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To explore the character of transport in a plasma turbulence model with avalanche transport, the
motion of tracer particles has been followed. Both the time evolution of the moments of the
distribution function of the tracer particle radial positiokf,(t)—r(0)|"), and their finite scale
Lyapunov number are used to determine the anomalous diffusion expen&hg numerical results

show that the transport mechanism is superdiffusive with an expaneloise to 0.880.07. The
distribution of the exit times of particles trapped into stochastic jets is also determined. These
particles have the lowest separation rate at the low resonant surface200®©American Institute

of Physics. [DOI: 10.1063/1.1416180

I. INTRODUCTION lence based on different dynamical mechanisms have shown

S f the ph b 4in ol " zﬁme of the characteristic SOC behat4df and the pres-
ome of e Pnenomena observed in plasmas confingghqe of radially elongated structurédsSome of the macro-

by magnetic fields suggest that a broad range of space a%%opic results from these models when applied to subcritical

time scales pla_y an essential role in _the dynamics of t.h%onditions are consistent with results from simple cellular
plasma. In particular, transport of particles and energy in-

duced by turbul h foat that ¢ quit automata calculations based on the dynamics of the
uced by furbulence have leatures that aré not quite xo, ;65,1516 4 this simple model, transport processes are
plained by local diffusive transport models. Two of thes

foat h Boh i ¢ th €dominated by anomalous diffusidh.

catures arez € non-gyrobohm scaiing o € energy o explore the character of the underlying transport in
confinementt? and the anomalous plasma response meas;urerqalsma turbulence, we have considered a 3-D pressure-
n pertqrb%t_lve experlmenﬁs“. One of the possible o gient driven turbulence mod@lthat has already been
explanationsis that hlgh-tem_perature_ _magnetlcall_y confme_d used to identify the presence of avalanche transport. In this
plasmas are close to marglnal Stf"l.b'“t.y and Gthe|r dynam'c?hodel, we have followed the motion of tracer particles. Sev-
are governed by self-organized criticalt§00. eral moments(|r(t) —r(0)|"), of the distribution of the par-

The concept of SOC brlngs.together the 'F'eas of Selfyicie radial locations have been determined and also their
organization of nonlinear dynamical systems with the Oﬁen'dependence on the elapsed tirfie(t) —r (0)]") =Dt

observed near-critical behavior of many natural phenoniena ecause of the finite size of the system, we have also evalu-

These phenomena exhibit self-similarities over extende ted the finite scale Lyapunov number as an alternative tech-

ranges of spatial an_d t_emporal_ scales. In such SyStemS’(lgl'?que to determine.. Both methods agree in the value of
feature of the dynamics is the existence of transport events he determination of the exponentis important for con-

all sges Tat \theh usuallly o_len?ct(?l ast a\?lan((j:htes.f tructing plasma transport models that incorporate the multi-
esults of the analysis ot fluctuation data from severaE icity of time scales involved in transport.

gxperi_ments, including tokam.ak_s, stellarators, and reverse The calculated transport exponents may be explained in
field pinch, showed the self-similar character of the electro—terms of fractional kinetics of the tracer particlé<? and

gtachOfI?lJ‘lgtLlltapons I\{V'It(h a H%Lsttixpon?jt-,l, in t_he rar:rg]]el they can be related to the decay exponents of the trapping
O~ 4. 1L IS well Known that for @ ime series wi e distributions of these particles.

: ) im
>ﬁ>%'5§:lh§ Odetl:]a ha; Iorkllg-relmge tme cortr'elanolni' ané The rest of this paper is organized as follows. In Sec. Il,
when o. , the Series has long-range anticorrelationSy, o v,rpylence model used in the present calculations is de-

'[hoeSak_l)_shenc? of tﬁmel correlilltloi(set._, randhorm ?rl]ves H scribed. The results of the tracer particle transport are pre-
— 0.0 Iherefore the plasma fluctuations show e presence, yiqq iy sec. 111, In Sec. IV, we provide an interpretation of

of I_ong—range_tlme corre_lauons. There is also evidence Othe numerical results in terms of fractional kinetics. Finally,
radial correlations over distances longer than the correlauonqe conclusions of this paper are given in Sec. V.

length of the fluctuatior’§ and large structures have been

directly observed in the plasma core temperatur

fluctuationst* Such a character of the plasma fluctuations i§“' TURBULENCE MODEL

consistent with plasma transport by avalanches. We start with a cylindrical plasma confined by a mag-
Three-dimensiona(3-D) calculations of plasma turbu- netic field with average bad curvature. This plasma can be
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unstable to resistive interchange modes. The dissipativthe poloidal Alfven time. The surface averaged quantities are
terms control the instability threshold and once they are innot static, but they vary on time scales long compared to the
cluded, the model is a critical gradient model. A typical ex-fluctuations. The collisional diffusion coefficield, is taken
ample of this type of plasma is the outer region of a stellarto be different from the one in the fluctuation equation, Eg.
ator with magnetic shear. In the past, the resistive pressuré2).

gradient-driven turbulence has been used to describe these The main transport mechanism that we study is the tur-
plasmas in a supercritical state. The same basic model h&silent transport through the second term on the left-hand
been used in Ref. 12 to study a subcritical state. This moddide of Eq.(4). However, the collisional diffusion term on
was described in detail in Ref. 12. Here, we just summarizehe right-hand side is negligibly small for the calculations
the basic equations. The fluctuation equations are as followgresented in this paper.

~ ~ In a subcritical state, to reach a self-organized state
V2D 10v2d g

) +V-VV2D (when such a state exigtst is necessary to have noise in the
dt ro06 + system. In some simple dynamical models, like the sandpile,
B. 11db the noise is external noise and the SOC state is reached by
~ 0 ap ~ : i .
= 2 +Mvjq>, ) taking the limit of small noise. In the model presented here,

- + R —
, i ) .
7MiNoRo Mg e 1 90 there are two types of noise.

ap 1dp ~ . ap)lad pm -
E+<V9>Fa—6+V'Vp—7F(9—0+X¢VLD+XHVHP-

(1) To start the 3-D nonlinear calculations, a low level of
background fluctuations is initialized. These are the
2 seeds for the instabilities to grow. We choose a random
distribution of amplitudes and phases with an averaged
Here,p and® are the pressure and electrostatic potential, the  fluctuation level below 10°. In our experience for fluc-
tildes indicate fluctuating quantitiés time and spade and tuation levels this low, the results in the nonlinear regime
the angular brackets, ), indicate flux surface averaging, that are not sensitive to these initial conditions.
is, the poloidal and toroidal angular average. The cylindef2) The second source of noise is the external pressure

has a radiusa and length 2rR,. The magnetic field along sourceS, in Eq. (4). The external noise is not needed to
the cylinder isBy, the ion mass isn;, the averaged radius of reach a supercritical state. However, it is essential in
curvature of the magnetic field linesiis, and the resistivity exploring the subcritical regime.

is . The total flow velocity is expressed in terms of an

averaged poloidal velocity plus a fluctuating component; sTEADY STATE TURBULENCE WITH PARTICLE
given in terms of a stream functich/B: TRACERS

V=(V,) 0+ (VDPXZ)/B,, (3) To investigate the transport dynamics close to marginal
stability, the model must have a critical pressure gradient
- ) . . below which resistive interchange modes are stable. This is
only of t andr, and 6 andZ are unit vectors in the poloidal achieved by having finite values of the dissipative terms in

and .torqdal F'”e.c t_|ons, respectively. The velqcny stre.amthe fluctuation equations. These dissipative terms also con-
function®/B, is trivially related to the electrostatic potential trol the width of the wave number spectrum. To be able to

—®. In both Egs(1) and(2) there are dissipative terms with carry out these 3-D nonlinear calculations, we have to limit
characteristic coefficients (the collisional viscosityandy,  this width. Here, we take.=0.2a2/7 and y, =0.0252/
(the collisional cross-field transparrespectively. A parallel - \whererg=a?u,/7 is the resistive time and the minor
dissipation term is also included in the pressure equationgdiys, The resistivity is such that the Lundquist number is
This term can be interpreted as a parallel thermal diffusivity.s— 10° for all these calculations, anfly/2¢2=0.018. Here,

The instability drive is the flux surface averaged pressures s the value ofg at the magnetic axis ane=a/R,.
gradient,o(p)/dr, which is a function ofr andt. The evo- To avoid problems with the boundaries, only modes with
lution equation of the flux surface averaged pressure is  yesonant surfaces in the range 91a<0.8 have been in-

apy 19 ~ . 1d/( ap) c!udeq .in the_ cglculation. Outside this region, the collisional

5t T —H(Vip)=S+S;+D—-—|r——|. (4 diffusivity D is increased by a factor of 4 to compensate for

ror ror ar R .
the lack of anomalous transport and to avoid distortion of the

It contains a time-independent source terg3, which is  profiles. We include 363 Fourier components to represent the
only a function ofr. This source of particles and heat is due, poloidal and toroidal angle dependence for each fluctuating
for instance, to neutral beam heating and fueling. In thiscomponent. The radial grid resolution 4 =7.5x 10" “a.
case,S, is essentially determined by the beam depositiorThe nonlinear evolution has been carried out with Kime
profile. In the present calculations, we use a parabolic proeode®®
file, Sy=So[1— (r/a)?]. Even the best beams have time and  To study the transport properties of this turbulence
radial variations in the amount of heating deposited; this isnodel, a steady state must be reached. A particle source is
represented by an added noise te8n, which we choose to included to maintain the averaged profile. In general, how-
be random in radius and time. Implicitl,; reflects varia- ever, this source is noisy. This is represented by the source
tions on time scales slower than fluctuation time scales, 08, in Eg. (4). This noise is responsible for the dynamics in
the order of 406,,, hence its poloidal isotropy. Herey,is  steady state. The noise is taken into account in the calcula-

where(V ) is the poloidal flow velocity, which is a function

r
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tion as follows. At a fixed number of time stefypically ORINL 2001-1169 EFG
between 100 and 400a small averaged pressure perturba- ALt e
tion is added with a 50% probability. This addition of pres- ’
sure corresponds to times of the order ofr0to 200r,.

This perturbation is radially localized. It has a Gaussian form
with a width of W=0.01a; the amplitude is 0.05 times the
local value of the normalizeto itsr =0 value equilibrium
pressure. The radial location of the averaged pressure pertur-
bation is randomly chosen in the range.©/a<0.7. A very ya 0
low random level of non-axisymmetric perturbations is also
initialized (about 0.001% fluctuationsas a seed for the in-

stabilities. We consider first the case without averaged poloi-

dal velocity.

As the average pressure perturbations are added, they =~ 05
trigger local instabilities in the plasma at the corresponding I
resonance surface. The instability locally flattens the pressure
profile and causes a change of gradient in the nearby sur-
faces, which may become unstable, and so continue the pro-
cess. Eventually, the excess pressure deposited at the core is
transported to the edge of the plasma. This process has tﬁéﬁ 1. Example of two tracer particle c_)rbits_having extreme behaviors. One

.. h . is trapped in an eddy, while the other is doing several flights.
characteristic properties of an avalanche. It is a true ava-
lanche in the sense that propagation is both up and down the
gradient. The downward propagation is dominant. A more
detailed description of the dynamics of this model is given infusion, particle trapping and particle flights, are present in
Ref. 12, this model. Trapping times for tracer particles can be calcu-

We use pseudoparticles as tracers because of the tinlated, as it is described later. However, from a quantitative
requirements of the turbulence calculations. These tracers apwint of view, there is no simple way of defining a flight.

solutions of the equation of motion: The finite size of the system introduces practical prob-
dr lems in evaluating the dynamics of the tracers. These prob-
d_:\/(r t) (5) lems are particularly acute when there are such disparate
t e

behaviors on particle trajectories as illustrated in Fig. 1. In
o ) ) this situation, some particles stay trapped for very long times
Here, the velocity is th&X B velocity because no diamag- yhile others walk out of the system in very short times. A
netic effects are included in this model, and it is given incommonly used remedy for dealing with the particles leaving

terms of the stream function the system is to put back into the plasma these tracer par-
1 1 ticles and keep following their orbits as if their radial posi-
V(r,t)= ?EXB= ¥Vc1>(r,t)><B. (6)  tions are unbounded. This technique allows us to follow a

bunch of tracer particles for as long as we desire, but it
Because our model is electrostatic, all information on turbucauses some distortions in the particle properties that we
lence evolution is throughb. have to avoid, as will be discussed in the following.

We use the electrostatic approximation in the dynamical In following tracer orbits, we have calculated the en-
evolution because of the simplification of the calculation.semble average of several powers of the radial displacement
Since we have to carry out these calculations in a time rangas a function of time. As discussed in Ref. 17, because of the
that covers from the fluctuation time scale to transport scaleginite size of the system, it is useful to evaluate different
3-D turbulence calculations became nearly prohibitive whermoments of the distribution function of the radial positions
the electromagnetic terms are included. For resistive interof the tracer particle in order to extract the proper similarity
change turbulence at loW values, the electrostatic approxi- exponent. That is, we calculate
mation is quite a reasonable approximation. M~ enu(n

The tracers are initialized at random poloidal and toroi- ([r()=r(0)]=Dot™", ™
dal positions around a given radius and with random initialwherer (t)=|r(t)|. We evaluate Eq(7) for different values
velocities. Because in E@6) the velocity component along of n, greater and smaller than 1. Here, the angular brackets
the magnetic field is zero, the tracers move at a constanihdicate ensemble averaged over the particle tracers. From
component of the velocity in this direction. This componentEg. (7) we can, in principle, determine whether the diffusion
is the initial one. is normal, »=0.5, or anomalousy#0.5. Of course, if the

To investigate the dynamics of these tracer particles, wgrobability distribution function of the particle positions at
have followed their orbits. In their evolution, the tracer par-different times is not self-similar, the exponentcan be a
ticles are either trapped in eddies for long times, or they carfunction ofn. Consideration of several moments of the prob-
jump over several sets of eddies in a single flighig. 1). ability function allows us to determine its self-similarity
Therefore, both characteristic features of the anomalous difproperties.
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FIG. 2. Then=1 andn=2 moments of the tracer particle positions started |G, 3. Thew(n) for several moments of the distribution. The plot shows
nearr/a=0.3. A power fit to the asymptotic time scaling of the two mo- o asymptotic regions, the low-and highn regions. They provide infor-
ments givesy=0.91 andv=0.84, respectively. mation on two regions of the PDF, for lowand hight, respectively.

In these studies, we have used 2000 tracer particles witticle knows that the flights are all shorter thanThey have
random initial conditions around a given radial position.a Levy-type distribution that is truncated at a finite length.
These particles are followed for two resistive times, that isWhen partial sums of flights are done to calculate the particle
4% 10° time steps. Over a time interval of about a decademotion, the particle positions no longer have a Levy-type
the moments of the tracer particle positions can be fitted by distribution. Because of the truncation, the variance of the
power law. An example of the evaluated=1 andn=2 flights is finite, and the successive sums are distributed close
moments is shown in Fig. 2. A power fit of the foit"” to  to a Gaussiaft Therefore, then>1 moments that sample
the larget(t>0.27g) power scaling region of these two mo- theser>L particle positions should scale with an index of
ments gives’=0.91 andr=0.84, respectively. This is a clear »=~0.5. Note that thex>1 regime is only the result of the
indication that the transport is superdiffusive. way we treat particles when they reach boundary. Fordpw

As discussed in Ref. 17 for the sandpile model, the probthe value ofv is larger than 0.5. This is the relevant regime
ability distribution function(PDF of the tracer particle po- for the transport calculation because it describes the transport
sitions at different timespP(r,t), has different similarity process within the minor radius of the plasma, that isrfor
scaling for larger and smallr. This means that a simple <a. Because of the finite size of the system, we are not
scaling of the probability distribution of the forr®(r,t) dealing with the asymptotit—c< limit. We are considering
=t~ "F(r/t”) is not possible for all scales with the same time of the order of a confinement time for the lowegime
value ofv. The self-similarity scaling is broken by the tracer and several confinement times for the largeegime. That is
particles that are put back into the plasma as a consequentiee reason for the apparent discrepancy with the results of
of the finite size of the system. This symmetry breaking onlyRefs. 22 and 23.
affects the high- region of the distribution. Therefore, to The values ofv(n) for all n's considered are plotted in
better determine, we calculate several moments of the dis-Fig. 3. Forn<2, the averaged value is(n)=0.81, and
tribution function as shown in Ed7) and determine/(n). v(n)=0.49 forn>2.

In Fig. 3, there is an example of the calculategh). Figure The separation of(n) in two regions allows us to cal-

3 shows that there are two linear scaling regions:fcm), culate v correcting for the problems introduced by the finite
the lown and highn regions. They provide information on size of the system. However, it is never totally clear what is
two regions of the PDF, for low and highr, respectively. the proper time range for evaluatimgAs can be seen in Fig.
For highn, v(n) is smaller tharv(n) for low n. For largen, 2, there are at least three regions in time where the moments
v(n) tends to be 0.5. For a particle moving in the plasmadefined in Eq(8) can be fitted by a power law. We also know
with positionr <a, the flight length may be of the same size from the previous discussion, that if the calculation is taken
as the particle position. Therefore, this particle does not yefurther in time a nonphysical diffusive region will ultimately
know that there is a limit in the size of a flight. When sum- appear. Is the last of the three regions in Fig. 2 the proper
ming over flights, the distribution of sums is possibly closeasymptotic region for this determination? This is a question
to a stable Levy distribution. However, when a tracer particledifficult to answer with the available information. For this
has moved out of the plasma and put back in several timesgason, we have applied an alternative appr&aih deter-

its effective radial positionm is such thar>a. Such a par- mine the exponent.
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When we determine the positions of the tracer particles 5
at a given time, some of the particles can be quite far away 107
from the bulk of the bunch, and some have even walked out
of the system all together. Therefore, it makes sense in a
finite size system to determine the time for a group of par-
ticles to reach a given distance. In this way, one has a better
control of the particle positions. This is the essence of the
method proposed in Ref. 24. Following this method, we de-
fine an initial mean square separation between a séi of
particles as

10 E

A@) TR
3
w

1N
8(0)?= 2, Iri(0)2=(ri(0))7, t:)

102

where(r;(0)) is the mean radial position of the tracer par-
ticle i,

L ¥

1 aaaal sl
10 102 1071
8/a

N aaaal
-3
(ri(0) =g 2, ri(0). (9) 10
We follow M bunches ofN particles and determine for
each bunch the timeT;(1), taken to multiply their initial
mean square separation by a given fagiahat is, to have a
mean square separatiaiil)=pas(0). The mean time to in-
crease by a factor gf the mean separation between particles

is then

Z| -

FIG. 4. For the same plasma parameters and initial tracer particle positions
as the calculation of Fig. 2, we have plotted the values of the nonlinear
Lyapunov numbeR as a function ofé for two radial position of the initial
tracers.

=0.3a, and »=0.89+0.12 for particles starting around
=0.5a. These values are not inconsistent with the value de-
termined by the first method=0.81.

In the case of supercritical transport, the noise so&ce
This experiment can be repeated by successive increases byan be removed. We repeated the calculation of the particle
factor of p, the mean square separation between particlesracers in this situation, and the plot ®fé) is shown in Fig.
After m iterations, the particles have a mean square separ&: A fit to the second algebraic region gives0.89+0.14;

tion of 5(m) =p™5(0), and theaverage time taken to reach this value is very close to the ones obtained for subcritical
this state ig(T;(m)). This allows us to define a finite scale transport.

Lyapunov exponent:

1M
(Ti(D)=17 2 Ti(D).

=1

(10

In(p)

MLm= 7y
Note that for6—0, Eq.(12) gives the Lyapunov exponent. In
Fig. 4, and for the same plasma parameters and initial tracer
particle positions as the calculation of Fig. 2, we have plotted
the values ol as a function of5. As shown in Fig. 4\ as a
function of § has three very well defined regions. At very
low values ofé, \ is independent o8. In this region\ is the
Lyapunov exponent. The second region shows a power fall im
off, %4 S 1% . E

(11)

ORNL 2001-1173 EFG

105: T =TT

o e 0oong ,

%e i

10* F

NOET IS (12) [ ‘.
If the probability distribution function of the tracer particle
positions is self-similar and as a consequends indepen-
dent ofn, then from Eq.7), we haves=T". From the defi-
nition of A, Eq. (11), we can see that the exponenin Eq.
(12) is the samer as in Eq.(7); v is the scaling exponent that

10° F o3

10!

we are seeking. In the third regiox falls off very fast. This
last region corresponds to particles walking out of the sys-

tem. In the present calculations, we have taken 15 bunches ErG 5. In the case of supercritical transport, the ploh@f) vs & gives an

10°3

102
&/a

107

200 particles. A fit by a power law of the second region giveSeyponent»=0.89+0.14: this value is very close to the ones obtained for

an exponentr=0.87+£0.03 for particles starting around

subcritical transport.
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We can study the transport properties of this system from ORNL 20011174 EFG
another perspective. Let us consider a particle trajectory that /6
we call the basic trajectory, and a second trajectory that starts U5 4 8/5 75
simultaneously with the first one. The initial condition for the 5/3 3/2 43
second trajectory differs from the basic one by a small dis- 3.0 TTTTTITOIN T T L
tanced,. When the distancé(t) between the two trajecto-
ries reaches a given valug,, we measure and store the time 2.5 —
T, suchs(T) = 6; . At this point, we start a new trajectory for
the same basic trajectory, and we repeat the process. After |
many iterations, we accumulate a sequence of times that it
takes the trajectories to gét apart. We also accumulate the
information on the length along the orbit until the particles
separate and on the radial position where they separate. This
approach is similar to the usual method of determining the
Lyapunov number, but for a finite size separation. In the
following results, we have usegh=0.001a, the lowest pos-
sible value, because of the limitation of the radial resolution, t
and 5;=0.003. !
By looking at the PDF of the radial positions where the 0 ==
particles separate, we find that it has considerable structure.
This structure is directly related to the rational values of the
safetyq profile. There are fewer events of particles separatgg 6. PDF of the radial positions where two particles that started close
ing at the radial position of a low-rational surface. At these together separate. We have used a requirement of 100 events per bin to
positions the turbulent eddies are centered and within thegainimize noisg; therefore, only the structure asggciated with low ratiqnal
eddies the particles al.,e _trappeq for bng times. These Struéﬂﬁggg:remams. We have also plotted the positions of these low rational
tures are the stochastic jets defined in Ref. 25, and they can
be visualized as toroidal structures where the tracers are
trapped. While trapped in poloidal and radial directions, the

t I the toroidal directi ithin th iruct mentioned in Sec. |, large-scale fluctuations in the plasma
racers along the loroidal direction within these Sruclures,,, o place and influence the tracer particle transport. We can
travel at a relatively constant velocity. In the radial regions

identify the large-scale fluctuations with an appearance of

between eddies th_e trajectories becom_e stochastic and t@ ontaneous bursts in time—space dynamics or with coherent
Lyapunov number is large. In these regions, there are ma me—space structuredike “avalanches). Tracers can be

particle separation events. We can se(.a.that in Fig. 6, Wherﬁ:’apped in the vicinity of coherent structures and travel with
we have plotted PDF of the radial positions, where the par

. . the structure. This type of particle dynamics was called sto-
ticles separate. We have used a requirement of 100 events p astic jets in Ref. 25. In our calculations, Fig. 6 shows the

bin to minimize noise; therefore, only structures associate
with low rational surfaces remain. In Fig. 6, we have also
plotted the positions of these low rational surfaces.

A way of measuring the particle trapping times is by the 10° 3
time that the particles stay together in the stochastic jets.
This is not necessarily an exact definition, but as seen in Fig.
6, it gives a good description of trapping times. The PDF of
the trapping times provides additional information on trans-
port properties of the tracer particles. As shown in Fig. 7, the
PDF of the trapping times has a power tail for large values of
the trapping times with a decay exponent.83+0.22. If the
system were unlimited, that would imply a divergence of the
second moment of the PDF. The implications of this slow
falloff will be explored in Sec. IV. As the tracer particles
travel together, the length along the orbit before separation |
can also be calculated. As shown in Fig. 8, the PDF of the *
length along the trajectory decays as th2.0 power for all [
values of the length. This may reflect that particle motion - .
along the orbit is nearly uniform with the toroidal motion 10! — -
being the dominant one. 103 102 107

Trapping Times (Tg)
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IV. FRACTIONAL KINETICS OF PARTICLE TRACERS
FIG. 7. The PDF of the trapping times of the particle tracers. For the large

. The information obtained from the t'racer p'arti(.:Iegs can beajyes of the trapping times, the PDF decays as a power with an exponent
interpreted using the concept of fractional kinefits®As  y=-1.83+0.22.
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10° ORNL 20011176 EFG Following Ref. 26, consider a doma#of the escaping par-
LU ticles in phase space with a phase volulg=T'(A). As-

] sume that the particle dynamics are Hamiltonian although
the plasma flow is not. Hamiltonian dynamics preserve phase
volume I'y during the time evolution, but the enveloped
coarse-grained volumié; grows with time. The escaped par-
ticles fromA are dispersed in the volumg after timet, and

the effective number of particles that occupyis

nt"\’tl—‘t. (17)

The corresponding integrated probability of a particle to es-
cape fromA duringt is

-3 Pind(t) ~tol'o /tI, (18)

wheret, is a characteristic time.
In the two-dimensional phase spacef,), we can es-
timate

: —— P =0.00186 * T 2087
102 E—

10'

100

Probability Distribution

107!

e

102 1072 107" 10°
Length Along Orbit/a ['~xpy~Xx2/t. (19

102

FIG. 8. The PDF of the length along the trajectory of the particle tracersHere, p, is the component of the moment of the tracer par-

For the large values of the length, the PDF decays as a power with aficle in thex direction. We can now estimate the escape prob-
exponent of—2.08. This may reflect that the toroidal velocity, which is a ability as

constant random number, dominates the particle motion along the orbit.

P%ﬂy:%Pmuy4ﬁbhﬁ~%FMW, (20)

radial distribution of those jets. Particles in a jet are traveling
together with other particles of the same jet. They havevith y=1+2v. In Eq. (20), we have introduced the particle
power law statistics of the particle’s escape from the jetescape probability densiffes{t) with a corresponding char-
Following this pattern, one can split the distribution function acteristic decay exponent
of tracersP(x,t) into two parts, a normaP,, and singular All of these estimates were for one-dimensional trajec-
PS' It is the Singu|ar part of the distributioms(x’t), that tories. Real dynamiCS of tracers in the calculations are 3-D,
describes long-scale fluctuations and that is responsible f@nd all trajectories, determined as jets, are elongated in the
the anomalous diffusion. In one-dimensional kineticsytOfOid&' direction. Numerical calculations give a diffusive
P(x,t) satisfies the fractional kinetic equation: dispersion of tracers in the radial direction, characterized by

an exponent=1(1)~0.88. We also calculated the trapping
(13) time probability,P(t), (see Fig. 7 that scales as

P(t)~ 14", (21)

with y,~1.83. It is easy to find a connection betwegrand

PP(x,t) F*P¢(X,1)
gt A glx|e

with an appropriate exponent3,a), that can be fractional

and with an anomalous diffusion coefficiefit,,. Although _ e .
v. Let us consider a tracer that travels inside a jet as a

the second and higher momentsxaire infinite forg<l and /- ~" _ . :
a<2, space—time truncated moments are finite. Only theyfllght. Assuming that the distribution of the flights along

are considered in the numerical calculations and in the anal® tube of the lengthis approximately uniform and that
lytical interpretation of the results. Thus, ~const, we conclude that

(Ix])~t#'=, (14) P(t)~IPesdt) ~tPesdt). (22)
This result implies thaty,=y—1=2v. Therefore,y=1.76

+0.14, consistent with the numerical resyl=1.83+0.22
Jrom Fig. 7.

with v=p/a. The ratio, B/a, can be expressed through the
scaling parameters\, and A\, that characterize the renor-
malization properties of particle trajectories in space an
time, respectively. Namefy’,

v=InA/INN;  (NASD), (15)
. . ) V. DISCUSSION AND CONCLUSIONS
which follows directly from Eq.(13) after the rescaling of
the time and space coordinates We have investigated the transport properties of a 3-D
r re-gradient-driven turbulence. Thi m w. harac-
NIRRT SR (16) pressure-gradient-driven turbulence s system was charac

terized by subcritical transport by avalanches when a noise
The most difficult part of the diagnostics of particle dynam-source was introduced in the equations. Similar properties of
ics is obtaining the parametexsg, \;. One possibility is the avalanche transport are found in the supercritical regime.
calculation of the escape time statistics for particles in stoThe use of particle tracers in this system has allowed us to
chastic jets because only these particles are responsible foharacterize, through different diagnostics, the transport
the long-term asymptotics of the escape time distributionproperties of the tracers in such a system.
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The main results are that the transport is superdiffusive
with a transport exponent 0f=0.88+0.07. There is no
change of the exponent, within the error bars, in going from
subcritical to supercritical transport. Several of the methods
used in calculating this exponent lead to the same result.

The transport picture coming from these calculations

agrees with the one put forward in Ref. 5. Particles are d? s
trapped in eddies at the resonant surfaces; they move as jets
along the torus. When the particles reach near the boundary
of the eddy, where the trajectories become stochastic, they
travel fast radially. As they do that, they can travel across
several eddies in a single flight. This combination of trapping
and flights is consistent with the simple picture given by the

sandpile model of Ref. 5.

The transport dynamics of the tracer particles may be

interpreted with fractional kinetics. This interpretation pro-

vides a consistent picture of the trapping time distributions

and the radial anomalous diffusion exponent.
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APPENDIX: FRACTIONAL CALCULUS

Here, we give a short summary of fractional calculus.
Necessary elements of the fractional calculus can be found ig

Refs. 27 and 28. Let us define a Fourier transforrg(ef) as

F

9(x)—g(a)= ficg(X)eiqxdx. (A1)

The simplest way is to define fractional derivative of order as

@ F
axe 30— (—a)“g(a),
» - (A2)
a—x® (x)—(iq)“g(q).
A symmetrized fractional derivative can be defined as

a F

Wg(x)ﬂ—lql‘*g(q). (A3)
or in an explicit form
de - 1 d* d° i
ax[@ 9= " S cogmard) |axe T d(=x |9 (¢* D
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