in the first five
steps. Notice also that, to drive the whole system 112 to its
initial state, we have toreset the measurement device2, by
crossing again a critical point, i.e., along a quasi-irrevers
process~step 6!. We thus recover Bennett’s interpretation
the Szilard engine.4

I have included the other process~the right-hand column
in the table! to show how subtle the measurement and
erasure processes can be. If subsystem 1 is uncoupled b
driven to its initial state, then it crosses a critical point a
the entropy increases. Step 5 in the right-hand column
quasi-irreversible, because initially the magnetizations o
and 2 have the same sign, and, if step 5 were reversed
final magnetizations would be uncorrelated. A similar effe
of the correlation between the particle and the measurem
device in the Szilard engine was pointed out by Fahn
Ref. 5.
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VI. CONCLUSIONS AND OPEN PROBLEMS

It has been shown here that spontaneous symm
breaking is the key ingredient in the Szilard engine, an
similar engine can be devised with any system exhibit
second-order phase transitions. As an example the I
model has been used. The example has revealed that in
trade-off between entropy and information, the latter do
not need to be information about the microscopic state o
system.

I have proposed a modification of thermodynamics
achieve a fully objective definition of entropy. Two obje
tions can be raised against this thermodynamics. The
one is that energy is an extensive property, i.e., of or
NkT, and terms of orderkT ln 2 are negligible and even
much smaller than the energy fluctuations. This object
applies to any Maxwell demon but it is not sufficient
exorcize it. The reason is that the demon can repeat the c
as many times as he wants, converting a macrosco
amount of heat into work.

The second objection is that the increase of entropy
be derived from nonequilibrium theories, such as t
Fokker–Planck formalism. Ifq are the ~overdamped! de-
grees of freedom of a system, the probability distributi
obeys the Fokker–Planck equation~FPE!:

] tr~q,t !52“"J~q,t !, ~18!

where the current isJ(q,t)5@2“m(q,t)#r(q,t) and the
chemical potential is defined asm(q,t)[V(q,t)
1kT ln r(q,t). From these equations one can derive the f
lowing identity:6,10

2k] tE dq r~q,t !ln r~q,t !

5
1

T E dq V~q,t !] tr~q,t !1
1

T E dq
uJ~q,t !u2

r~q,t !

5
Q̇

T
1

1

T E dq
uJ~q,t !u2

r~q,t !
. ~19!

If the left-hand side of Eq.~19! is interpreted asṠsyst,
the change of the entropy of the system per unit of time, th
the total change of entropy,Ṡtotal52Q̇/T1Ṡsyst, is always
positive. A similar result can be obtained for underdamp
degrees of freedom.11 How then have we obtainedṠtotal,0
for some processes involving phase transitions? The ans
is that the distribution that appears in the FPE~18! is rensand
not rsingle. Then, the FPE is not appropriate to descri
single macroscopic systems in the region of coexistence
phases.

One of the open problems of the present work is to ch
acterizersingleand derive an evolution equation similar to th
FPE. Other open problems are:~a! analyzing the role of hys-
teresis and the origin of inequality~12!; ~b! extending the
above-given discussion to the breaking of a continuous s
metry, where an infinite number of macroscopic phases
exist;~c! including the external agent in the Hamiltonian as
set of macroscopic degrees of freedom; and~d! exploring the
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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implications of the decrease of entropy along an
irreversible processes, especially in cosmology.
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APPENDIX A: PROBABILITY DISTRIBUTIONS AND
MACROSCOPIC STATES

In this appendix, the meaning of the probability distrib
tions rens and rsingle used in the text is explained in som
detail.

Suppose a classical system with HamiltonianH(x;a)
and a process where the parametera is changed froma0 to
a01Da, at constant velocity, during a time interval@0,t f #.
Thena(t)5a01tDa/t f is the value of the parameter at tim
tP@0,t f #. If x(t) is the trajectory of the microstate of th
system, then the energy transfer between the system an
external agent which modifiesa, i.e., the work done by the
system along the process, is

dW52E
0

t f
dt ȧ~ t !

]H~x~ t !;a!

]a U
a5a(t)

52
Da

t f
E

0

t f
dt

]H~x~ t !;a!

]a U
a5a0

1o~Da2!. ~A1!

The first term indW is Da times a time average of]H/]a.
If t f is large enough to apply the ergodic theorem to this ti
average,12 we obtain

dW52K ]H~x;a!

]a U
a5a0

L Da1o~Da2!, ~A2!

where the average is taken overrsingle(x), the invariant mea-
sure on the subregion ofG where the system is ergodic.12 In
the text, we distinguish this distribution from the distributio
rens(x) followed by an ensamble of systemsa la Gibbs.7,13

Both coincide except in the region of coexistence of phas
i.e., when the system is no longer ergodic in the whole ph
spaceG, but only in a certain regionG i . This distinction is
crucial for the arguments presented in the paper.

It is remarkable that the ergodic theorem, up to the b
of the author’s knowledge, has never been applied to p
cesses. Since Boltzmann, the ergodic theorem has bee
voked to prove irreversibility, either as the relaxation of
system to equilibrium or as the increase of entropy~see Refs.
12, 13, and references therein!. However, the second law, a
least in the Kelvin–Planck statement, is about processes
their energetics and, as we have seen here, the ergodic
rem arises in a very natural way when dealing with sl
processes.

APPENDIX B: ENERGETICS OF PROCESSES A
AND C

Consider a system whose HamiltonianH(x;R) depends
on a set of external parameters collected in a vectorR. We
are interested in the energetics of a process along which
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system is in contact with a thermal bath at temperatureT and
the parameters are changed by an external agent asR(t) with
tP@0,T#.

The expressions for work and heat per unit of time alo
this process are11,14

Q̇5E
G
dxH~x;R~ t !!

]r~x;t !

]t
,

~B1!

Ẇ52E
G
dx r~x;t !

]H~x;R~ t !!

]t
,

where G is the phase space of the system andr(x;t) the
probability density for the statex. Heat and work, as given
by Eq. ~B1!, obey the first law of thermodynamics:U̇5Q̇

2Ẇ.
If the process is quasistatic,T→`, the probability den-

sity at timet depends only on the value of the external p
rameters att, i.e., r(x;t)5r(x;R(t)). In this case, the hea
and the work in the whole process are given by

Q5E
A
dQ~R!, W5E

A
dW~R!, ~B2!

whereA is the path thatR(t) describes along the process a
the infinitesimal work and heat are given by

dQ~R!5E
G
dxH~x;R!

]r~x;R!

]R
•dR,

~B3!

dW~R!52E
G
dx r~x;R!

]H~x;R!

]R
•dR.

Notice that the expression for the work coincides with E
~A2! if the probability distribution isrsingle. This is the dis-
tribution that we will take in the following.

The most familiar implementation of the abov
mentioned expressions is obtained when the state of the
tem is the Gibbs distribution,rT(x;R)[e2bH(x;R)/Z(b,R).
For this particular case, Eq.~B3! reduces to

dQ~R!5T
]S~T,R!

]R
•dR, dW~R!52

]F~T,R!

]R
•dR,

~B4!

where

S~T,R!52kE
G
dx rT~x;R!ln@rT~x;R!#

~B5!F~T,R!52kT ln Z~b,R!

are, respectively, the free energy and the entropy of the
tem.

For isothermal processesdW(R) is an exact differential
and therefore the integral in~B2! reduces to

W52F~T,R~T!!1F~T,R~0!!, ~B6!

i.e., the difference between the initial and the final free e
ergy.

Although processesA and C considered in the text are
isothermal and quasistatic, the stater(x;R) is not equal to
rT(x;R) in the region of coexistence of macroscopic phas
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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due to~6!. Consequently their energetics, up to terms of
der kT, differ from the one prescribed by standard equil
rium thermodynamics.

Let us consider the energetics of the processA intro-
duced in Sec. IV. We will split the process in three ste
along step 1 the field is increased from zero toBf keeping
J50; along step 2, the coupling is increased from zero toJf

keepingB5Bf ; along step 3, the field is decreased fromBf

to zero keepingJ5Jf . We will apply ~B2! and~B3! with the
following choice for the stater($si%;J,B) along the three
steps:

r~$si%;J,B!55
rT~$si%;J,B! if J50 or B5Bf

~steps 1 and 2!

r1~$si%;J,B! if J5Jf

~step 3!

.

~B7!

This choice implies that the system is in the phase of posi
magnetization during the third step. The energetics, up
order kT, does not depend on where precisely the sys
changes formrT to r1 . The above-given prescription ha
been chosen for simplicity. The replacement ofrT by r1 is
only significant at the end of step 3, i.e., whenJ5Jf andB
.0 and the system is close to the region of coexistence
macroscopic phases. In the rest of the plane (J,B) the ener-
getics is the same whether one usesrT or r1 .

Along steps 1 and 2, Eq.~B6! can be applied, since th
state isrT :

W(12)52F~T,Jf ,Bf !1F~T,0,0!. ~B8!

To evaluate the work performed along the third step it
convenient to define the partition function restricted to co
figurations with positive magnetization:

Z1~b,J,B!5(
$si %

Q~( j sj !e
2bH($si %;J,B), ~B9!

and the corresponding free energy:

F1~T,J,B!52kT ln Z1~b,J,B!. ~B10!

The work performed along the third step can be evaluate
a similar way as for the Gibbs state:

W(3)52F1~T,Jf ,0!1F1~T,Jf ,Bf !. ~B11!

The total amount of work is

WA5W(12)1W(3)

52F1~T,Jf ,0!1F~T,0,0!1o~e2CN!,

where we have used the fact thatF1(T,Jf ,Bf)
2F(T,Jf ,Bf) is of ordere2CN, C being a positive number
for sufficiently largeBf ~see Appendix C!. On the other
hand, forB50 the restricted partition function verifies15

Z1~b,J,0!5
Z~b,J,0!

2
~B12!

and then

F1~T,Jf ,0!5F~T,Jf ,0!1kT ln 2. ~B13!

Therefore, the work along processA becomes:
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WA52F~T,Jf ,0!1F~T,0,0!2kT ln 2, ~B14!

which is Eq.~8! in Sec. IV.
Notice that the work in Eq.~B14! is the one given by

equilibrium thermodynamics, Eq.~B6!, minusan extra term
kT ln 2. This term is the novelty of this calculation and th
key point of the analysis along the paper. It will be instru
tive to see in more detail how it arises.

Along the third step,J is kept constant. Therefore, th
work is given by

W(3)52E
Bf

0 K ]H~$si%;J,B!

]B L dB

52E
Bf

0

dB M~T,J,B!dB, ~B15!

where^•& is the average overr($si%;J,B) andM (T,J,B) is
the magnetization of the system:

M ~T,J,B![K (
i 51

N

si L . ~B16!

Observe that the magnetization is different if one usesrT

instead ofr1 In Fig. 5, these two values of the magnetiz
tion are plotted against the fieldB. The magnetization forrT

vanishes forB50, sincerT($si%,J,0) is a symmetric state
On the other hand,r1($si%,J,0) is nonsymmetric and the
corresponding magnetization at zero field is positive. A
consequence, the work calculated usingrT differs from the
one calculated withr1 . The former is bigger than the latte
and the difference is equal to the gray area in Fig. 5. T
area, as has been shown previously, iskT ln 2.

Let us turn to the energetics of processC. In this case,
the system crosses the critical point and chooses between
of the two possible macroscopic phases,r1 or r2 . Assum-
ing that the system choosesr1 , the state of the system alon
the process is given by

r~$si%;J,0!5H rT~$si%;J,B! if J,Jc

r1~$si%;J,B! if J>Jc
. ~B17!

FIG. 5. MagnetizationM as a function of the fieldB. The narrower line is
the result of averaging over the staterT . The gray area is the differenc
between the work along step 3 usingrT andr1 .
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As in the calculation for processA, the precise location o
the replacement ofrT by r1 does not affect the final con
clusions. This replacement can be done even smoothly
the same results. In fact, the energetics is the same a
calculated usingrT , for symmetry reasons.

Along the process, the field is constant,B50. Therefore,

WC52E
0

Jf K ]H~$si%;J,0!

]J L dJ. ~B18!

The partial derivative is clearly symmetric under the tra
formationssi→2si . Consequently, the average is the sa
for rT andr1 and the workWC is equal to the one given b
the Gibbs state@cf. Eq. ~B6!#, i.e.,

WC52F~T,Jf ,0!1F~T,0,0!, ~B19!

which is Eq.~9! in Sec. IV.

APPENDIX C: BOUNDS FOR THE DIFFERENCE
BETWEEN FREE ENERGIES

To complete the derivation of Eq.~B14!, we have to
prove that, for strong enough fields,

ln
Z~b,J,B!

Z1~b,J,B!
5 lnS 11

Z2~b,J,B!

Z1~b,J,B! D5o~e2CN!, ~C1!

whereC is a positive constant.
We present here a rough lower bound for the quotien

partition functions, yet sufficient for our purposes. The p
tition functions can be written in the form:

Z6~b,J,B!5 (
S52N

N S N
~S1N!/2DexpFbS J~S22N!

2N
1BSD G

3Q~6S!, ~C2!

whereS5( i si . If B.J/2, the argument of the exponenti
is negative for allS<0, then:

Z2~b,J,B!,2N21. ~C3!

If C[b(B1J/2)2 ln 2.0, it is sufficient to boundZ1 by
the term withS5N:
Downloaded 04 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
th
if

-
e

f
-

Z1~b,J,B!.exp@bN~B1J/22J/~2N!!#. ~C4!

We finally have

Z2~b,J,B!

Z1~b,J,B!
,ebJ/2exp@2bN~B1J/22 ln 2/b!#

,ebJ/2e2CN ~C5!

with C.0. The above boundary is very rough, since the
are other terms inZ1 exponentially larger than the one wit
S5N.

Summarizing, ifBf and Jf in the cycle of section IV
verify Bf.Jf /2.Jc/2 andC[b(Bf1Jc/2)2 ln 25bBf11/2
2 ln 2.0, then

F1~T,Jf ,Bf !2F~T,Jf ,Bf !5kT ln
Z~b,Jf ,Bf !

Z1~b,Jf ,Bf !

5o~kTe2CN!. ~C6!
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