
VOLUME 88, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 14 JANUARY 2002

02410
Stationary and Oscillatory Spatial Patterns Induced by Global Periodic Switching
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We propose a new mechanism for pattern formation based on the global alternation of two dynamics,
neither of which exhibits patterns. When driven by either one of the separate dynamics, the system goes
to a spatially homogeneous state associated with that dynamics. However, when the two dynamics are
globally alternated sufficiently rapidly, the system exhibits stationary spatial patterns. Somewhat slower
switching leads to oscillatory patterns. We support our findings by numerical simulations and discuss
the results in terms of the symmetries of the system and the ratio of two relevant characteristic times,
the switching period and the relaxation time to a homogeneous state in each separate dynamics.
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Patterns in nonequilibrium systems arise in a variety of
ways. For example, so-called dissipative structures arise
from perturbations of homogeneous systems if the input
of energy is properly balanced by dissipation [1]. Perhaps
the best-known dissipative structure is the Bénard instabil-
ity, formed when a layer of liquid is heated from below.
At a given temperature, heat conduction starts to occur
predominantly through convection, and regularly spaced,
hexagonal convection cells are formed in the layer of liq-
uid. This structure is present only as long as there is a
supply of heat and disappears when this ceases. Many
other examples involve chemical oscillations in dissipative
open systems [1]. Patterns may also form by the tem-
poral modulation of a parameter in systems that undergo
Hopf bifurcations. This modulation may stabilize standing
waves or wave patterns that are otherwise unstable for any
constant value of the parameter in this regime [2,3]. A dif-
ferent sort of phenomenon, that of noise-induced pattern
formation, may occur when an external spatially and tem-
porally uncorrelated noise affects a system parameter. The
parameter fluctuations may induce spatial organization and
pattern formation in a system where only a homogeneous
state is stable when the parameter is constant [4,5].

In this Letter we identify and illustrate a new mechanism
for pattern formation induced by a global periodic alterna-
tion between two dynamics, each of which by itself leads
to a (different) spatially homogeneous state. This mecha-
nism is inspired by a number of examples where simple
periodic switching between two dynamics, each of which
produces “uninteresting” or “disordered” or even “undesir-
able” states, leads to an “interesting” or “ordered” or “de-
sirable” outcome. One example is the flashing Brownian
ratchet, a rectifier of thermal fluctuations that can induce
directed motion of Brownian particles merely by turn-
ing the ratchet potential on and off periodically [6]. An-
other (in turn inspired by the ratchet example) is that of
so-called paradoxical games, where the alternation of two
losing games may lead to a winning game [7]. Our pro-
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posed mechanism applies these ideas to spatially extended
systems.

We focus on a class of model systems based on the
Swift-Hohenberg (SH) equation [8]:

�w�r, t� � 2V 0���w�r, t���� 1 L w�r, t� 1 j�r, t� , (1)

where the operator L � 2�1 1 =2�2 is a spatial coupling,
and the white zero-centered Gaussian noise j�r, t� with
correlation �j�r, t�j�r0, t0�� � s2d�t 2 t0�d�r 2 r0� ac-
counts for thermal or other fluctuations. The dynamics
of the system is determined by the local potential V�w�,
which in the standard SH model is an even quartic function
of w. The SH model leads to pattern formation (e.g., to the
appearance of Rayleigh-Bénard convective rolls) when the
local potential has two stable equilibrium points. How-
ever, if V �w� is monostable, no spatial structures appear
in this system and the steady state is spatially homoge-
neous. The stability boundary is identified by determining
a uniform solution of the (noiseless) evolution equation (1)
and linearizing about this solution. The stationarity con-
dition V 0�w� 1 w � 0 (the term w arises from the 1 in
the coupling operator) has the solution w � w̃. Setting
w � w̃ 1 Dw gives for the Fourier transform (denoted by
a hat) of the linearized equation

D �̂w�k, t� � 2�V 00�w̃� 1 �1 2 jkj2�2�Dŵ�k, t� , (2)

and if V 00�w̃� , 0 a morphological instability first sets in
for the modes with jkj � 1. Note that in the usual SH
model the even local potential leads to w̃ � 0 and that in
general the patterns that emerge depend on the symmetry
of the potential. Thus, symmetry of the evolution equation
under the w $ 2w inversion leads to roll-shaped patterns,
while absence of this symmetry leads to hexagonally ar-
ranged spotlike structures [9].

Consider now a global periodic switching of period T
between two local potentials, V1 and V2. Thus, every point
is subject to the same local potential at any given time. The
system is governed by the equation
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�w�r, t� � 2V 0
1���w�r, t���� 2 m�t�V 0

2���w�r, t����

1 Lw�r, t� 1 j�r, t� , (3)

where V6�w� � �V1�w� 6 V2�w���2 and m�t� takes on
the value 1 if t modT , T�2 and 21 if t modT . T�2.
The resulting equation is a SH model with dichotomous
periodic external forcing. To the best of our knowledge,
this forcing differs from those previously considered in the
literature [2].

In order to investigate whether the switching mechanism
can lead to pattern formation, we focus on local potentials
V1�w� and V2�w� that satisfy the stability conditions,

V 0
i �w̃i� 1 w̃i � 0 and V 00

i �w̃i� . 0 (4)

(monostable potentials), whereas their average V1�w� does
not. Note that the condition that V1�w� not satisfy (4) im-
plies that both local potentials cannot be quadratic. As a
consequence, for the proposed pattern formation mecha-
nism nonlinearity is a necessary component.

When each potential acts separately, the system tends to
a homogeneous state. The expectation of pattern formation
when the potentials are periodically alternated arises as
follows. If the switching period T is large, every point
in the system has time to equilibrate to the local potential
before the local potentials switch. Regardless of the initial
distribution, the entire system is expected to oscillate with
period T between the homogeneous states corresponding
to each potential. On the other hand, if T is sufficiently
small (see below), m�t� can be adiabatically eliminated and
replaced by its average value, which is zero. The system
is then driven by the potential V1�w�, for which there is at
least one state w̃ with

V 0
1�w̃� 1 w̃ � 0 and V 00

1�w̃� , 0 , (5)

and thus patterns appropriate to this local potential are ex-
pected to occur. Away from these extremes, the behav-
ior depends on the switching rate. More specifically, the
crossover time tr between slow and fast switching is the
smaller of t1!2 and t2!1, where ti!j is the relaxation time,
under the action of Vj, of the homogeneous state associ-
ated with Vi . We can estimate ti!j by focusing only on
the k � 0 mode and assuming that, when the potential
switches from Vi to Vj, the mode amplitude behaves as
a Brownian particle initially equilibrated in the effective
local potential Ṽi�w� � Vi�w� 1

w2

2 . When the local po-
tential is switched, this point, which up to that moment
was stable, becomes unstable. The relaxation time to the
new homogeneous state associated with Vj is the time that
it takes the Brownian particle to roll down the potential hill
to the new equilibrium point [10]:

ti!j �
2

s2

Z w̃j

w̃i

dy exp

µ
2

s2 Ṽj� y�
∂

3
Z y

w̃i

dz exp

µ
2

2
s2

Ṽj�z�
∂

. (6)
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The behavior of the system (3) can be characterized by
the ratio of the time T�2 that the system spends in each
dynamics to the crossover time tr , r � T�2tr .

Let us focus on a particular choice of potentials satisfy-
ing the conditions (4) and (5):

V1,2�w� � A1,2

µ
w4

4
6

w3

3
2

w2

2
7 w

∂
, (7)

where A1,2 are positive constants. The corresponding ef-
fective local potentials with A1 � A2 � 1 are shown in
Fig. 1. The average potential is

V1�w� � a1

w4

4
1 a2

w3

3
2 a1

w2

2
2 a2w , (8)

where a6 � �A1 6 A2��2. If r ¿ 1 the entire system
alternates between the homogeneous states w̃1,2. When
r & 1, we expect pattern formation with outcomes depen-
dent on the specific value of r and on the equality or in-
equality of the parameters A1,2. We support our reasoning
with 2d numerical simulations of a discretized form of
Eq. (3) with these potentials, periodic boundary con-
ditions, and parameters Lx � Ly � 64, s � 1022 (the
fluctuations must be sufficiently small not to swamp the
potential barrier in V1). Since the most unstable mode
is jk�j 	 1 [5], the typical wavelength of any pattern is
expected to be l � 2p�jk�j 	 2p and the aspect ratio
L�l 
 10. In our simulations we take either the initial
field to be random according to a Gaussian distribution
(in which case the additive fluctuations can actually
be omitted entirely) or we can take an arbitrary initial
condition (e.g., all points equilibrated with V1), in which
case the fluctuations will distribute the field in any case.
In some cases we choose an initial configuration that
facilitates arrival at a particular final state simply to avoid

FIG. 1. Effective local potentials Ṽ1�w� (solid curve) and
Ṽ2�w� (dotted curve) with A1 � A2 � 1. The mirror symmetry
is broken if A1 fi A2.
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a very long simulation time. At the initial time every local
potential is set to, say, V1, at time T�2 all the potentials
are switched to V2, and so on.

If A1 � A2, V1�w� is an even function and, in the
limit r ! 0, Eq. (3) satisfies inversion symmetry under
the transformation w $ 2w. In this case we expect the
appearance of stationary rolls [9]. This is clearly seen in
Fig. 2. Note that the widths of the rolls are consistent with
the aspect ratio given earlier. On an extremely long time
scale, as in the SH model, the rolls line up in a more or-
dered fashion.

As r increases toward the “resonance” condition r � 1,
the contribution of V 0

2�w� can no longer be neglected.
Hence Eq. (3) will lack the symmetry w $ 2w, and an
oscillatory spotlike pattern is expected [9]. Furthermore,
with A1 � A2, Eq. (3) is invariant under the combined
transformation �w $ 2w,m $ 2m, which requires a
square spatial arrangement of the oscillatory pattern [9].
A realization is shown in Fig. 3, for which tr � t1!2 �
t2!1 � 2. The resonant period of the forcing is T � 4.
We show color encoded snapshots of the field, where the
oscillatory square patterns are clearly visible. Note that
the field oscillates between a square lattice and its glide-
transformed one. In other words, the spot centers do not
move or oscillate; it is the surrounding background that
oscillates. We are able to reproduce this behavior analyti-
cally through a decomposition in a small number of modes
[11]. The size of the pattern units is again consistent with
the aspect ratio given earlier. The oscillatory pattern and
the lattice arrangement of the spots resemble the so-called
oscillons found in vibrating granular media and clay [12].

FIG. 2 (color). Density plot of the field for the case A1 �
A2 � 1 and r � 0.25. The roll-shaped pattern is essentially
(see text) stationary.
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The behavior is in some ways simpler when A1 fi A2.
The inversion symmetry w $ 2w is no longer satisfied.
Therefore, both stationary �r ø 1� and dynamic �r � 1�
hexagonal spot patterns are expected [9]. We have simu-
lated the case A1 � 1, A2 � 2, for which the relaxation
time is calculated to be tr � 1.6. As always, if r ¿ 1 no
spatial structures develop; homogeneous states simply al-
ternate in time. On the other hand, for r � 0.94, we again
obtain oscillatory patterns, as shown in the snapshots of
Fig. 4. It is worth noting that this excitation density is quite
different from the one in Fig. 3. As expected, the spots are
arranged hexagonally. Most strikingly, in this case there is
no glide oscillation but rather a true oscillation of localized
excitations whose size is again consistent with the calcu-
lated aspect ratio. As r is decreased the excitation field

FIG. 3 (color). Snapshots of the field during a full period of
the dichotomous forcing (A1 � A2 � 1 and r � 1.15). Note
the oscillations of the field between the square lattice and its
glide-transformed one.
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FIG. 4 (color). Snapshots of the field for the case A1 � 1,
A2 � 2, and r � 0.94 during a full period of the forcing func-
tion. The localized excitations are arranged in a hexagonal
lattice.

is frozen and one obtains a stationary hexagonal pattern
of spots.

We have also performed simulations of Eq. (3) when the
modulation m�t� is a dichotomous noise. In this case, the
intermediate regime of oscillatory patterns fades out and
the system exhibits alternating homogeneous states if the
correlation time of m�t� is large and stable patterns (rolls
or hexagons) if the correlation time is small [11].

Summarizing, we have shown that the alternation of two
dynamics can create patterns even though each separate
dynamics drives the system to a homogeneous state. More-
over, we have seen that in the crossover between alter-
nating homogeneous states and stationary patterns, a rich
024103-4
phenomenology of oscillatory patterns may emerge. The
mechanism is very general and can easily be extended to
other situations such as reaction-diffusion systems. Thus,
we have provided an alternative nonequilibrium mecha-
nism to dissipative structures or modulation of bifurcation
parameters for the formation of stationary and oscillatory
spatial patterns.

An interesting open problem is whether it is possible
to find this type of behavior when the switching occurs
between two equilibrium dynamics. This is not the case
in the SH equation, even when the homogeneous state is
stable. For instance, in the case of convection, the homo-
geneous state describes a fluid in mechanical but not in
thermal equilibrium. If switching between local potential
is achievable in the case of convection, our results would
imply that the system will exhibit convection patterns by
alternating dynamics which separately drive the fluid to
mechanical (but not to thermal) equilibrium.
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