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Reversible ratchets as Brownian particles in an adiabatically changing periodic potential
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Departamento de Fı´sica Atómica, Nuclear y Molecular, Universidad Complutense de Madrid, 28040 Madrid, Spain

~Received 6 May 1997!

The existence of transport of Brownian particles in a one-dimensional periodic potential which changes
adiabatically is proven. The net fraction of particles crossing a given point toward a given direction during an
adiabatic process can be expressed as a contour integral of a nonexact differential in the space of parameters
of the potential. Since the work done to change the potential is an exact differential in the space of parameters,
cycles can be designed where transport of particles is induced without any energy consumption. These cycles
can be calledreversible ratchets, and a concrete example is described. The repercussions of these results on
equilibrium thermodynamics are discussed.@S1063-651X~98!01406-8#

PACS number~s!: 05.40.1j, 05.20.2y, 05.60.1w, 05.70.2a
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Magnasco has drawn the attention of the scientific co
munity to a simple phenomenon, namely, that an asymme
potential, perturbed by external fluctuations or periodic
ternal forces, can induce a transport of Brownian partic
@1#. Since this seminal work, there have been a numbe
papers proposing modifications and new models@2–11#, de-
signing experiments where the transport can be effectiv
observed@12,13#, and calculating general properties and n
features of these models — such us flows@3–5,7–11#, es-
cape rates@14#, and reversing currents@4,7,11,15#. There are
also sparse but significant precedents pointing out that n
equilibrium fluctuations can induce a flow of Brownian pa
ticles @16,17#. All these models are generically calledratch-
ets, since they are somehow inspired by the discussion
Ref. @16# of a ratchet working as a thermal engine~originally
proposed by Smoluchowski@18#!.

Two types of ratchets can be distinguished:changing
force ratchetsor rocked ratchets, where the external fluctua
tions or external periodic forces are additive@1,3–5,7,14#;
and flashing ratchets, where a periodic potential is modu
lated either by a signal periodic in time or by nontherm
fluctuations@2,3,10–13,15#. It is worth mentioning that the
latter seem to be more relevant both for biological appli
tions @3# and for segregation experiments@2,12#. In this pa-
per, I will focus only on flashing ratchets, i.e., Brownia
particles in a periodic potential changing in time.

These systems belong to the realm of nonequilibri
thermodynamics or statistical mechanics. It is believed t
the two basic ingredients for noise-induced transport
nonequilibrium and anisotropic potentials. In equilibrium
detailed balance ensures a null local current all over the
tem @19#; thus the first requirement seems to be unavoida
The second one stems from simple symmetry considerati

However, in this paper I show that adiabatically moving
one-dimensional periodic potential can induce transpor
Brownian particles. Moreover, it is possible to design a p
tential, periodic in space and time, where transport
Brownian particles can be induced without any energy c
sumption. These types of systems can be calledreversible
ratchets, and an explicit example is discussed below.

The existence of reversible ratchets is of extreme imp
tance for designing Brownian motors with high efficienc
Feynman@16# calculated under very simple assumptions
571063-651X/98/57~6!/7297~4!/$15.00
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efficiency of a ratchet, finding that it is equal to Carnot ef
ciency in the quasistatic limit. However, we have revea
the inconsistency of this arguments by proving the intrin
irreversibility of the system under consideration@20#. Most
of the ratchets proposed in the literature are also intrinsic
irreversible~see discussion below!, and their efficiency turns
out to be very low, whereas reversible ratchets posses a c
paratively high efficiency@21#.

I consider Brownian overdamped particles moving in t
interval xP@0,1# under the action of a periodic potentia
V(x,R), which depends on a set of parameters collected
vectorR. If these parameters change in time asR(t) where
tP@0,T#, the probability densityr(x,t) obeys the Smolu-
chowski equation

] tr~x,t !5]x@V8„x;R~ t !…1]x#r~x,t !52]xJR~ t !r~x,t !,
~1!

whereJR52V8(x;R)2]x is the current operator, and the
prime indicates derivative with respect tox. I have taken
units of time, length, and energy such that the diffusion
efficient and the temperature times the Boltzmann cons
are equal to 1.

My aim is to calculate the net fraction of particles cros
ing x50 to the right orintegrated flowof particles along the
process, which is defined byf5f(0), with

f~x![E
0

T

dt JR~ t !r~x,t !. ~2!

This quantity can be obtained analytically when the poten
is adiabatically changed. Notice first that the solution of E
~1!, in the adiabatic limit, is given by the equilibrium Gibb
state:

r~x,t !.r„x;R~ t !…[
e2V„x;R~ t !…

Z„R~ t !…
, ~3!

with Z(R)5*0
1e2V(x;R). This state has zero current ever

where, i.e.,JR(t)r„x;R(t)…50. Consequently, the total frac
tion of particles crossingx50 to the right should be zero in
7297 © 1998 The American Physical Society
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the adiabatic limit. However, it can be shown that this is n
the case. To start, I will prove the following lemma.

Lemma.Consider a Brownian particle in equilibrium wit
respect to a potentialV0(x) at time t50. If the potential is
suddenly changed toV1(x), then the net fraction of particle
crossing one of the boundaries of the system to the ri
during the relaxation to the new equilibrium state, is giv
by

f5E
0

1

dxE
0

x

dx8
eV1~x!

E 0
1dx9eV1~x9!

@r1~x8!2r0~x8!#, ~4!

wherer i(x)5e2Vi (x)/Zi is the Gibbs state corresponding
potentialVi(x).

The proof is as follows. Let us define the function

w~x!5E
0

`

dt@r~x,t !2r1~x!#. ~5!

If J1 is the current operator corresponding to poten
V1(x), the integrated flow of particles through a pointx in
the interval can be written asf(x)5J1w(x), since
J1r1(x)50. Applying the operator2]xJ1 to Eq. ~5!, one
has

2]xJ1w~x!5E
0

`

dt
]r~x,t !

]t
5r1~x!2r0~x!. ~6!

w(x) can be determined by solving this second-order diff
ential equation with periodic boundary conditions,w(0)
5w(1), and imposing that the integral ofw(x) along the
interval vanishes. These conditions are easily derived fo
the definition ofw(x) @Eq. ~5!#. Finally, oncew(x) is ob-
tained, one finds Eq.~4! by settingx50 in f(x)5J1w(x).

Let us now consider the following setup for an adiaba
change of the potentialV(x;R(t)), occurring fromt50 to
t5T (T→`). The parameter vectorR changes by jumps
DR. After each jump, the system is allowed to relax befo
the next jump takes place. Therefore, the system should r
for a time much longer than its relaxation time in any of t
potentialsV(x;R). This adiabatic limit is achieved ifT→`
and DR→0 with T/Nsteps→`, Nsteps being the number of
steps taken to complete the whole process. Using the ab
lemma, it is not hard to prove the following theorem.

Theorem:The total fraction of particles crossingx50 to
the right, during the complete process in the adiabatic li
described above, is given by the contour integral

f5E
R~0!

R~T!

dR•E
0

1

dxE
0

x

dx8r1~x;R!¹Rr2~x8;R!, ~7!

where

r6~x;R!5
e6V~x;R!

Z6~R!
, Z6~R!5E

0

1

dxe6V~x;R!.

This is the main result of this paper. It tells us that, even
the adiabatic limit, the net fraction of particlesf crossing
one of the boundaries of the system in a given direction
be different from zero. Moreover, it indicates that this fra
tion of crossing particles in an infinitesimal process
t
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df5E
0

1

dxE
0

x

dx8r1~x;R!dr2~x8;R! ~8!

is not an exact differential. Consequently, it is possible
have transport of particles in a cyclic process,R(0)5R(T),
in the adiabatic limit.

To stress the singularity of this result and to prove t
existence of reversible ratchets, let us repeat the same a
ments for the energy introduced in the system by chang
the potential. If one has a Brownian particle in equilibriu
with V0(x) and suddenly changes the potential toV1(x), the
energy introduced is equal to

Ein5E
0

1

dxr0~x!@V1~x!2V0~x!#. ~9!

Part of this energy can be dissipated to the thermal bat
the relaxation fromr0(x) to r1(x). The input energy along
the whole adiabatic process described above is given by
contour integral

Ein5E
R~0!

R~T!

dR•E
0

1

dx@¹RV~x;R!#r~x;R!

52E
R~0!

R~T!

dR•¹R ln Z~R!. ~10!

This expression has a simple interpretation in the contex
equilibrium statistical mechanics:¹R ln Z(R) is a general-
ized pressure which, when multiplied by2dR, gives us the
work doneon the system. Remarkably, this work is an exa
differential in theR space. Hence the total work done on t
system along an isothermal cycle is always zero. Since
fraction of crossing particlesdf is not an exact differential,
we can have transport without any energy consumption,
a reversible ratchet.

Still, one could be suspicious about Eq.~7!. What is
wrong with the adiabatic solution given by Eq.~3! and the
argument discussed right below this equation? How ca
system present a net transport of particles if,at any time, it is
globally in thermal equilibrium and every local current va
ishes? An alternative and more general proof of Eq.~7! helps
to clarify these questions.

Let us find the correction of the adiabatic solution~3! up
to first order onṘ(t):

r~x,t !.r„x;R~ t !…1Ṙ~ t !•wW „x;R~ t !…. ~11!

Inserting Eq.~11! into the Fokker-Planck equation~1! and
neglecting] t@Ṙ(t)•wW #, one finds

¹Rr„x;R~ t !…52]xJR~ t !wW „x;R~ t !…. ~12!

Solving this equation with periodic boundary conditio
wW (0)5wW (1), andimposing that the integral of each comp
nent ofwW (x) along the intervalxP@0,1# vanishes~exactly as
in the proof of the lemma!, the correctionwW can be found.
Finally, the fraction of particles crossingx to the right during
the process is@see Eq.~2!#
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f~x!5E
R~0!

R~T!

dR•JRwW ~x;R!, ~13!

which, using the solution of Eq.~12! and settingx50, re-
produces Eq.~7!. We see that the correctionṘ(t)•wW , al-
though vanishing in the adiabatic limit, gives a nonzero fr
tion of particlesf crossingx50 during the interval@0,T#.
This proof resembles the derivation of the well-knownBer-
ry’s phase@22# in quantum mechanics.

Before going on with a concrete example, I would like
stress an important property of Eq.~7!. From this equation, it
follows that no transport of particles occurs if one slow
modulates a potential or, more generally, if one slow
switches between two potentialsVA(x) and VB(x) in the
following way: V(x,t)5r (t)VA(x)1@12r (t)#VB(x), with
r (t)P@0,1# periodic in time. This particular case is, remar
ably, the only one which has been significantly studied
date @2,3,10–13,15#, and it turns out that the efficiency o
these flashing ratchets, when considered as engines, has
found to be very low@21# ~see, however, Ref.@19#!.

In order to have a reversible ratchet, the cycle must b
process along a loop. A first and rather trivial example c
sists of a well or a barrier around a pointx5a within the
interval @0,1#. If the parametera is moved from 0 to 1, due
to the periodic boundary conditions, we have a cycle withf
different from zero. This example has been studied before
Landauer and Bu¨ttiker in the context of reversible computa
tion @23#. The application of Eq.~7! reproduces their expres
sion for the current@Eq. ~6.8! in Ref. @23##. However, in this
model we are actually pushing the particles in a given dir
tion, and, therefore, it cannot be considered as a gen
ratchet.

We can obtain a less trivial system if the potential d
pends on two parameters and these parameters change
batically along a loop. As an example of such a reversi
ratchet, I consider the potential of Fig. 1, which depends
two parametersV1 andV2. If these parameters are chang
following the path described in the same figure, then a tra
port of particles is induced towards the positivex direction.
In Fig. 2, I plot the shape of the potential at the four points
Fig. 1. The way this ratchet works is apparent from t
figure, and one can see that a transport of particles to
right is always induced. In Fig. 3, the net fraction of particl
f crossing the boundaries of the interval to the right in
period, calculated with Eq.~7!, has been plotted as a functio
of the width a of the barriers or wells of the potential. Fo

FIG. 1. Graphical representation of the reversible ratchet
scribed in the text: the potential depends on two parameters,V1 and
V2, which are the height of two barriers or wells~left!, and they
adiabatically change along the path depicted on the right (V being
the half side of the square!.
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infinite large barrier and wells (V→`), the fractionf is
equal to one for any value ofa between 0 and12, as is evident
from Fig. 2: at step 2, the particle is within the well wit
probability one, as it is at steps 3 and 4; then it must cr
x50 with probability one when moving from 3 to 4 and
can never jump back.

In summary, the existence of reversible ratchets has b
proven. Moreover, I have presented a thermodynamic dif
ential given by Eq.~8!, which is not exact in the space o
parametersR of the potential. This is a nontrivial result in
the field of equilibrium thermodynamics, and it opens t
possibility of developing a complete thermodynamics of p
riodic potentials, including adiabatic changes of temperatu
chemical potential, and other thermodynamic functions.

There is a corollary of the theorem, which is important f
Brownian motors or noise-induced transport. From the ab
results, it is clear that, in order to have transport, the cha
of the potential must be driven, not only slowly, but also in
given direction. Therefore, if this change is driven by
noise, i.e., ifR fluctuates along a given path in the parame
space, we cannot have adiabatic transport unless the n
were biased toward a given direction. If, for instance,R is

-

FIG. 2. Shape of the potential at the numbered steps of
adiabatic process plotted in Fig. 1.

FIG. 3. Net fraction of particlesf crossingx50 to the right,
calculated using Eq.~7!, as a function of the widtha of barriers or
wells, for different values of the maximum heightV.
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driven by a chemical coordinate, this bias can be supplied
reactants with concentrations far from equilibrium~fuel!, as
pointed out by Magnasco@6# in a different but related con
text.

The above considerations are only valid in the adiab
limit, and Eq.~7! cannot be applied to irreversible process
The discovery of flashing ratchets by Prostet al. @2# and
Astumian and Bier@3# can now be interpreted in a differen
way: they found a path in theR space which induces a cu
rent in a given directionno matter how it moves along th
path, if it does so irreversibly. However, this is not strange
thermodynamics. For instance, the change of entropy is
e
.

s

e

y

ic
.

l-

ways positive for an irreversible process, no matter what
direction of the process. Nevertheless, as mentioned ab
these irreversible ratchets have a low efficiency, i.e., the
duced transport is very energy consuming@21#.
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Brito on the efficiency of Brownian motors. I am also in
debted to J. Cuesta, M. Man˜as, B. Jime´nez de Cisneros, and
P. Hänggi, for suggestions which have improved the co
pleteness and clarity of the paper. This work was financia
supported by the DGCYT~Spain! under Project Nos. PB94
0265 and PB94-0388.
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