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Reversible ratchets as Brownian particles in an adiabatically changing periodic potential
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The existence of transport of Brownian particles in a one-dimensional periodic potential which changes
adiabatically is proven. The net fraction of particles crossing a given point toward a given direction during an
adiabatic process can be expressed as a contour integral of a nonexact differential in the space of parameters
of the potential. Since the work done to change the potential is an exact differential in the space of parameters,
cycles can be designed where transport of particles is induced without any energy consumption. These cycles
can be calledeversible ratchetsand a concrete example is described. The repercussions of these results on
equilibrium thermodynamics are discussg81063-651X98)01406-9

PACS numbdss): 05.40:+j, 05.20~y, 05.604+w, 05.70-a

Magnasco has drawn the attention of the scientific comefficiency of a ratchet, finding that it is equal to Carnot effi-
munity to a simple phenomenon, namely, that an asymmetriciency in the quasistatic limit. However, we have revealed
potential, perturbed by external fluctuations or periodic exthe inconsistency of this arguments by proving the intrinsic
ternal forces, can induce a transport of Brownian particledrreversibility of the system under consideratif20]. Most
[1]. Since this seminal work, there have been a number off the ratchets proposed in the literature are also intrinsically
papers proposing modifications and new mO(ﬂEBl:ﬂ, de- irreverSible(See discussion bEIO\Nand their efﬁCiency turns
signing experiments where the transport can be effectivelut to be very low, whereas reversible ratchets posses a com-
observed12,13, and calculating general properties and newpParatively high efficiency21].
features of these models — such us floi8s-5,7—11, es- | consider Brownian overdamped particles moving in the
cape rate$14], and reversing Currenfg,7'11’15_ There are interval xe [0,1] under the action of a periOdiC potential
also sparse but significant precedents pointing out that non(X,R), which depends on a set of parameters collected in a
equilibrium fluctuations can induce a flow of Brownian par- vVectorR. If these parameters change in timeRi{g) where
ticles[16,17). All these models are generically calleatch-  t<[0,T], the probability densityp(x,t) obeys the Smolu-
ets since they are somehow inspired by the discussion ifhowski equation
Ref.[16] of a ratchet working as a thermal engifeiginally
proposed by Smoluchowski8]). ap(X,1) =, V' (X;R(1))+ dx]p(X, 1) = — Iy Trtyp(X,1),

Two types of ratchets can be distinguisheditanging (D)
force ratchetor rocked ratchetswhere the external fluctua-
tions or -eXternal periOdiC forces f';lre_ add|t|[/b,3—5,7,14, WherejR: —V’(X;R)_ax is the current Operator and the
and flashing ratchetswhere a periodic potential is modu- prime indicates derivative with respect o | have taken
lated either by a signal periodic in time or by nonthermalynits of time, length, and energy such that the diffusion co-

fluctuations[2,3,10-13,15 It is worth mentioning that the  efficient and the temperature times the Boltzmann constant
latter seem to be more relevant both for biological applicazre equal to 1.

tions [3] and for segregation experimen,12]. In this pa- My aim is to calculate the net fraction of particles cross-
per, 1 will focus only on flashing ratchets, i.e., Brownian jng x=0 to the right orintegrated flowof particles along the
particles in a periodic potential changing in time. process, which is defined by= ¢(0), with

These systems belong to the realm of nonequilibrium
thermodynamics or statistical mechanics. It is believed that T
the two basic ingredients for noise-induced transport are ¢(X)Ef dt Jrp(X,t). 2)
nonequilibrium and anisotropic potentials. In equilibrium, 0
detailed balance ensures a null local current all over the sys-
tem[19]; thus the first requirement seems to be unavoidableThis quantity can be obtained analytically when the potential
The second one stems from simple symmetry considerationg adiabatically changed. Notice first that the solution of Eq.
However, in this paper | show that adiabatically moving a(1), in the adiabatic limit, is given by the equilibrium Gibbs
one-dimensional periodic potential can induce transport oftate:
Brownian particles. Moreover, it is possible to design a po-
tential, periodic in space and time, where transport of e~ VOGR(D)
Brownian particles can be induced without any energy con- p(X,)=p(X;R(1))= 5=,
sumption. These types of systems can be calacrsible Z(R(1)
ratchets and an explicit example is discussed below.
The existence of reversible ratchets is of extreme imporwith Z(R)=fe” V™R This state has zero current every-
tance for designing Brownian motors with high efficiency. where, i.e.,Jqup(X;R(t))=0. Consequently, the total frac-
Feynman 16] calculated under very simple assumptions thetion of particles crossing=0 to the right should be zero in

()
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the adiabatic limit. However, it can be shown that this is not 1 x ,
the case. To start, | will prove the following lemma. o= Jo dXJO dx’ p.(X;R)p-(X";R) (8)
Lemma.Consider a Brownian particle in equilibrium with

;?ij%icrfl tocﬁaaotggttlé}’ 25())() t?]tetr']r?ﬁ; Tugt. flrggt]iinpg:‘en;retlilcfas is not an exact differential. Consequently, it is possible to
y g 1A b have transport of particles in a cyclic proceB¢0)=R(T),

crossing one of the boundaries of the system to the righﬁ,n the adiabatic limit
during the relaxation to the new equilibrium state, is given To stress the sin.gularity of this result and to prove the

by existence of reversible ratchets, let us repeat the same argu-
eVi(x) ments for the energy introduced in the system by changing
d= J dxf dX ——————[p1(X")—po(X")], (4 the potential. If one has a Brownian particle in equilibrium
f 14y eVa(x") with Vy(x) and suddenly changes the potentiaMdx), the
energy introduced is equal to

wherep;(x)=eVi®/Z, is the Gibbs state corresponding to

1
potential V;(x). Ein= J dxpo(X)[V1(X) = Vo(X)]. 9)
The proof is as follows. Let us define the function 0

o Part of this energy can be dissipated to the thermal bath in
P(x)= fo difp(x,t) = p1(X)]. () the relaxation frompo(x) to p4(x). The input energy along
the whole adiabatic process described above is given by the
If J, is the current operator corresponding to potentialcontour integral
V1(x), the integrated flow of particles through a poinin
the interval can be written asp(x)=J,¢(x), since
J1p1(X)=0. Applying the operator-4,7; to Eq. (5), one
has

R(T) 1
Em=f dR-f dx[VRV(X;R)]p(X;R)
R(0) 0

R(T)
(e ap(xt) :—f dR-Vg In Z(R). (10)
o0 = | At =pi (0= po(x).  (6) Ro)

This expression has a simple interpretation in the context of
¢(x) can be determined by solving this second-order differ-equilibrium statistical mechanic&i In Z(R) is a general-
ential equation with periodic boundary conditiong(0)  jzed pressure which, when multiplied bydR, gives us the
=¢(1), andimposing that the integral op(x) along the  work doneon the system. Remarkably, this work is an exact
interval vanishes. These conditions are easily derived forngifferential in theR space. Hence the total work done on the
the definition ofp(x) [Eq. (5)]. Finally, oncee(x) is ob-  system along an isothermal cycle is always zero. Since the
tained, one finds Eq4) by settingx=0 in ¢(x)=J1¢(X).  fraction of crossing particled¢ is not an exact differential,

Let us now consider the following setup for an adiabaticye can have transport without any energy consumption, i.e.,
change of the potentiad (x;R(t)), occurring fromt=0 to g reversible ratchet.
t=T (T—). The parameter vectdR changes by jumps Still, one could be suspicious about E€). What is
AR. After each jump, the system is allowed to relax beforewrong with the adiabatic solution given by E@) and the
the next jump takes place. Therefore, the system should relaxrgument discussed right below this equation? How can a
for a time much longer than its relaxation time in any of thesystem present a net transport of particleatifany timeit is
potentialsV(x;R). This adiabatic limit is achieved if—c«  globally in thermal equilibrium and every local current van-
and AR—0 with T/Ngeps—, Ngeps beINg the number of ishes? An alternative and more general proof of #jhelps
steps taken to complete the whole process. Using the above clarify these questions.
lemma, it is not hard to prove the following theorem. Let us find the correction of the adiabatic soluti@® up
Theorem:The total fraction of particles crossing=0 t0 i first order onR(t):
the right, during the complete process in the adiabatic limit
described above, is given by the contour integral

p(X,1)=p(GR(1))+R(1)- ¢ (R(1)). (11)
R(T) 1 x
¢=fR(O> dR- fo dxfodX'P+(X;R)VRP—(X';R), (7)  Inserting Eq.(11) into the Fokker-Planck equatiofi) and
neglectingd,[ R(t) - ¢], one finds
where
+V(X:R) Vro(X;R(1))= — 0y Tr(tye (X;R(1)). (12

= Zt(R)=J dxe™ VR, . . o - .
Z.(R) Solvmg this equation with periodic boundary conditions
This is the main result of this paper. It tells us that, even m‘D(O) ¢(1) andimposing that the integral of each compo-
the adiabatic limit, the net fraction of particles crossing Nent ofe(x) along the intervak e [0,1] vanishedexactly as
one of the boundaries of the system in a given direction cain the proof of the lemmia the correctiony can be found.

be different from zero. Moreover, it indicates that this frac- Finally, the fraction of particles crossingto the right during
tion of crossing particles in an infinitesimal process the process ifsee Eq(2)]

p+(X;R)=
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FIG. 1. Graphical representation of the reversible ratchet de-
scribed in the text: the potential depends on two paramétgrand
V,, which are the height of two barriers or welleft), and they
adiabatically change along the path depicted on the righibéing

the half side of the square 3 2
R(T) -
s0= [ 4R GugixiR) 13

which, using the solution of Eq12) and settingx=0, re-

produces Eq(7). We see that the correctioﬁ(t)~$, al-
though vanishing in the adiabatic limit, gives a nonzero frac-
tion of particles¢ crossingx=0 during the interva[0,T]. FIG. 2. Shape of the potential at the numbered steps of the
This proof resembles the derivation of the well-kno®er-  adiabatic process plotted in Fig. 1.

ry’s phase[22] in quantum mechanics.

Before going on with a concrete example, | would like to infinite large barrier and wellsM— ), the fraction¢ is
stress an important property of Eg). From this equation, it equal to one for any value afbetween 0 angd, as is evident
follows that no transport of particles occurs if one slowly from Fig. 2: at step 2, the particle is within the well with
modulates a potential or, more generally, if one slowlyprobability one, as it is at steps 3 and 4; then it must cross
switches between two potentialé,(x) and Vg(x) in the  x=0 with probability one when moving from 3 to 4 and it
following way: V(x,t)=r(t)Va(x)+[1—-r(t)]Vg(x), with  can never jump back.

r(t) €[0,1] periodic in time. This particular case is, remark-  In summary, the existence of reversible ratchets has been
ably, the only one which has been significantly studied toproven. Moreover, | have presented a thermodynamic differ-
date[2,3,10—13,1% and it turns out that the efficiency of ential given by Eq(8), which is not exact in the space of
these flashing ratchets, when considered as engines, has bg@tiameterk of the potential. This is a nontrivial result in
found to be very low[21] (see, however, Ref19]). the field of equilibrium thermodynamics, and it opens the

In order to have a reversible ratchet, the cycle must be fossibility of developing a complete thermodynamics of pe-
process along a loop. A first and rather trivial example con+iodic potentials, including adiabatic changes of temperature,
sists of a well or a barrier around a poixta within the  chemical potential, and other thermodynamic functions.
interval[0,1]. If the parameten is moved from 0 to 1, due There is a corollary of the theorem, which is important for
to the periodic boundary conditions, we have a cycle with Brownian motors or noise-induced transport. From the above
different from zero. This example has been studied before byesults, it is clear that, in order to have transport, the change
Landauer and Bitiker in the context of reversible computa- of the potential must be driven, not only slowly, but also in a
tion [23]. The application of Eq(7) reproduces their expres- given direction. Therefore, if this change is driven by a
sion for the currenfEq. (6.8) in Ref.[23]]. However, in this  noise, i.e., ifR fluctuates along a given path in the parameter
model we are actually pushing the particles in a given direcspace, we cannot have adiabatic transport unless the noise
tion, and, therefore, it cannot be considered as a genuin@ere biased toward a given direction. If, for instanBeis
ratchet.

We can obtain a less trivial system if the potential de- 1.0 . .
pends on two parameters and these parameters change adia-

batically along a loop. As an example of such a reversible 08
ratchet, | consider the potential of Fig. 1, which depends on 0.6
two parameterd/; andV,. If these parameters are changed ¢

following the path described in the same figure, then a trans- 0.4
port of particles is induced towards the positivelirection.

I V=1

In Fig. 2, | plot the shape of the potential at the four points of 02

Fig. 1. The way this ratchet works is apparent from this 0.0 . ) . .
figure, and one can see that a transport of particles to the 00 01 02 03 04 05

right is always induced. In Fig. 3, the net fraction of particles a

¢ crossing the boundaries of the interval to the right in a FIG. 3. Net fraction of particleg) crossingx=0 to the right,
period, calculated with E(q7), has been plotted as a function calculated using Eq(7), as a function of the widtla of barriers or
of the widtha of the barriers or wells of the potential. For wells, for different values of the maximum heigtt
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driven by a chemical coordinate, this bias can be supplied byvays positive for an irreversible process, no matter what the
reactants with concentrations far from equilibridfoel), as  direction of the process. Nevertheless, as mentioned above,
pointed out by Magnasci§] in a different but related con- these irreversible ratchets have a low efficiency, i.e., the in-
text. duced transport is very energy consumjd].

The above considerations are only valid in the adiabatic
limit, and Eq.(7) cannot be applied to irreversible processes. | appreciate discussions with J.M. Blanco, F. Cao, and R.
The discovery of flashing ratchets by Pratal. [2] and  Brito on the efficiency of Brownian motors. | am also in-
Astumian and Bief3] can now be interpreted in a different debted to J. Cuesta, M. Mas, B. Jimeez de Cisneros, and
way: they found a path in thR space which induces a cur- P. Hanggi, for suggestions which have improved the com-
rent in a given directiomo matter how it moves along the pleteness and clarity of the paper. This work was financially
path if it does so irreversibly. However, this is not strange in supported by the DGCYTSpain under Project Nos. PB94-
thermodynamics. For instance, the change of entropy is aB265 and PB94-0388.
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