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Abstract. A thermodynamics of Brownian motors working in contact with a single
thermal bath is developed. The First and Second Law of Thermodynamics are
derived from the Fokker-Planck equation of an arbitrary overdamped Brownian
particle in a periodic potential changing in time. We also study Brownian motors
in the adiabatic limit, introducing reversible ratchets which can transport particles
with zero entropy production. As an application, we calculate the efficiency of
motors based on the sluice ratchet.

1 Introduction

How does a Brownian system exchange energy with the environment? The
interest in this question has increased in the last years, mainly because it has
been recognized that thermal fluctuations play an important and probably
constructive role in biological energy transducers, the so-called protein or
molecular motors.

In Physics the issue has been addressed by Feynman [5, 8] in a differ-
ent context: the possibility of a ratchet that extracts energy out of thermal
fluctuations.

The energetics of a Brownian particle looks rather trivial at first sight.
A Brownian particle is, by definition, in contact with a thermal bath. The
particle exchanges energy with the bath via fluctuations and dissipation.
Fluctuations tend, in average, to increase the energy of the particle, whereas
dissipation is an energy flow which always goes from the particle to the ther-
mal bath. In equilibrium these two flows of energy cancel each other and the
mean energy of the particle remains constant.

In order to have a less trivial behaviour one must drive the system out
of equilibrium. In this paper we consider the following setup for a Brownian
motor: a Brownian particle at temperature T in a periodic potential, which
is changed by some external agent, and is also subject to some external and
constant force.

Protein motors, such as kinesins, myosins or ion pumps in the cell mem-
brane, fit into the above description. They move small particles against a force
and can be considered as a Brownian degree of freedom x(t) in a potential
determined by the shape of a protein. Depending on the type of motor, the
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degree of freedom is the position of the protein itself or the position of an ion.
ATP hydrolysis changes the shape of the protein and consequently changes
the potential [3, 7]. Therefore, the external agent in this case is a chemical
reaction driven by non-equilibrium concentrations of ATP and ADP.

Along this paper, we discuss the energetics of the Brownian motors de-
scribed above. Most of our results are model-independent, and therefore can
be applied to biological protein motors.

The paper is organized as follows. We present in Sect. 2 the mathematical
model of the motor. In Sects. 3 and 4 we derive, respectively, the First and
Second Law of Thermodynamics from the Fokker-Planck equation, and we
apply both, in Sect. 5, to find an upper bound for the efficiency of the motor.
Section 6 studies the adiabatic limit, and the concept of reversible ratchet
is introduced. In Sect. 7 we calculate and discuss the efficiency of reversible
ratchets and, finally, we present our conclusions in Sect. 8.

2 Brownian particles in a field

Consider an overdamped Brownian particle positioned in the interval [0, L]
at temperature T and within a potential V (x, t) periodic in space with period
L, i.e., V (L, t) = V (0, t). We consider also an external and constant force F
acting on the particle. The Langevin equation for the position x(t) reads:

ẋ(t) = κ [−V ′(x, t) + F + ξ(t)] (1)

where the prime denotes derivative with respect to x and κ = D/(kT ), D
being the diffusion coefficient and k the Boltzmann constant1. The stochastic
force ξ(t) is a white Gaussian noise with zero mean and correlation given by:

〈ξ(t)ξ(t′)〉 = 2kTκ−1δ(t − t′) = 2Dκ−2δ(t − t′). (2)

The Fokker-Planck equation for the probability distribution P (x, t) can be
written as:

∂tP (x, t) = −∂xJ(x, t) (3)

where J(x, t) is the current:

J(x, t) ≡ κ [−V ′(x, t) + F ] P (x, t) − D∂xP (x, t). (4)

The distribution P (x, t) must also satisfy the following boundary conditions:

P (0, t) = P (L, t); J(0, t) = J(L, t). (5)

The relationship between the current and the velocity will be important
later on. Integrating the current (4) over the interval [0, L], one finds:

∫ L

0

dxJ(x, t) = κ 〈−V ′(x, t) + F 〉 (6)

1 The Einstein’s fluctuation-dissipation relation states that κ is equal to the inverse
of the friction coefficient, i.e., the damping force is Fdamp = −ẋ/κ.
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since the integration of the term proportional to T vanishes due to the peri-
odicity of P (x, t). Averaging the Langevin equation (1) we conclude that the
mean value of the velocity is the integral of the current:

〈ẋ(t)〉 =
∫ L

0

dxJ(x, t). (7)

This expression must be taken with some caution since 〈ẋ(t)〉 can be different
from the time derivative of 〈x(t)〉:

d

dt
〈x(t)〉 =

∫ L

0

dxx∂tP (x, t) = −
∫ L

0

dxx∂xJ(x, t)

= 〈ẋ(t)〉 − LJ(L, t) (8)

and they coincide if and only if the current vanishes at the boundary. The
derivative of the average position does not take into account that the par-
ticle can cross the boundary x = L and is then re-injected in the interval
[0, L] through x = 0. For instance, consider the case where V (x, t) = 0. The
mean velocity is 〈ẋ〉 = κF , but the particle soon reaches a stationary regime
where the probability distribution P (x, t) is uniform. Then, the mean value
is constant and located at the middle point of the interval, i.e., 〈x(t)〉 = L/2.

3 The First Law

Let us discuss the energetics of the system. As internal energy we only con-
sider the periodic potential:

U(t) ≡
∫ L

0

dxV (x, t)P (x, t) = 〈V (x, t)〉. (9)

The external force does not contribute to the internal energy, but it performs
work adding or extracting energy. The work done by the force on the particle
per unit of time is the force times the mean velocity, i.e.:

Ẇ (t) ≡ F 〈ẋ(t)〉 =
∫ L

0

dxFJ(x, t) (10)

and it is the energy entering into the system via the external force F .
The particle also gains or releases some energy due to the changes of the

potential V (x, t), i.e., there is an energy exchange between the particle and
the external agent which modifies the potential. Although the energy that the
external agent introduces into the system could also be considered “work”
in the thermodynamical sense, we separate it from the work Ẇ done by the
external force. In the biological examples discussed in the introduction, the
work done by the external agent is in fact the “fuel” of the Brownian motor.
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Then, we call input energy the work done by the external agent, reserving
the term “work” only for the energy introduced by the external force into
the system. The input energy is then given by:

Ėin(t) ≡
∫ L

0

dxP (x, t)∂tV (x, t). (11)

Finally, there is a transfer of energy from the thermal bath to the system,
which is given by:

Q̇(t) ≡
∫ L

0

dx [V (x, t)∂tP (x, t) − FJ(x, t)] . (12)

Fig. 1. Diagram of the energetics of the Brownian motor. The arrows indicate
the direction of the flow when the corresponding energy transfer, Ẇ , Q̇ or Ėin, is
positive, i.e., when energy enters into the motor

Figure 1 represents the three energy flows that we have considered. From
the above definitions, it is straightforward to prove the First Law:

dU(t)
dt

= Q̇(t) + Ẇ (t) + Ėin(t) for all t. (13)

Notice that we reserve the dot only for quantities that cannot be written as
the time derivative of a function. This is the case of heat, work, and input
energy and it is equivalent to the fact that heat and work are non exact
differentials in Thermodynamics.

The above definitions of heat (12) and input energy (11) are easily justified
for F = 0. They can be found for instance in [4]. As discussed in Ref. [9],
they naturally come out when one considers abrupt changes of the potential
V (x, t). The idea is that the external agent provides the energy to change the
potential, whereas the thermal bath provides the energy for the subsequent
relaxation of the probability distribution.

For F �= 0, the definition (10) for Ẇ (t) follows from the mechanical defi-
nition of work done by a force. The definition (12) of heat Q̇(t) can be derived
with the following argument: take the particle moving in the whole real axis
(−∞ < y < ∞) in the potential V (y, t) − yF , with V (y, t) the periodic ex-
tension of V (x, t); apply the definitions of heat and work given in [4] or [9];
then go back to the interval [0, L] by taking x ≡ y mod L.
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4 The Second Law

In this section we derive the Second Law of Thermodynamics for the Brow-
nian motor. First, we take the usual definition of the entropy of the motor:

S(t) ≡ −k

∫ L

0

dxP (x, t) ln P (x, t) = −k〈ln P (x, t)〉. (14)

It is convenient to write the current (4) in terms of the chemical potential
µ(x, t):

J(x, t) = −κP (x, t) [∂xµ(x, t) − F ] (15)

with
µ(x, t) ≡ V (x, t) + kT ln P (x, t). (16)

The average of the chemical potential is:

〈µ(x, t)〉 = U(t) − TS(t) (17)

as expected (remember that the chemical potential is the Gibbs free energy
per particle, and the Gibbs free energy is equal to the Hemholtz free energy
if the particle is in a confining potential). Taking the time derivative of (17)
we get:

d

dt
〈µ(x, t)〉 =

d

dt
U(t) − T

d

dt
S(t). (18)

On the other hand, the time derivative of the average chemical potential can
be written as

d

dt
〈µ(x, t)〉 =

∫ L

0

dxP (x, t)∂tµ(x, t) +
∫ L

0

dxµ(x, t)∂tP (x, t). (19)

This equation can be further simplified. First notice that 〈∂t ln P (x, t)〉 is
zero, since the norm of P (x, t) is constant. Using the Fokker-Planck equation
(3), one has:

d

dt
〈µ(x, t)〉 = Ėin(t) −

∫ L

0

dxµ(x, t)∂xJ(x, t). (20)

Integrating by parts and taking into account that µ(L)J(L) = µ(0)J(0):

d

dt
〈µ(x, t)〉 = Ėin(t) +

∫ L

0

dxJ(x, t)∂xµ(x, t). (21)

The second term can be transformed as:
∫ L

0

dxJ(x, t)∂xµ(x, t) = Ẇ +
∫ L

0

dx [∂xµ(x, t) − F ] J(x, t)

= Ẇ − κ

∫ L

0

dx [∂xµ(x, t) − F ]2 P (x, t) (22)
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where we have used the relationship between the current and the chemical
potential given in (15). Combining (18), (20), and (22), one finds:

d

dt
U(t) − T

d

dt
S(t) = Ėin + Ẇ − T Ṡprod (23)

with
Ṡprod(t) ≡ κ

T

〈
[∂xµ(x, t) − F ]2

〉
, (24)

which is non negative. Using the First Law (13), (23) can be written as:

d

dt
S(t) − Q̇(t)

T
= Ṡprod(t) ≥ 0. (25)

This is the Second Law of Thermodynamics. The l.h.s of the equation contains
two terms: the first one, dS/dt, is the increase of the entropy of the system;
the second one, −Q̇/T , is the increase of the entropy of the thermal bath.
Then, the sum Ṡprod is the increase of the entropy of the universe or entropy
production per unit of time, which we have proved to be positive. Ṡprod

vanishes only in equilibrium, i.e., only if both the external force F and the
gradient of the chemical potential vanish.

5 Efficiency

Consider now a cyclic motor, i.e., a potential V (x, t) periodic in time with
period τ : V (x, t+ τ) = V (x, t). The system, after a number of cycles, reaches
a stationary regime where P (x, t) and every state function, like the entropy
S(t) or the internal energy U(t), are periodic in time. The system works as a
cyclic motor when:

W ≡
∫ τ

0

dt Ẇ (t) (26)

is negative, i.e., when the particle moves against the force. This is possible in
some potentials which are usually termed as ratchets. Ratchets exhibit a non
zero current in the absence of the external force F . If F is small enough, the
particle can still move against the external force and W is negative. There
is a stopping force Fstop which suppresses the flow of the particle. Above
Fstop, the particle moves in the same direction of the applied force and W is
positive.

Since the entropy S(t) is periodic, an integration the Second Law (25)
along the whole cycle yields:

Q ≡
∫ τ

0

dt Q̇(t) = −T

∫ τ

0

dt Ṡprod(t) ≤ 0 (27)

i.e., there is an unavoidable dissipation of heat to the thermal bath (see Fig.
1). The energy W is then provided by the external agent and therefore

Ein ≡
∫ τ

0

dt Ėin(t) (28)
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is positive. From the First Law (13) and the periodicity of the internal energy
one concludes that −W = Ein + Q, i.e., part of the input energy is used to
perform work against the force and part is dissipated to the heat bath. The
efficiency of the motor is given by:

η =
−W

Ein
= 1 +

Q

Ein
(29)

which is smaller than one, due to (27). The Second Law, as expected, im-
poses an upper bound to the efficiency of a Brownian motor. What we have
presented is, in fact, a proof of the compatibility between the Langevin and
Fokker-Planck approaches to the Brownian motion and the two laws of Ther-
modynamics.

The same proof of compatibility, for F = 0 and for underdamped particles,
can be found in [12]. It is worth also to mention that the inequality (25) can
be violated if the external agent possesses information about the position of
the particle and modifies the potential according to this information. This
can happen in macroscopic systems undergoing symmetry breaking phase
transitions as we have shown in [11], in close relation with the Maxwell demon.

6 The adiabatic limit: reversible transport

In the previous sections we have derived relationships and inequalities for the
three types of energy transfer: Q, W , and Ein. In this and the following sec-
tion, we explicitly calculate these quantities in the adiabatic limit, i.e., when
the potential is changed infinitely slowly. This limit is interesting, not only
because it allows us to find exact and analytical expressions for the energetics
of the motor, but also because the motor works close to equilibrium, i.e., with
maximum efficiency.

Let us start with F = 0. In this case, the work Ẇ (t) is obviously zero,
but we can still calculate the current J(x, t) which will be useful to obtain
Ẇ (t) later on.

At first sight, the adiabatic limit looks trivial. At any time t, the system
is in equilibrium with the potential V (x, t), i.e., the probability distribution
is:

P−(x, t) ≡ e−βV (x,t)

Z−(t)
(30)

where β = 1/(kT ) and Z−(t) is a normalization constant (the subindex will be
clear below). For this probability distribution the current vanishes. However,
the integral of the current along the cycle is different from zero for some class
of motors called reversible ratchets [9, 10].

In order to prove it, let us now solve the Fokker-Planck equation up to
linear terms in ∂tV (x, t). We introduce the correction ϕ(x, t) as:

P (x, t) = P−(x, t) [1 + ϕ(x, t)] . (31)
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For this distribution the current reads:

J(x, t) = −DP−(x, t)∂xϕ(x, t) (32)

and the Fokker-Planck equation up to first order in ∂tV (x, t), is:

∂tP−(x, t) = D∂xP−(x, t)∂xϕ(x, t), (33)

which determines ϕ(x, t) along with the periodic boundary condition ϕ(0, t) =
ϕ(L, t). A first integration of (33) yields:

DP−(x, t)∂xϕ(x, t) = −J(L, t) +
∫ x

0

dx′ ∂tP−(x′, t) (34)

where we have identified the integration constant with −J(L, t) using (32).
Integrating this equation and imposing the periodic boundary condition, one
finally finds the current at x = L:

J(L, t) =
∫ L

0

dx

∫ x

0

dx′ P+(x, t)∂tP−(x′, t) (35)

where P+(x, t) is a new probability distribution:

P+(x, t) ≡ eβV (x,t)

Z+(t)
(36)

Z+(t) being a normalization constant.
In the adiabatic limit, the time derivative of P−(x, t) vanishes, and so

does the current J(L, t). However, the integral of J(L, t) along the cycle [0, τ ]
can be, in some cases, different from zero. We define the integrated flow as:

φ0 ≡
∫ τ

0

dt J(x, t), (37)

which does not depend on the point x. Therefore, φ0 can be calculated inte-
grating with J(L, t) as given by (35). We call reversible ratchets those systems
where the integrated flow is different from zero. They exhibit reversible trans-
port, i.e., the particle moves toward a direction and nevertheless is in equilib-
rium at any time. There is a trivial example of this phenomenon discussed in
Ref. [6], namely, a Brownian particle in a confining potential which is shifted
infinitely slowly. It is worth to mention also that a slow modulation between
two potentials VA(x) and VB(x), i.e., if V (x, t) = r(t)VA(x)+ [1− r(t)]VB(x),
with r(t) a periodic function oscillating between 0 and 1, can never be a re-
versible ratchet. This is proved by means of the change of variable t → r(t)
in the integral (37). Notice that this is the case of the flashing ratchet [2].
In order to have a non trivial reversible ratchet, the potential V (x, t) must
depend on two or more parameters and it must describe a loop in the space
of parameters [9]. We present an explicit example below (see Fig. 2).
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The input energy Ein in the adiabatic limit also vanishes for F = 0. The
reason is that

Ėin =
∫ L

0

dxP−(x, t)∂tV (x, t) = −kT∂t ln Z−(t) (38)

is an exact differential and therefore the integral along [0, τ ] is zero (remember
that Z−(t) is periodic). The dissipated heat also vanishes along the cycle
due to the First Law. Consequently, a reversible ratchet exhibits transport
without any energy consumption and without heat dissipation.

In the next section, we will need the first correction of the input energy. It
can be calculated using the correction ϕ(x, t) defined by (31). The calculation
is cumbersome but straightforward. The result is:

Ein = b/τ (39)

with

b ≡ − τ

κ

∫ τ

0

dt Z−(t)Z+(t)
{

J(L, t)2

+
∫ L

0

dx

∫ x

0

dx′
∫ x′

0

dx′′ [∂tP−(x, t)] P+(x′, t) [∂tP−(x′′, t)]
}

(40)

which is finite in the adiabatic limit (provided that ∂tV (x, t) is of order 1/τ
for all t). We see that the input energy is of order 1/τ . Since W = 0, then
Q = −Ein and therefore the Second Law implies that b > 0. This can also be
proved by manipulating (40).

7 Efficiency of reversible ratchets

To build a Brownian motor from a reversible ratchet we must apply a small
external force F . The Fokker-Planck equation (3) can be solved up to first
order of F and 1/τ [10] and the integrated flow reads:

φ = φ0 + ντFL (41)

where
ν ≡ κ

τ

∫ τ

0

dt
1

Z−(t)Z+(t)
, (42)

which can be interpreted as an average mobility of the Brownian particle in
the potential V (x, t). The work is W = FLφ and it is negative only if F
is between zero and the stopping force Fstop = −φ0/(ντL). We see that the
stopping force is of order 1/τ (φ0 and ν are finite in the adiabatic limit). This
is expected, since the force is acting along the whole cycle [0, τ ] and induces
a current J(x, t) of order F at any time. This current, when integrated over
the cycle, yields a contribution of order Fτ . Still, we can have a motor in the
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adiabatic limit if F goes to zero as 1/τ . Notice however that this is possible
only for reversible ratchets.

Up to first order of F and 1/τ , the input energy along the cycle is [10]:

Ein = FLφ0 + b/τ. (43)

Therefore, the efficiency is:

η =
−FL(φ0 + ντFL)

FLφ0 + b/τ
= −φ0α + να2

φ0α + b
(44)

with α ≡ FLτ . This result is exact in the adiabatic limit and all the param-
eters in the last equation are finite.

Let us apply the previous theory to a concrete example. As a reversible
ratchet we consider the following potential with L = 1 (see Fig. 2a):

V (x, t) =




V1(t) if x < a
0 if a < x < 1 − a
V2(t) if 1 − a < x < 1.

(45)

The temporal evolution of V1(t) and V2(t) is shown in Fig. 2b. In each
step, one of them varies between −Vmax and Vmax at a constant velocity
8V/τ . The shape of the potential at four points of the cycle is represented in
Fig. 2c. The ratchet works as a sluice and is a possible model for biological
ion pumps.

For the sluice ratchet one can calculate φ0, ν, and b using (37), (42), and
(40) respectively. The integrated flow φ0 is positive as expected by simple in-
spection of Fig. 2c. We then consider negative external forces. Fig. 3a depicts
analytical results of the efficiency as a function of α = |F |τ in the adiabatic
limit and for a = 0.25, Vmax = 5, and D = κ = kT = 1.

In the same figure we have plotted the efficiency of a random version of the
sluice ratchet, which is not adiabatic but can still be treated analytically. The

V2
a

1

23

4

V1
a V1

V2

a) b)

2

c)

4 1

3

Fig. 2. An example of reversible ratchet: the sluice ratchet. The potential is depicted
in a) and b) represents how the parameters V1 and V2 vary along the cycle. Finally,
c) shows the shape of the potential corresponding to the four states labelled in b)
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Fig. 3. Efficiency η of the sluice ratchet as a function of α = |F |τ , for a = 0.2,
Vmax = 5, and kT = D = 1. We present analytical results for a) the adiabatic limit
and b) random jumps between the corners of the square in Fig. 2 with τ = 4/ω = 1
(thin solid), τ = 2 (dashed), τ = 10 (long dashed), and τ = 40 (thick solid).

potential now randomly jumps among the four states, Vi(x) (i = 1, 2, 3, 4),
at the corners of the cycle in Figs. 2b and 2c. The system is described by
the probability distribution Pi(x, t), which is the joint probability density for
the position x of the particle and for the state of the potential i. The rate
equation for this distribution is:

∂tPi(x, t) = −κ∂x [−V ′
i (x) + F − kT∂x] Pi(x, t) +

4∑
j=1

ωjiPj(x, t) (46)

where ωji is the transition rate from state j to i. To compare with the re-
versible motor, we set ω12 = ω23 = ω34 = ω41 = ω and ωji = 0 otherwise.
Then the potential describes a similar trajectory as the one depicted in Fig.
2 with a random waiting time in each corner of the square. The mean value
of the time to complete a cycle is τ = 4/ω. Analytical results of the efficiency
are plotted in Fig. 3b. Comparing with the adiabatic motor, the efficiency
decreases dramatically from 40% to 1.5%. The reason is that the system is
far from equilibrium after each jump. We then conclude that adiabaticity is
a necessary ingredient to reach high efficiencies.

These results differ completely if we consider irreversible ratchets. In Ref.
[10] we have calculated the efficiency of the flashing ratchet [2] in two cases:
a) when the ratchet potential is continuously modulated, b) when the ratchet
potential is randomly switched on and off. The efficiency is similar in the two
cases and below 5%.

8 Conclusions

We have presented general results for the energetics of a wide class of Brow-
nian motors, those consisting of a potential deterministically modified by
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an external agent. We have derived the First and Second Law of Thermo-
dynamics from the Fokker-Planck equation and also calculated exactly the
efficiency in the adiabatic limit. In this limit, only reversible ratchets can
work as motors, exhibiting comparatively high efficiencies.

For the protein motors described in the introduction, two are the messages
which can be extracted from the results presented here. A motor with high
efficiency (above or around 30%) has to satisfy the following:

• The shape of the protein must change describing a loop in some abstract
space of parameters, since the interaction potential between the protein
and the degree of freedom of the motor has to be a reversible ratchet.

• The protein must change in a continuous way, avoiding abrupt jumps
between stable or metastable states.

We believe that any model of efficient motor must accomplish these two
prescriptions. Still, for a direct application of the results of the present work to
biological systems, a chemical coordinate driving the change of the potential
should be included. This coordinate would evolve stochastically with a bias
depending on the concentration of some “fuel” reactants, such as ATP and
ADP. Work in this direction is in progress.

This work has been supported by the Dirección General de Enseñanza
Superior (DGES, Spain), grant PB-97-0076-C02.
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