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ABSTRACT We review the literature on the energetics of Brow-
nian motors, distinguishing between forced ratchets, chemical
motors – driven out of equilibrium by differences of chemical
potential, and thermal motors – driven by temperature differ-
ences. The discussion is focused on the definition of efficiency
and the compatibility between the models and the laws of ther-
modynamics.

PACS 05.40.-a; 05.70.lw

1 Introduction

The term ‘thermal ratchet’ applies to a wide class
of systems where thermal fluctuations are rectified resulting
in a net current of particles [53]. These systems are in contact
with one or several thermal baths (the source of thermal fluc-
tuations) and are obviously out of equilibrium. In most cases,
the source of nonequilibrium is supplying to the system some
energy which is subsequently dissipated to the thermal bath(s)
as heat.

If a small force, sometimes called load, is opposed to the
current in a thermal ratchet, then particles will keep on mov-
ing, on average, against the force, performing some work.
In these cases, part of the energy coming from the source
of nonequilibrium is transformed into mechanical energy re-
leased to the load. We apply the term Brownian motor to this
type of situation, i.e. a Brownian motor is nothing but a ratchet
with a load1.

The aim of this paper is to explore the flow of energy
between a Brownian motor and its surroundings and, in par-
ticular, its efficiency. The task highly depends on the physical
nature of the mechanism driving the ratchet out of equilib-
rium, and therefore we have classified Brownian motors ac-
cording to these mechanisms.

✉ Fax: +34-9/1394-5193, E-mail: parr@seneca.fis.ucm.es)
1 The term ‘Brownian motor’ has been coined originally by Bartussek
and Hänggi in an early feature article [13]. We should also notice that,
in this paper, and in most of the subsequent literature, ‘Brownian motor’
is used as equivalent to thermal ratchet without requiring the presence of
the load.

The study of the energetics of Brownian motors is relevant
for several reasons. First, highly efficient motors are desir-
able in order to decrease the energy consumption and/or to
decrease the heat dissipation. In fact, we think that the latter
feature will be more relevant than the former in the two main
fields where ratchets can be applied: cell biology and nano-
technology. It is generally believed that energy has not been
a scarce resource for living beings. Therefore, one could think
that evolution has no reason to favor efficient motors. Never-
theless, as occurs in modern computers, a high efficiency can
be useful even if there is no need for energy saving, in cases
where there are a lot of units in a small volume, a moderate
temperature is required, and it is difficult to dissipate heat.
This could be the case for the ion pumps spread along a cell
membrane [10, 24], and the same problem will probably be
faced by man-made Brownian motors.

Secondly, ratchets are related to fundamental problems
of thermodynamics and statistical mechanics, such as the
Maxwell demon and the trade-off between entropy and infor-
mation. For instance, one of the first well-known Brownian
motors was the ratchet-and-pawl setup studied by Feynman in
his Lectures [23]. He calculated the efficiency of such an en-
gine since his original purpose was to prove that an automatic
demon cannot beat the second law of thermodynamics.

Thirdly, many models proposed in the literature are
based on nonequilibrium fluctuations without specifying their
source. On the other hand, the study of the energetics of such
models requires a more precise formulation, since one has to
determine the physical nature of the external agent and verify
that the motor is consistent with the second law of thermo-
dynamics. In this sense, some of the results of the present
paper can also be considered as guidelines to find physical re-
alizations (if any) of Brownian motors proposed in a purely
theoretical context.

The paper is organized as follows. In Sect. 2 we introduce
some basic concepts, such as the stopping force, and review
some elementary results of thermodynamics and the theory of
chemical reactions. Section 3 studies the energetics of one of
the simplest Brownian motors: the flashing ratchet proposed
by Ajdari and Prost [1]. In Sect. 4 we present a general theory
of deterministically forced isothermal ratchets, which is com-
plemented by Sect. 5, where the quasistatic limit is discussed.
Section 6 reviews the literature on the energetics of rocking
ratchets. Section 7 is an exhaustive treatment of chemical mo-
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tors. Section 8 deals with thermal Brownian motors, such as
the celebrated Feynman ratchet. In Sect. 9 we briefly discuss
other models such as collective motors and quantum ratchets.
Finally, in Sect. 10 we present our main conclusions.

2 Basic concepts

2.1 The stopping force

A ratchet is a system which can rectify thermal
fluctuations and, as a consequence, exhibits a current of par-
ticles J0 in a given direction. If we add a force or load F in
the opposite direction, then the current J(F ) typically has the
behavior depicted in Fig. 1. Its absolute value decreases and
vanishes for a given value of the force Fstop, which is usually
named stopping force.

F

J(F)

J0

Fstop

0

FIGURE 1 Current of particles in a ratchet as a function of the load. The
ratchet works as a motor in the interval F ∈ [0, Fstop]

The ratchet works as a motor only in the interval F ∈
[0, Fstop], since in this case FJ(F ) < 0 and particles move
against the force performing some work. This work can be
considered as a gain of potential energy of the particles or, al-
ternatively, as an energy transfer from the motor to the system
which exerts the force, i.e. to the load. We will follow the latter
interpretation, which is more appropriate for motors.

2.2 A review of thermodynamics

An isothermal Brownian motor exchanges en-
ergy with three types of systems: the thermal bath, the load,
and some external agent which is the source of nonequilib-
rium [48, 54]. Figure 2 presents the energy flows between the
motor and its surroundings. If the sign of each energy trans-
fer is the one indicated by the respective arrow, the laws of
thermodynamics read:

Ein = Q + W First law,

∆Sagent + Q

T
= Sprod ≥ 0 Second law,

External
agent Motor Thermal

bath

Load

E
in

W

Q

FIGURE 2 Energy flows in an isothermal Brownian motor

where T is the absolute temperature, ∆Sagent is the change of
entropy in the external agent, and Sprod is the entropy produc-
tion. We assume that the motor works either in a cycle or in
a stationary regime and therefore its entropy does not change.
All magnitudes, energy flows, and entropy changes are taken
over a cycle or per unit of time, depending on the type of
motor.

As will be clear throughout the paper, for a motor operat-
ing at constant pressure P, the proper definition of efficiency
is

η ≡ W

Gin
, (1)

where Gin is the transfer of Gibbs free energy from the exter-
nal agent to the system, i.e. the decrease of free energy of the
external agent:

Gin = −∆Gagent

= −∆Uagent + T∆Sagent − P∆Vagent

= Ein + T∆Sagent, (2)

where ∆Uagent and ∆Vagent are, respectively, the changes of in-
ternal energy and volume of the external agent. The decrease
of the internal energy of the agent is used both to supply an en-
ergy Ein to the system and for a possible work of expansion
P∆Vagent, which is nonzero only if there are changes of phase
in some of the components of the external agent. Combining
(2) with the two laws of thermodynamics, we obtain

Gin − W = TSprod ≥ 0. (3)

This inequality reveals one of the most important interpreta-
tions of the Gibbs free energy: it is the maximum energy that
can be converted into work. We cannot extract more work than
the free energy lost by the external agent, and the free energy
can be totally converted into work only under conditions of
reversibility, when there is no entropy production.

For the efficiency, the above inequality implies that

η = 1 − TSprod

Gin
≤ 1, (4)

and it attains its maximum value η = 1 if and only if there is
no production of entropy, i.e. in the case of motors working in
a reversible way.

The use of the free energy Gin instead of Ein in the defin-
ition of efficiency has been widely applied for transduction of
chemical energy [26], and introduced in the context of Brow-
nian motors by Zhou and Chen [65] and later on by Jülicher
et al. [32]. It is of extreme importance for chemical motors,
since these motors can work by consuming some type of
molecule, or fuel, which is degraded into another molecule
with less energy and/or bigger entropy. For instance, this is
the case of ATP in the cell metabolism [2, 17, 28]. In Sect. 7,
we will present an example of a motor which works by in-
creasing the entropy of the external agent but without taking
any energy from it. A definition of efficiency which only takes
into account the flow of energy, Ein, is meaningless in these
cases. On the other hand, if the entropy of the external agent
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does not change, then Gin = Ein and the definition of effi-
ciency coincides with the one most commonly used in the
literature.

For a motor working in contact with two thermal baths at
different temperatures T1 > T2, the flow of energy is presented
in Fig. 3. The laws of thermodynamics now read

Q1 = Q2 + W First law,

− Q1

T1
+ Q2

T2
= Sprod ≥ 0 Second law.

Hot
bath Motor Cold

bath

Load

Q
1

W

2
Q

FIGURE 3 Energy flows in a thermal Brownian motor in contact with two
thermal baths at temperatures T1 > T2

The proper definition of efficiency is

η ≡ W

Q1
. (5)

Combining the two laws of thermodynamics, we obtain

W = Q1

(
1 − T2

T1

)
− T2Sprod (6)

and

η = ηc − T2Sprod

Q1
, (7)

where ηc ≡ 1 − T2/T1 is the Carnot efficiency, which is at-
tained only if there is no production of entropy, i.e. if the motor
works in a reversible way.

Any physically meaningful model of a Brownian motor
must be compatible with the limitations that the second law
imposes on its efficiency. In fact, a major part of the present
paper is devoted to prove this compatibility for wide classes of
models, and to explore how the entropy production Sprod can
be reduced in order to devise efficient motors.

Some authors [22, 64] have recently proposed an alterna-
tive definition of efficiency for particles moving in a fluid.
In this definition the work done by the particles against the
Stokes or friction force is added to the work released to the
load. These authors claim that this new definition gives more
information about the performance of some biological mo-
tors whose main task is to keep a finite velocity against the
Stokes force. However, one has to be careful with this type of
definition, since the work done against the friction is always
dissipated as heat to the thermal bath. For instance, a body
falling in the air at its terminal velocity is continuously trans-
forming potential energy into heat by doing ‘work’ against the
friction force, but it is hard to interpret this situation as a motor
or a useful energy transducer.

2.3 Chemical potential and reaction kinetics

In a chemical motor the external agent is a chem-
ical reaction kept out of equilibrium by means of a continuous
supply of some of the reactants. For a full understanding of
the energetics of chemical motors, it is worth reviewing the
physical meaning of the chemical potential and the theory of
chemical equilibrium and reaction kinetics [38]. The chemical
potential is an indicator of equilibrium when the number of
particles of a given species in a system can vary by chemical
reactions, phase changes, or other mechanisms. For an ideal
system at temperature T , with an average number of particles
N, and occupying a volume V , the chemical potential reads

µ = kT ln
N

Z1
, (8)

where k is the Boltzmann constant and Z1 is the partition func-
tion for a single particle. Since the free energy of the system is
given by F = −kT ln(Z N

1 /N!), one has the well-known rela-
tion

µ = F + NkT

N
= G

N
, (9)

where G is the Gibbs free energy. The chemical potential is
usually split into an ‘internal’ part or standard chemical poten-
tial, µ0(T ), and a contribution due to the density of particles:

µ = µ0(T )+ kT ln
N

V
, (10)

where µ0(T ) depends only on the temperature and can be in-
terpreted, up to an additive constant, as the Helmholtz free
energy Eint − TSint of the internal degrees of freedom of the
particles.

The equilibrium condition for an elementary reaction

aA+bB� cC+dD (11)

is [38]

∆µ = cµC +dµD −aµA −bµB = 0, (12)

which, for ideal systems, reads

[C]c[D]d

[A]a[B]b
= K(T ), (13)

where [·] are the molar equilibrium concentrations and
K(T ) = exp(−β∆µ0(T )) is the so-called standard reaction
equilibrium constant [38] with β = 1/(kT ) and

∆µ0 = cµ0
C +dµ0

D −aµ0
A −bµ0

B. (14)

Let us discuss the kinetics of reaction (11). If we assume that
the rate of collisions between particles A and B, and C and
D, is proportional to [A]a[B]b and [C]c[D]d , respectively, the
evolution equation for the molar concentration [A](t) of par-
ticles A is

∂t [A](t) = a
(
ω−[C]c[D]d −ω+[A]a[B]b) , (15)
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where ω+ and ω− are the transition rates at which the reac-
tion (11) occurs to the right and left, respectively, for a single
collision between reactants. To make compatible the reaction
kinetics (15) with the equilibrium prescribed by (13), the rates
must obey the detailed balance condition

ω+[A]a[B]b = ω−[C]c[D]d, (16)

which implies that

ω+
ω−

= K(T ) = e−β∆µ0
. (17)

2.4 Reaction–diffusion equations and chemical
potential

The above discussion can be extended to the case
of an external potential Vα(x) acting on the species α and in-
ducing a nonuniform concentration of particles. If �α(x) is
the local molar concentration, and if we assume local equilib-
rium, the chemical potential reads

µα(x, t) = µ0
α(T )+ Vα(x)+ kT ln �α(x, t). (18)

Regarding chemical reactions, the rates in the presence of an
external field can depend on the position, and the detailed bal-
ance condition becomes

ω+(x)

ω−(x)
= e−β[∆µ0+∆V(x)], (19)

where

∆V(x) = cVC(x)+dVD(x)−aVA(x)−bVB(x). (20)

The rate of reaction (11) at a point x is given by

r(x) = ω+(x)�A(x)a�B(x)b −ω−(x)�C(x)c�D(x)d

= ω+(x)�A(x)a�B(x)b
[
1 − eβ∆µ(x)

]
. (21)

Notice that the rate r(x) and ∆µ(x) have opposite signs,
r(x)∆µ(x) ≤ 0 for all x. This inequality means that the reac-
tion occurs, on average, towards the direction of decreasing
chemical potential or, equivalently, the direction of decreasing
Gibbs free energy.

On the other hand, the space-dependent chemical potential
has the advantage of accounting for both spatial currents and
rates of reaction. Consider a Brownian particle in a potential
V(x) at a temperature T and subjected to a load F. If x(t) is the
position of the particle, then the Langevin equation is

ẋ(t) = κ
[−V ′(x)+ F + ξ(t)

]
, (22)

where the prime denotes a derivative with respect to x and
κ = βD, D being the diffusion coefficient2. Thermal fluctua-
tions are represented by ξ(t), a white Gaussian noise with zero
mean and correlation given by

〈ξ(t)ξ(t ′)〉 = 2kTκ−1δ(t − t ′) = 2Dκ−2 δ(t − t ′). (23)

2 The Einstein fluctuation–dissipation relation states that κ is equal
to the inverse of the friction coefficient, i.e. the damping force is
Fdamp = −ẋ/κ.

The corresponding Fokker–Planck equation for the probabil-
ity density can be written as

∂t�(x, t) = −∂x J(x, t), (24)

where the current is

J(x, t) = −κ�(x, t) [∂xµ(x, t)− F] , (25)

with µ(x, t) given by (18). This dependence of the current
on the gradient of the chemical potential will be extensively
used throughout the paper. Notice also that a uniform chem-
ical potential implies a zero current in the absence of load,
i.e. mechanical equilibrium, whereas condition (12) implies
chemical equilibrium at point x.

If the particle is involved in a chemical reaction, then a re-
action term has to be added to the Fokker–Planck equation.
For instance, if particles A in reaction (11) have a diffusion
constant DA = κA kT , the evolution equation for the concen-
tration �A(x, t) is

∂t�A(x, t) = −∂x JA(x, t)−ar(x), (26)

where the current is given by (25) and the rate r(x) is given by
(21).

3 The flashing ratchet

We start by studying the efficiency of one of the
simplest Brownian motors and one of the first considered in
the recent literature on ratchets [1, 7], namely, the flashing
ratchet. It can be viewed as a Brownian particle in a flashing
asymmetric and periodic potential. If x ∈ [0, L] is the position
of the particle, then the Langevin equation reads

ẋ(t) = κ
[−ζ(t)V ′(x)+ F + ξ(t)

]
, (27)

where the potential V(x) is an asymmetric and piece-wise lin-
ear potential, as depicted in Fig. 4, and ζ(t) is a dichotomous
noise taking values 0 and 1 and therefore switching on and off
the potential in a random way at rates ω0→1 and ω1→0. These
switches are nonequilibrium fluctuations induced by an exter-
nal agent.

The joint probability distribution �ζ (x, t) for the dichoto-
mous noise and the position of the particle obeys the evolution
equations

∂t�0(x, t) = −∂x J0(x, t)− r(x, t),

∂t�1(x, t) = −∂x J1(x, t)+ r(x, t), (28)

V(x)

0 Lx

{a

}V
FIGURE 4 Potential of a flashing ratchet
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where

Jζ (x, t) = κ
[−ζV ′(x)+ F − kT∂x

]
�ζ(x, t),

r(x, t) = ω0→1�0(x, t)−ω1→0�1(x, t). (29)

These are the reaction–diffusion equations of a particle which
can be in two states, corresponding to ζ = 0 and ζ = 1, and
randomly changes from one to the other. With this picture in
mind, Jζ (x, t) is the current of particles in state ζ at time t and
position x, whereas r(x, t) is the reaction rate or the net flux of
particles from state 0 to 1 at time t and position x.

It is well known that this system exhibits, in the stationary
regime and for this particular choice of the potential, a current
J = J0(x)+ J1(x) < 0 to the left for a load below the stopping
force [1, 7]. The power of the motor, or work done per unit of
time, is Ẇ = −FJL, which is positive if F ∈ [0, Fstop]. This
expression comes from the fact that a fraction J of particles
crosses the interval per unit of time, each of them gaining an
energy FL. We also assume that the external agent inducing
the switching of the potential has no entropy. Then, the input
of free energy equals the input of energy per unit of time:

Ġin = Ėin =
L∫

0

dx r(x)V(x), (30)

since in each transformation from state 0 to state 1 at x, the
particle gains an energy V(x) and there are, on average, r(x)

transformations of this kind. Finally, following the prescrip-
tions given in Sect. 1, the efficiency of the motor is

η = − JFL

Ėin
. (31)

Equations (28) can be solved analytically and the solution
yields immediately the efficiency of the motor. This calcu-
lation has been done in [48]. In Fig. 5, we represent the ef-
ficiency of the flashing ratchet, as well as the current, for
a set of values of the parameters yielding the maximum ef-
ficiency [48]. The low value of the efficiency indicates that
the flashing ratchet works far from equilibrium. We also see
that the current of particles increases with V , whereas the ef-
ficiency exhibits a maximum.

A periodic flashing instead of a random one does not sen-
sitively increase the efficiency of the motor, as can be seen

10 15 20 25 30

V

-0.10

-0.05

0

0.05

0.10

J
η

FIGURE 5 Efficiency of a randomly flashing ratchet as a function of the
maximum height of the potential in Fig. 4. The rest of parameters are
ω1→0 = 1.08 and ω0→1 = 81.8, a = 1/11, F = 4.145, and κ = L = kT = 1

0 2 4 6 8
F

0.00

0.02

0.04

0.06

η

FIGURE 6 Numerical results for the efficiency of the ratchet consisting of
the potential in Fig. 4 modulated by ζ(t) = cos2(πt/τ) as a function of the
load F and for different values of the period τ : τ = 0.00125 (◦), 0.025 (�),
0.05 (♦), and 0.25 (×)

in Fig. 6, where the efficiency of a deterministically flashing
ratchet is depicted. It is not hard to understand the irreversibil-
ity of the flashing ratchet in this case: every time the potential
is switched on and off, the probability distribution relaxes
to the equilibrium profile, and entropy is produced in this
relaxation.

In an attempt to increase the efficiency of the model, one
could think of a slow modulation of the potential. However,
this strategy does not work, as shown in Fig. 6. In fact, the
efficiency vanishes when the period of the modulation tends
to infinity. The reason will become clear in Sect. 5, when we
study the general case of deterministically forced ratchets in
the adiabatic limit.

So far we have not specified the physical nature of the ex-
ternal agent. Several interpretations have been given in the
literature. Some of them consider the flashing ratchet as a ther-
mal Brownian motor [48, 57] and will be discussed in Sect. 8.
In Sect. 7 we give an alternative interpretation of the flashing
ratchet as a chemical motor and prove that the model is com-
patible with the second law. It is also worth mentioning that
the flashing ratchet with discrete states is more tractable from
the analytical point of view and its energetics has been studied
in [3, 57]. Finally, in an interesting work by Arizmendi and
Family [5], the efficiency of the deterministically driven flash-
ing ratchet is shown to be proportional to the Kolmogorov
complexity of the position of the particle, revealing a deep
connection between efficiency, entropy, and information.

4 Deterministically forced ratchets I: general theory
4.1 Energetics

In this section and the following we consider the
most general case of an overdamped Brownian particle deter-
ministically forced:

ẋ(t) = κ
[−V ′(x, t)+ F + ξ(t)

]
, (32)

where the potential V(x, t) is changed by the external agent.
We consider a potential periodic both in time and space with
periods τ and L, respectively. Therefore, we are interested in
motors working along cycles of period τ . Particular examples
of this type of ratchet can be found in [39, 48, 62].

The Fokker–Planck equation for the probability distribu-
tion �(x, t) can be written as

∂t�(x, t) = −∂x J(x, t), (33)
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where J(x, t) is the current:

J(x, t) = κ
[−V ′(x, t)+ F − kT ∂x

]
�(x, t). (34)

The distribution �(x, t) must also satisfy the following bound-
ary conditions:

�(0, t) = �(L, t); J(0, t) = J(L, t). (35)

Let us discuss the energetics of the system. As internal energy
we only consider the periodic potential

U(t) =
L∫

0

dx V(x, t)�(x, t). (36)

The power, or work done by the particle against the load per
unit of time, is the force times the mean velocity, i.e.

Ẇ(t) = −F〈ẋ(t)〉 = −
L∫

0

dx FJ(x, t). (37)

The input energy, i.e. the energy that the external agent puts
into the system by modifying the potential, is given by

Ėin(t) ≡
L∫

0

dx �(x, t)∂t V(x, t). (38)

Finally, the heat, or transfer of energy from the system to the
thermal bath, reads:

Q̇(t) = −
L∫

0

dx
[
V(x, t)∂t�(x, t)− FJ(x, t)

]
. (39)

A more detailed justification of the above definitions of input
energy (38) and heat (39) can be found in [50].

4.2 Thermodynamics

We will check in the following that the above def-
initions obey the two laws of thermodynamics as stated in
Sect. 2.2 . From the above definitions, it is straightforward to
prove the first law:

Ėin(t) = Q̇(t)+ Ẇ(t)+ dU(t)

dt
for all t. (40)

To derive the second law of thermodynamics, we will make
use of the Shannon definition of the entropy of the motor:

S(t) ≡ −k

L∫
0

dx �(x, t) ln �(x, t) (41)

and the chemical potential (the standard chemical potential µ0

does not play any role in this case, since there is only one type
of particle):

µ(x, t) = V(x, t)+ kT ln �(x, t), (42)

whose average over �(x, t) is

L∫
0

dx �(x, t)µ(x, t) = U(t)− TS(t). (43)

Taking the time derivative of (43) and making use of the
Fokker–Planck equation (33) and the relation between the cur-
rent and the chemical potential (25), one finds [50]:

d

dt
U(t)− T

d

dt
S(t) = −T Ṡprod(t)+ Ėin(t)− Ẇ(t), (44)

with

Ṡprod(t) ≡ κ

T

L∫
0

dx �(x, t) [∂xµ(x, t)− F]2 , (45)

which is nonnegative. Using the first law (40), the above ex-
pression can be rewritten in a more familiar way as

d

dt
S(t)+ Q̇(t)

T
= Ṡprod(t) ≥ 0. (46)

The l.h.s. of the equation contains two terms: the first one,
dS/dt, is the increase of the entropy of the system; the sec-
ond one, Q̇/T , is the increase of the entropy of the thermal
bath. Then, the sum Ṡprod is the increase of the entropy of the
universe or entropy production per unit of time, which has
been proved to be positive. Ṡprod vanishes only in equilibrium,
i.e. only if both the external force F and the gradient of the
chemical potential vanish. Notice also that the entropy pro-
duction has the usual form in thermodynamics of irreversible
processes [20]: it is the space integral of the product of the cur-
rent J(x, t) times a thermodynamical force F − ∂xµ divided
by the temperature.

To relate these results to the discussion in Sect. 2.2, let us
consider the cyclic character of the model. The system, after
a number of cycles, reaches a stationary regime where �(x, t)
and every state function, like the entropy S(t) or the inter-
nal energy U(t), are periodic in time. Then, integrating over
a period equations (40) and (46), we obtain

Ein = Q + W

Ein − W = TSprod , (47)

where Ein, W , Q, and Sprod stand for the integral over a period
of Ėin(t), Ẇ(t), Q̇(t), and Ṡprod(t), respectively. Taking into ac-
count that, in a deterministically forced ratchet, the entropy of
the external agent does not change and Gin = Ein, we recover
the main result of Sect. 2.2, namely, (3), which implies in this
case that there is an unavoidable dissipation of heat to the ther-
mal bath (see Fig. 2) and, consequently, the efficiency of the
motor cannot be bigger than one, and it reaches this value only
if the entropy production is zero.

What we have presented is, in fact, a proof of the compat-
ibility between the Langevin and Fokker–Planck formalisms
of the Brownian motion and the two laws of thermodynam-
ics. The same proof of compatibility, for F = 0 and for un-
derdamped particles, can be found in [55]. It is also worth
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mentioning that inequality (46) can be violated if the external
agent possesses information about the position of the particle
and modifies the potential according to this information. This
can happen in macroscopic systems undergoing symmetry-
breaking phase transitions as we have shown in [47], in close
relation with the Maxwell demon.

5 Deterministically forced ratchets II: the
quasistatic limit

We mentioned in Sect. 3 that a possible strategy to
decrease the entropy production, and consequently increase
the efficiency of the motor, is to modify the potential very
slowly. In this case, the probability density of the particle is al-
ways close to the equilibrium profile, and one expects a low
entropy production. This is indeed the case. However, we will
see in this section that only a certain class of ratchets can work
arbitrarily close to equilibrium. Remarkably, ratchets consist-
ing of slowly modulated potentials do not belong to this class.

This can be proved since the forced ratchet can be solved
for an arbitrary potential V(x, t) in the quasistatic limit, i.e.
when the potential V(x, t) changes infinitely slowly.

Let us start with F = 0. In this case, the work Ẇ(t) is obvi-
ously zero, but we can still calculate the current J(x, t) which
will be useful to obtain Ẇ(t) later on.

At first sight, the adiabatic limit looks trivial. At any time t,
the system is in equilibrium with the potential V(x, t), i.e. the
probability distribution is

�−(x, t) ≡ e−βV(x,t)

Z−(t)
, (48)

where Z−(t) is a normalization constant (the subindex will be
clear below). For this probability distribution the current van-
ishes. However, the integral of the current along the cycle can
be different from zero in some cases [46, 48].

To prove this one has to solve the Fokker–Planck equa-
tion up to linear terms in ∂t V(x, t). The current at x = L can be
found analytically [46, 50] and the result is

J(L, t) =
L∫

0

dx

x∫
0

dx ′ �+(x, t)∂t�−(x ′, t), (49)

where �+(x, t) is a new probability distribution:

�+(x, t) ≡ eβV(x,t)

Z+(t)
, (50)

Z+(t) being a normalization constant.
In the quasistatic limit, the time derivative of �−(x, t) van-

ishes, and so does the current J(L, t). However, the integral of
J(L, t) along the cycle [0, τ] can be, in some cases, different
from zero. We define the integrated flow as

φ0 ≡
τ∫

0

dt J(x, t), (51)

which does not depend on the point x. Therefore, φ0 can be
calculated by integrating J(L, t) as given by (49). We have

called reversible ratchets those systems where the integrated
flow is different from zero. They exhibit reversible, adiabatic,
or quasistatic transport, i.e. the particle moves toward a direc-
tion and nevertheless is in equilibrium at any time.

As mentioned above, a slow modulation between two po-
tentials VA(x) and VB(x), i.e. if V(x, t) = α(t)VA(x)+[1 −
α(t)]VB(x), with α(t) a periodic function oscillating between
0 and 1, can never be a reversible ratchet. This is proved by
means of the change of variable t → α(t) in the integral (51).
Notice that this is the case of the flashing ratchet [7]. In order
to have a nontrivial reversible ratchet, the potential V(x, t)
must depend on two or more parameters and must describe
a loop in the space of parameters [46].

To build a Brownian motor from a reversible ratchet we
must add a load F. The Fokker–Planck equation (33) can still
be solved up to first order in F and 1/τ , and an explicit ex-
pression for the efficiency, exact in the quasistatic limit, is
given in [48, 50]. In this case, the stopping force is of order
1/τ , since the force is acting along the whole cycle [0, τ] and
induces a current J(x, t) of order F at any time. This cur-
rent, when integrated over the cycle, yields a contribution of
order Fτ . Still, we can have a motor in the adiabatic limit if F
goes to zero as 1/τ . Notice however that this is possible only
for reversible ratchets, which can reach efficiencies arbitrary
close to η = 1, whereas the efficiency of irreversible ratchets
vanishes in the quasistatic limit (cf. Fig. 6). The previous the-
ory has been applied to a model called sluice ratchet in [46]
and [48], which has been proposed as a model for biological
ion pumps [50]. Another example of reversible ratchet, based
on a traveling potential, is studied in [39].

The theory of reversible ratchets can have some general
consequences for protein motors, such as kinesins, myosins,
or ion pumps in the cell membrane. They can be modeled as
a single degree of freedom x(t) in a potential determined by
the shape of a protein. Depending on the type of motor, the
degree of freedom is the position of the protein itself or the
position of an ion. ATP hydrolysis changes the shape of the
protein and consequently changes the potential [2, 11, 17, 28,
37] as in the present model. The above conclusions indicate
that the shape of the protein must change, describing a loop in
some abstract space of parameters, if the interaction potential
between the protein and the degree of freedom of the motor
has to be a reversible ratchet. This is equivalent to saying that
an efficient motor cannot work by jumps between only two
states, but needs to perform some type of cycle with at least
three states.

6 Rocking ratchets

A rocking ratchet can be briefly defined as a Brow-
nian degree of freedom which exhibits a direct current (DC)
when a purely alternating voltage (AC) is applied [40]. The
Langevin equation reads

ẋ(t) = κ
[−V ′(x)+ FAC(t)+ F + ξ(t)

]
, (52)

where FAC(t) is a periodic forcing, with period τ and zero time
average, exerted by the external agent.
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The input energy per unit of time is [54, 60]

Ėin = −
τ∫

0

dt

L∫
0

dx �(x, t)x
dFAC(t)

dt

=
τ∫

0

dt J(t)FAC(t) (53)

with

J(t) ≡
L∫

0

dx J(x, t), (54)

and again equals the supply of free energy, Ġin = Ėin, because
the external agent carries no entropy. The efficiency can be
written as

η = F〈J(t)〉
〈FAC(t)J(t)〉 , (55)

where the brackets indicate a temporal average along a period.
In the quasistatic limit, J(t) is a function of FAC(t). For

instance, for electrical devices, this is nothing but the char-
acteristic function of the device, i.e. the relationship between
current and voltage. Sokolov [60] has studied the efficiency
of rocking ratchets in this quasistatic limit, finding that the
efficiency can reach the thermodynamic upper bound η = 1
if the rocking force is synchronized with the motion of the
Brownian particle. Other works have investigated the depen-
dence of the efficiency on the temperature T [34, 61]. It has
been shown that, in the quasistatic limit, the efficiency of some
rocking ratchets can be optimized at finite T [61]. Finally, Dan
et al. [19] have studied the efficiency of rocking ratchets when
the diffusion constant depends on the position of the particle,
with similar conclusions.

7 Chemical motors
7.1 The flashing ratchet as a chemical motor

The flashing ratchet introduced by Ajdari and
Prost [1] can be reinterpreted as a chemical motor, as sug-
gested in [6, 7, 32]. Consider the following reaction in one
dimension:

A+C� B, (56)

where A, B, and C feel potentials VA(x), VB(x), and VC(x), re-
spectively (this could be the case if, for instance, A and C are
charged particles with opposite charge and B is neutral). The
reaction–diffusion equations for the concentrations read

∂t�A(x, t) = −∂x JA(x, t)− r(x, t),

∂t�B(x, t) = −∂x JB(x, t)+ r(x, t), (57)

∂t�C(x, t) = −∂x JC(x, t)− r(x, t),

where

Jα(x, t) = κα

[−V ′
α(x)+ F − kT ∂x

]
�α(x, t)

= −κα�α(x, t) [∂xµα(x, t)− F] (58)

are the spatial currents of each species, and

r(x, t) = ω+(x)�A(x, t)�C(x, t)−ω−(x)�B(x, t). (59)

The reaction rates ω± obey the detailed balance condition
(19). For zero load, F = 0, the stationary solution of this set
of equations is the Gibbs state (which satisfies the equilibrium
condition (12)):

�st
α (x) = Nαe−β(µ0

α+Vα(x)), (60)

where Nα are constants depending on the initial condition and
satisfying NA NB/NC = 1. We can now eliminate the species
C in (57) and write an equation for the concentrations of A and
B:

∂t�A(x, t) = −∂x JA − ω̂+�A + ω̂−�B,

∂t�B(x, t) = −∂x JB + ω̂+�A − ω̂−�B, (61)

where ω̂+ = �Cω+ and ω̂− = ω− obey

ω̂+(x)

ω−(x)
= e−β(∆µ0+VB(x)−VA(x)−VC(x)−kT ln �C(x)). (62)

The system can be driven out of equilibrium by imposing
a nonequilibrium concentration of C. For instance, to obtain
ω+ = ω−, as in the original flashing ratchet, we need a concen-
tration of C with a nonuniform chemical potential:

µC(x) = VB(x)− VA(x)+µ0
B(T )−µ0

A(T ). (63)

What is the efficiency in this case? If we consider the C par-
ticles as the fuel of the motor, then the consumed free energy
in a reaction occurring at x is µC(x). Therefore, the total Gibbs
free energy consumption per unit of time is

Ġin =
∫

dx r(x)µC(x)

=
∫

dxr(x) [VB(x)− VA(x)] , (64)

where we have used the fact that the total rate r ≡ ∫
dx r(x)

vanishes in the stationary regime. As introduced in Sect. 2.2,
the efficiency of the engine is

η = − F(JA + JB)

Ġin
. (65)

Therefore, the definition of efficiency coincides with the one
studied in Sect. 3, even though there we did not take into ac-
count the change of free energy in the external agent. The
reason is that the number of C particles remains constant in
the stationary regime (r = 0) and, therefore, the external agent
does not experience any change of entropy. We present in
Sect. 7.3 a proof of the compatibility between a wide class
of chemical motors and the second law of thermodynamics,
which also applies to this interpretation of the flashing ratchet.
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7.2 A chemical ‘Maxwell demon’

There is an alternative way of deviating a chem-
ical system from equilibrium: to create a difference of chem-
ical potential in a chemical cycle. This is the case consid-
ered extensively by Parmeggiani et al. [45] and by Zhou and
Chen [65]. In fact, we believe that this type of chemical motors
is more easily realizable than the one discussed above. More-
over, in this case the input of free energy can be different from
the input of energy.

We first illustrate this type of motor with a simplified ver-
sion of the models introduced in [45]. Consider the following
flashing ratchet: a Brownian particle in a thermal bath at tem-
perature T and confined in the interval [0, L], with two differ-
ent periodic potentials, VA(x) = δ(x) and VB(x) = δ(x − L/2).
If we add a load, the two potentials plus the potential energy
due to the load are depicted in Fig. 7, where VA(x) has been
vertically shifted for clarity.

Let us suppose first a deterministic switching between the
two potentials. It is easy to prove that a periodic switching pro-
duces no current for zero load. However, if the switching is
activated depending on the location of the particle, then we
can easily induce a current in any direction. For instance, if
we switch from VA to VB at x = 3L/4 and from VB to VA at
x = L/4, then the particle will move to the right, even when
the load is present. Moreover, in each switching the particle
neither gains nor loses energy. Therefore, we can perform the
switches with zero energy cost. The particle moves against the
load performing some work, but the energy necessary to do
this is taken entirely from the thermal bath. We have a true
Maxwell demon. In fact, what the ratchet does is to wait until
there is a fluctuation of the Brownian particle against the load
and to place a barrier behind the particle. This system violates
the second law of thermodynamics. The reason is that we are
using information about the position of the particle, exactly as
the Maxwell demon, and we have not included the energy or
entropy cost of the acquisition of such information. The same
conclusion could be reached for almost any flashing ratchet:
information about the position of the particle could be used
to increase the efficiency of the corresponding motor (see [5]
for another account of the relationship between entropy, effi-
ciency, and information in the flashing ratchet).

Nevertheless, we can reinterpret the above example as
a chemical motor with localized transitions compatible with

V (x)
A

V (x)
B

ω
γ

1

12

2

ω

γ

0 L/2 L
FIGURE 7 Two potentials and transitions in a chemical Maxwell demon

the second law. To do this, assume that the particle can be in
either of two possible internal states A and B and that transi-
tions between these internal states are carried out by chemical
reactions localized in two active sites of the interval [0, L]:

A+C
ω1
�
ω2

B at x = 3L/4,

B
γ1
�
γ2

A+C′ at x = L/4.

Notice that the equilibrium condition of this chemical
cycle implies µC = µC′ . If we now drive the system out of
equilibrium by imposing a difference of chemical potential:

∆µfuel ≡ µC −µC′ , (66)

a current J is induced in the system. It is not difficult to solve
the model analytically [31]. Although the expression for the
current J is somewhat involved, the efficiency turns out to
be quite simple. The input of free energy per unit of time is
Ġin = r∆µfuel, where r is the rate of either of the two reactions
in (7). In the stationary regime, the rates of the two reactions
are equal and they are also equal to the current, r = J . There-
fore

η = |F|L
∆µfuel

. (67)

From this equation it seems that we can again reach an effi-
ciency greater than one by increasing the load |F|. However,
this is not the case, because the stopping force is Fstop =
∆µfuel/L. Consequently, the maximum efficiency is η = 1
and it is reached when the current vanishes, i.e. when the sys-
tem works close to equilibrium.

Zhou and Chen [65] have considered a chemical motor
consisting of a cycle but with delocalized reactions. Prost et
al. [51], and subsequently Parmeggiani et al. [45], have also
studied several models analogous to the one discussed here.
They find a quite remarkable feature for some potentials: far
from equilibrium the efficiency can increase with ∆µfuel and
is even bigger than the efficiency in the limit ∆µfuel → 0,
i.e. when the system is close to equilibrium. This does not
contradict the statements of Sect. 2.2, but indicates that in
this limit the entropy production Ṡprod and the input free en-
ergy Ġin = r∆µfuel both vanish whereas the quotient tends to
a finite value.

7.3 General theory for discrete chemical states

For a system with α = 1, . . . , n species and σ =
1, . . . , s reactions, the equilibrium conditions are

µα(x) = µα Mechanical equilib.,

∆µσ(x) ≡
∑

α

aα,σµα(x) = 0 Chemical equilib., (68)

where aα,σ is the stoichiometric coefficient of species α in re-
action σ with the usual convention for the sign: the coefficient
aα,σ is positive (negative) if α appears in the r.h.s. (l.h.s.) of
reaction σ . The first condition is equivalent to the absence of
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spatial currents in the system for zero load, whereas the sec-
ond condition is equivalent to the absence of a net reaction rate
at point x.

As we have seen in the previous examples, one can drive
the system out of equilibrium in several ways. The first con-
sists of imposing a concentration of some species yielding
a nonconstant chemical potential. The flashing ratchet consid-
ered above is an example. In the second we impose a chemical
potential which is not compatible with the set of equations im-
plying chemical equilibrium. The simplest way is to consider
a cycle:

A+C ���A+C′, (69)

where A is a set of products, C is the fuel, C′ is the degraded
fuel, and the dashed arrow represents a set of chemical reac-
tions. In the cycle, we can break the chemical equilibrium by
imposing µC −µ′

C > 0.
We present now a general formalism which includes all

these cases. Let us split the species into two sets: i = 1, . . . , m
will denote the proper species of the motor, i.e. those whose
current releases work to the load; and f = m +1, . . . , n will
denote the fuel molecules, i.e. those whose chemical po-
tentials µ f (x) are imposed from outside. As before, α =
1, . . . , n will denote the whole set of reactants, including mo-
tor molecules and fuel molecules. All the sums over α, i, and
f run over their respective ranges.

The evolution equations for the molar concentration of
motor molecules are

∂t�i(x, t) = −∂x Ji(x, t)+
∑
σ

ai,σrσ (x), (70)

where rσ (x) is the rate of reaction σ . The reaction rates and the
currents are related to the chemical potentials of the species by
(21) and (25), respectively. In the stationary regime, the input
free energy is

Ġin = −
∑
f,σ

af,σ

∫
dx µ f (x)rσ (x), (71)

whereas the released work is

Ẇ = −
∑

i

∫
dx Ji(x)F. (72)

Using (25), we can write

Ẇ = −
∑

i

∫
dx

[
Ji(x)2

κi�i(x)
+ Ji(x)∂xµi(x)

]
. (73)

Integrating by parts the second term and using (70), one has

Ẇ = −
∑

i

∫
dx

[
Ji(x)2

κi�i(x)
−

∑
σ

ai,σrσ (x)µi(x)

]
. (74)

T Ṡprod = Ġin − Ẇ

=
∫

dx

[
−

∑
σ

∆µσ(x)rσ (x)+
∑

i

Ji(x)2

κi�i(x)

]
, (75)

which is a positive quantity, because reactions always flow
in the direction of decreasing chemical potential and there-
fore ∆µσrσ < 0 for any reaction σ (see (21)). The terms in
the above expression have the usual form in linear irreversible
thermodynamics: they are the product of a thermodynami-
cal force (∆µσ for the chemical reaction, ∂xµi(x)− F for the
position) times a flow (rσ (x) for the reaction, Ji(x) for the pos-
ition) [20]. This is not surprising since the reaction–diffusion
equations can be obtained in the framework of linear irre-
versible thermodynamics (although they can yield nonlinear
relationships between the load, the chemical potential differ-
ences, the spatial current, and the reaction rate).

This theory could be extended to include a time depen-
dence in the potentials. Work in this direction has been re-
ported in [8, 9, 43], where the effects of an AC electric field on
models of membrane proteins are investigated.

7.4 General theory for continuous chemical coordinates

For continuous chemical coordinates, we restrict
ourselves to chemical cycles, as given by (69). We partly fol-
low an approach originally introduced by Magnasco [41] (see
also [36]). Consider an overdamped Brownian particle whose
internal state is described by a continuous chemical coor-
dinate y. We can define a chemical potential µ(x, y) which
depends both on the position of the particle and on its internal
state. Since we are considering cycles, the chemical coordi-
nate is periodic or, equivalently, lies in the interval [0, 1] with
periodic boundary conditions. If the chemical potential has
several wells separated by activation barriers whose heights
are much bigger than kT , then y is localized mostly around
the minima of the wells and the model reduces to a set of
cyclic chemical reactions such as (69) with reactions rates
given by Kramer’s theory [20, 25]. In equilibrium the chem-
ical potential is periodic (µ(x, y) = µ(x + L, y +1)) and the
joint probability density for the particle in Ω = [0, L]×[0, 1]
will be

�e(x, y) = 1

Z
e−βµ(x,y), (76)

where Z is a normalization factor.
The system can be driven away from equilibrium by a load

F, acting on coordinate x, and a difference of chemical po-
tential ∆µfuel, acting on coordinate y and uniform along the
spatial coordinate x. We assume an overdamped dynamics
for the two coordinates of the particle. The corresponding
Langevin equation is

ẋ(t) = κx [F − ∂xµ(x(t), y(t))+ ξx(t)] ,

ẏ(t) = κy
[
∆µfuel − ∂yµ(x(t), y(t))+ ξy(t)

]
, (77)

where κx and κy are the inverse of ‘friction’ coefficients and
ξx(t), ξy(t) are Gaussian white noises which represent the in-
teraction of the particle with the thermal bath. They satisfy

〈ξx(t)〉 = 〈ξy(t)〉 = 0,

〈ξi(t) ξj(t
′)〉 = 2kTκ−1

i δijδ(t − t ′), (78)

with i = x, y. The time-evolution equation for the probability
density of the particle is

∂t�(x, y, t) = −∇ J(x, y, t), (79)
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where J(x, y, t) = (Jx, Jy) is a vector whose components are
the spatial current and the rate of the reaction, respectively:

Ji(x, y, t) = κi[Fi − ∂iµ(x, y)− kBT ∂i]�(x, y, t), (80)

with Fx = F and Fy = ∆µfuel.
The free-energy consumption and work are

Ġin =
∫

dx dy Fy Jy(x, y),

Ẇ = −
∫

dx dy Fx Jx(x). (81)

Therefore

T Ṡprod = Ġin − Ẇ =
∫

dx dy J(x, y) · F (82)

and, following similar steps as in Sect. 4, one can prove that,
in the stationary regime:

T Ṡprod =
∫

dx dy �
[
κx(F − ∂xµ)2 +κy(∆µ− ∂yµ)2] , (83)

which is positive.
In this type of motor, the chemical bias ∆µfuel creates both

a spatial and a chemical current. The chemical current flows
in the same direction as the bias and the spatial current per-
sists for F< Fstop. The motor can of course work the other way
around, i.e. transforming mechanical energy into chemical en-
ergy. This possibility has been explored in [32, 45].

7.5 Linear response theory

For a small load F and a small difference of chem-
ical potential ∆µfuel, a linear response theory has been in-
troduced by Jülicher et al. [32]. We follow the exposition
made in [45]. The theory is valid both for continuous or dis-
crete chemical coordinates, but only when the chemical bias
is a single parameter ∆µfuel. The basic assumption is that the
reaction rate r and the mean velocity v = ∫

dx J(x) depend
linearly on the load and ∆µfuel, i.e.

v = λ11 F +λ12∆µfuel,

r = λ21 F +λ22∆µfuel. (84)

The second law implies that λ11λ22 −λ12λ21 > 0, which is
equivalent to (82) and the positiveness of (83) or, in this new
notation

vF + r∆µfuel > 0 (85)

for all F and ∆µfuel. Moreover, the Onsager reciprocity rela-
tions imply λ12 = λ21. The efficiency is

η = − Fv

r∆µfuel
= −λ11a2 +λ12a

λ21a +λ22
, (86)

with a = F/∆µfuel. In [45], the above expression is discussed
in detail. In particular, it is shown that the motor can work
either by transforming chemical energy into mechanical en-
ergy or the other way around, and that the efficiency is sin-
gular and multivalued in the limit to equilibrium conditions,
F,∆µfuel → 0. As mentioned before, a number of models be-
yond the regime of linear response is studied in [45].

8 Thermal Brownian motors

8.1 The Feynman ratchet

In his Lectures [23], Feynman presented a model
of a rectifier of thermal fluctuations based on an idea origi-
nally proposed by Smoluchowski [56]. It consists of a ratchet
forced by a pawl to turn only in a given direction and con-
nected with vanes immersed in a fluid at temperature T1. The
vanes provide thermal fluctuations that are rectified by the
ratchet and the pawl. Feynman showed that the ratchet and
pawl must be at a temperature T2 < T1, i.e. they must be colder
than the vanes to be able to rectify the fluctuations. More-
over, he proved that the efficiency of the engine is equal to the
Carnot efficiency when operates quasistatically, i.e. when the
load F approaches the stopping force Fstop.

However, some inconsistencies in Feynman’s argument
were found in [49]. In this paper, we showed that Carnot effi-
ciency cannot be reached by the ratchet engine and, moreover,
that the efficiency vanishes in the limit F → Fstop, a feature
that has been found later on in most Brownian motors. The
reason is that in this limit the system is still out of equilibrium:
the system is in contact with the thermal baths at different tem-
peratures and the degree of freedom of the ratchet can transfer
energy from one to the other, exhibiting a nonzero thermal
conductivity [49]. Consequently, there is an entropy produc-
tion whereas the work released tends to zero when F → Fstop.
Sekimoto [54] reached the same conclusions by numerical
simulations and theoretical arguments, and so did Magnasco
and Stolovitzky [42], who developed a novel analytical ap-
proach to solve the problem. Nevertheless, the statement that
a single degree of freedom always exhibits a nonzero thermal
conductivity has been qualified by Sokolov [59] (see below).
On the other hand, Velasco et al. [63] have explored the con-
sequences of the irreversibility of the Feynman ratchet and
calculated the efficiency for maximum power, in the spirit of
the so-called finite-time thermodynamics (FTT) [4].

8.2 Nonlinear resistors at different temperatures

Feynman’s ratchet is closely related to the so-
called Brillouin paradox [14]. Suppose an electrical circuit
consisting of a diode in parallel with a resistor at tempera-
ture T . The thermal noise in the resistor generates a random
voltage which, in principle, could be rectified by the diode re-
sulting in a direct current able to perform work. The solution
of the paradox is similar to Feynman’s arguments: the diode
loses its ability to rectify thermal fluctuations if it is at the
same temperature as the source of the fluctuations.

However, the circuit works as a motor if the diode is colder
than the resistor. This has been proved by Sokolov [58], using
an effective Fokker–Planck equation for the probability dis-
tribution of the voltage. Moreover, in [59], he extended the
theory to circuits with two diodes, finding that ideal diodes
yield zero thermal conductivity.

Sokolov’s treatment of nonlinear resistors could also be
applied to mechanical degrees of freedom with nonlinear fric-
tion. In fact, Feynman’s ratchet is nothing but a device with
a high friction in one direction and a low friction in the other.
However, there is no satisfactory theory of thermal fluctu-
ations for nonlinear friction and there are even doubts that
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a theory based on effective Fokker–Planck equations can con-
sistently account for these fluctuations [35]. On the other
hand, two thermal baths coupled to a single degree of freedom
with linear friction cannot induce any current [49].

8.3 The flashing ratchet as a thermal motor

The flashing ratchet can also be interpreted as a sys-
tem with two degrees of freedom in contact with thermal baths
at different temperatures [12, 48, 57]. If the chemical coordi-
nate which represents the two states of the particle is at infinite
temperature, then the transition rates ω+ and ω− are equal (see
(19)). Therefore, the original flashing ratchet can be consid-
ered as a thermal Brownian motor working with a hot bath
at infinite temperature and a cold bath at temperature T . The
motor still works if the temperature of the hot bath is finite.

Another possibility is to interpret the deterministically
flashing ratchet as a Brownian particle with a periodic modu-
lation of the temperature [12, 57]. The absence of potential is
here induced by a high temperature. As in the other models,
the reported efficiencies are small compared with the upper
bound given by Carnot. Finally, other thermal motors and heat
pumps have been proposed in [21, 27, 30, 44].

9 Other types of Brownian motors

9.1 Collective motors

Collective ratchets constitute a field of increasing
interest [53]. Some protein motors work in a collective way,
such as myosins in the muscular tissue, and the interaction be-
tween many thermal ratchets has revealed surprising features
like spontaneous symmetry breaking and absolute negative
resistance (ANR).

However, the results on the energetics of these collective
motors are still scarce. Jülicher and Prost [33] proposed one
of the first models of a collective Brownian motor and studied
its energetics. The efficiency reported there is rather high, and
a novel feature appears: beyond a critical point the state of
zero velocity becomes unstable and the stopping force is not
defined.

Buceta et al. have proposed a model of a collective ratchet
based on the rocking ratchet and exhibiting ANR [15], and
have studied its energetics. The efficiency turns to be rather
low, i.e. the system works far from equilibrium. Remarkably,
its energetics is not sensitively affected by the presence of
critical points. However, we believe that, in some cases, the
divergence of the susceptibility at critical points should have
some dramatic effects on the energetics of a motor. Further
work is needed in this direction.

9.2 Quantum motors

Although quantum ratchets have been studied to
some extent since the seminal work by Reimann et al. [52],
the studies on the energetics of this kind of motors are scarce.
Humphrey et al. [29] have proposed a model of a quantum
Brownian motor consisting of two Fermi gases at different
temperatures and with different chemical potentials. The mo-
tor can reach Carnot efficiency although there is a continuous
transfer of particles from a hot to a cold bath. The reason is that

the transfer is filtered and only particles with energy ε∗ are al-
lowed to pass from one gas to the other. This energy ε∗ is the
one for which the two Fermi distributions for the gases inter-
sect. Therefore, the distributions remain invariant throughout
the transfer, which does not produce any entropy. Finally, the
motor works slightly deviated from this pseudo-equilibrium
situation, where the entropy production can be arbitrarily re-
duced. At first sight, this type of filter resembles a Maxwell
demon. However, to our knowledge, such a filter does not vi-
olate the second law, as far as it acts in the same manner for
both gases. This makes the idea of filtering particles a suitable
strategy to devise efficient classical and quantum motors.

10 Conclusions

Throughout this paper we have reviewed the liter-
ature on the efficiency of Brownian motors, focusing on the
compatibility with the laws of thermodynamics. Our aim was
to present different physical realizations of Brownian motors
and explore the energy flows in the motor operation.

We have discussed the energetics of forced ratchets, chem-
ical motors, and thermal motors. Although forced ratchets
are the simplest examples of Brownian motors, we believe
that chemical motors are the most relevant in biology and
nanotechnology.

With this idea in mind, we have presented a self-contained
formulation of chemical Brownian motors based on space-
dependent chemical potentials. We think that this concept
will help to relate models proposed in the context of the-
oretical physics to those with a more biological orienta-
tion [2, 11, 17, 28, 36, 37]. The former often fail in specifying
the source of nonequilibrium fluctuations, whereas the latter
are based on chemical cycles but rarely detail the spatial mo-
tion of the involved species.

On the other hand, thermal Brownian motors can be of
interest in the field of solar and thermoelectric cells where, ob-
viously, efficiency is one of the most important issues and the
efficiency of the available transducers is far from the thermo-
dynamic upper bound.

Finally, we would also like to mention that, for the last few
decades, there has been an active research line on irreversible
motors, the so-called finite-time thermodynamics [4]. How-
ever, most of the motors considered by FTT are macroscopic
and do not take into account fluctuations. Moreover, they are
mostly endo-reversible, i.e. reversible motors where the only
contribution to the entropy production is due to the interaction
of the motor with its surroundings [16, 18]. Nevertheless, the
concepts and strategies developed in FTT, such as calculating
the efficiency in the regime of maximum power, will also be
valuable for Brownian motors.
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