Critical brain networks
Dante R. Chialvo _

Physiology. Northwestern University,
(Chicago)

dchialvo@ucla.edu

Papers: www.chialvo.net



We study networks of
brain large-scale organization

How is the large scale structure of brain networks?

We examine:
e Catalogues of connectivity maps.
e Networks extracted from Functional Magnetic

Resonance Imaging (Fmri).
e Neocortical cultures (with Dietmar Plenz, NIH).
e Abstract Networks.
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Hoja 0 del evangelio

La estadistica que aprendimos describen uniformidad
(gaussianas, exponentiales, :"una forma”)

Naturaleza es NO uniforme : "muchas formas”!!
Complejidad es no-uniformidad
Ejemplo: distribucion of pesos vs. distribucion de $

Ilustraremos esto con resultados de la corteza
cerebral .

La leyes de la fisica son simples, como es entonces que e/
mundo en gue estamos inmersos es complejo?

P r- e g u n t a S p a r- a d e S p u eS : Como se genera complejidad a partir de leyes simples?



But first. Complicated or Complex?

many linear pieces + a
Complicated central supervisor +
system blueprint = “whole”

Example: a tv set

many nonlinear pieces +
Complex coupling + injected energy
system = emergent properties

Example: society




Lineal o No-Lineal, a quien le
importa?

f(x) es “lineal” cuando para todo los
valores de “x" la funcion “f” no cambia

sorry



No lineal

epara X grandes la
pendiente es grande

epala X CErcano a

cerCana a Cero,
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About the idea of complex vs. complicated

DvynamicsLand Emergence
NonLinear

A Low-Dimensional Stochastic Self-Organized Complex

Deterministic Chaos Resonance Criticality (SOC) Systems
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° sand slowly... nothing happen
..eventually the pile will reach a state 1n

produce avalanches of all sizes:

e N(S) 1s the number of avalanches of size S
and[@fis the critical exponent.  «grw 1987 PRL



Another example: Rain as
Earthquakes in the Sky~

Rain rate qt) [mm/h]
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Time t[min]

e Rain dynamics is equivalent to the
Gutenberg-Richter law for earthquakes
and the scale-free distribution of
avalanche sizes in sandpiles
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*Figures from www.cmth.ph.ic.ac.uk/kim O. Peters, C.
Hertlein, and K. Christensen, 4 complexity view of rainfall,
Phys. Rev. Lett. 88, 018701, 1-4 (2002).
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'Earthquak

“Neuronal
avalanches”
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More Earthquakes in the cortex’

—— #electrodes
— summed LFP

probability [P]

: e ,”.”10 T 100. .4hu

run size [#electrodes or V]

From Beggs and Plenz (J. Neuroscience, Dec. 2003)



Complex Networks are the
squeletum of a
Complex System




Networks are made of nodes connected by links
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Complex Networks (in 60 sec.)

Reqular “*Small world” Random

-

A few shortcuts on a regular net make a small world network (which have the
clustering of the regular and the short path length of the random net).

Networks in nature are not homogeneous!

S Scale-freg

In random nets most nodes are linked by about the same number of links (k),
while in scale-free nets a few are extremely well connected.



Networks Statistical Prop. (in 10 sec.)

e Degree distribution: P(k) ~ k ™
(how many links each node have )

e Average shortest distance: L

(shortest distance between any two
nodes)

e Clustering: C(k) ~ k*(how many of your

- links are also mutually linked) |

e Average connectivy of neighbors:
Knn(k)Nk_B
(how many links my neighbor have)

( Rev. Mod. Phys. 74, 47 (2002): Adv. in Physics 51, 4 (2002): SIAM Rev. 45, 167 (2003) )



Why we care about “scale-free”
networks

e They are highly clustered and at the
same time have short minimal length

(sort of well connected at all scales)
e Faster synchronizability.

o .
Robustéto random) and Fragile (to
targeted attack)



“In catalogue” cortical nets

Macaque visual cortex
Just by visual inspection one connectivity......." |

suspects that this network can not
be scale-free

Note, for example HC
(hippocampus) have degree 1

(32 nodes,

' 315 link
retina____ inks)

From Felleman and Van Essen, (1991) Cerebral Cortex
1:1-47.




In catalogue cortical nets
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From: Organization, Development and Function of Complex Brain Networks.
Sporns, Chialvo, Kaiser and Hilgetag.



The most complete cortical network in
the literature

Entire macaque cerebral
cortex
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From Sporns et al, Cerebral Cortex, 10:127-141(2000).



atalogue” nets are small-worlc

but not scale-free (very homogeneous)
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Functional Magnetic Resonance Imaging
("fMRI”
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Brain’ Net (finger tapping)

Undirected Degree (k)

Colors indicate the number of links (degree) of
each node. yellow=1, green 2, red=3, blue=4, etc




Bottom slice

Colors indicate

number of links
(degree) of
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Top slice 300
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Degree Distribution (i.e., how many
links each node have) of my brain

Scale-free k" withy ~ 2
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Average Degree Distribution

n=22 from 7 subjects
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DUEN few very well
connected
brain sites
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Degree k

e Neighbors of well connected nodes are

also well connected (“Assortative”)




Average Links Length Distribution

Probability of
inding a lin
between two

Prob. k(A)

L7/

Voxel length
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Different tasks
Different networks
Similar scaling

— Tapping
=+ Music

Counts (k)

Degree k




Statistics

fMRI-results

rc N C L <k> 'Y C;and Lrand
0.6 31503 | 0.14 | 11.4 | 13.41 2.0 4.3x104 3.9
0.7 17174 | 0.13 | 129 | 6.29 2.1 3.7x104 5.3
0.8 4891 0.15 6. 4,12 2.2 8.9x10+ 6.0 - .
Small-world
: ® C > > Crand
Previous related results o L L
rand
Network N C L <k> Con Lo
C. Elegans! 282 0.28 | 2.65 7.68 0.025 2.1
Macaque 32 0.55 | 1.77 | 9.85 0.318 1.5
VC2
Cat Cortex? 65 0.54 | 1.87 | 17.48 0.273 1.4

* Crang ~ <k>/N

(1) Watts & Strogats, 1998.
(2) Osporn et al, 2003.



Hubs Il

t= 2.5 sec

Undirected Degree k Directed Degree k




Directed degrees distr.

e =
Average Undirected 3
+— Directed (Task 1)
g Directed (Task 2)
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Blah-blah-logy:

*i}

“In vivo” brain activity do not have a characteristic scale (“scale-free”
networks). Some physicists will be happy to know that, after all, the
brain is a scale-free network with small-world properties. (C >>C_.4 ).

Some biologists will be unhappy to know that “In catalogue” nets are
homogeneous (underreported findings?).

Assortative features ...?

effective, functional and structural connectivity. “In numero” networks
with similar properties could be hiding surprises.

The fMRI method allows, in principle, to study the brain in a dance
rather than in a pose and address dynamical states as emotion, pain,
pleasure, etc).




Brains are critical

“Per, para mi el cerebro es
critico™...

“si, para mi tambien
Dante!”




Per Bak (1947-2002)

“How Nature Works”

Oxford University Press. | . .




Degree vs clustering

Clustering C

%,
10

Degree k

e Clustering is rel. independent of
connectivity.




Another subject in different tasks:
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Similar tail decay in different finger tapping tasks



[ |
Undirected Degree (k)

Colors indicate the number
of links (degree) of each site.




Brain “Two-point Correlation”

Voxel L.




Ko-K4, and Degree vs Clustering

Maslov’ rewiring

Clustering C
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—— #electrodes
—— summed LFP
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Begs and Plenz (J. Neuroscience, Dec. 2003)
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